1
|
Xu DL, He YQ, Xiao B, Si Y, Shi J, Liu XA, Tian L, Ren Q, Wu YS, Zhu Y. A Novel Sushi-IL15-PD1 CAR-NK92 Cell Line With Enhanced and PD-L1 Targeted Cytotoxicity Against Pancreatic Cancer Cells. Front Oncol 2022; 12:726985. [PMID: 35392221 PMCID: PMC8980464 DOI: 10.3389/fonc.2022.726985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with a limited response to current therapies. Novel and effective treatment is urgently needed. Herein, a chimeric antigen receptor (CAR)-NK92 cell line, with an interleukin (IL)-15Rα-sushi/IL-15 complex and a Programmed cell death-1(PD1) signal inverter was constructed and named SP (Sushi-IL15-PD1). We showed that CAR expression enabled SP cells to proliferate independently of IL-2 and became more resistant to nutrition starvation-induced apoptosis. Meanwhile, SP cells were more effective than NK92 in PDAC cell killing assays in vitro and in vivo, and there was a positive correlation between the killing capability of SP cells and PD-L1 expression in pancreatic cancer cells. Based on the synergistic and comprehensive effects of the special CAR structure, the adhesion, responsiveness, degranulation efficiency, targeted delivery of cytotoxic granule content, and cytotoxicity of SP cells were significantly stronger than those of NK92. In conclusion, the SP cell line is a promising adoptive immunotherapy cell line and has potential value as an adjuvant treatment for pancreatic cancer, especially in patients with high PD-L1 expression.
Collapse
Affiliation(s)
- Da-Lai Xu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Qing He
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Bin Xiao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yuan Si
- Research & Development Department, Timmune Biotech Inc., Tianjin, China
| | - Jian Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Ang Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Qian Ren
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Ya-Song Wu
- Research & Development Department, Timmune Biotech Inc., Tianjin, China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021; 10:497. [PMID: 33669111 PMCID: PMC7996512 DOI: 10.3390/cells10030497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line chemotherapies for patients with unresectable pancreatic cancer (PC) are 5-fluorouracil (5-FU) and gemcitabine therapy. However, due to chemoresistance the prognosis of patients with PC has not been significantly improved. Mitochondria are essential organelles in eukaryotes that evolved from aerobic bacteria. In recent years, many studies have shown that mitochondria play important roles in tumorigenesis and may act as chemotherapeutic targets in PC. In addition, according to recent studies, mitochondria may play important roles in the chemoresistance of PC by affecting apoptosis, metabolism, mtDNA metabolism, and mitochondrial dynamics. Interfering with some of these factors in mitochondria may improve the sensitivity of PC cells to chemotherapeutic agents, such as gemcitabine, making mitochondria promising targets for overcoming chemoresistance in PC.
Collapse
Affiliation(s)
- Yibo Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Francesca Ricciardiello
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Lei You
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Yang L, Zhang L, Lu L, Wang Y. miR-214-3p Regulates Multi-Drug Resistance and Apoptosis in Retinoblastoma Cells by Targeting ABCB1 and XIAP. Onco Targets Ther 2020; 13:803-811. [PMID: 32095078 PMCID: PMC6995305 DOI: 10.2147/ott.s235862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to contribute to the initiation and progression of human cancer, including retinoblastoma. However, expression levels and potential roles of miRNAs in retinoblastoma remain largely unknown. In this study, we aimed to identify dysregulated miRNAs and explore their functional roles in the development of retinoblastoma. Material and Methods First, miRNA expression profiling in retinoblastoma tissues was performed via microarray analysis. To evaluate the involvement of miR-214-3p in multi-drug resistance, gain-of-function experiments were employed in vitro and in vivo. Bioinformatics analysis, luciferase reporter assay, qRT-PCR and Western blot were used to investigate the underlying mechanisms. Results Here, we identified 57 up-regulated and 34 down-regulated miRNAs. Among them, miR-214-3p was the most significantly decreased. We found that miR-214-3p level was positively correlated with clinical outcome and chemotherapy response. Overexpression of miR-214-3p significantly sensitized retinoblastoma cells to multiple chemodrugs and promoted cell apoptosis in vitro and in vivo. Further investigations revealed that miR-214-3p directly regulated ABCB1 and XIAP expression through interacting with the 3’ untranslated regions (3’UTRs). Pearson correlation analysis showed that miR-214-3p expression in retinoblastoma tissues was negatively correlated with ABCB1 and XIAP expression. We also observed that overexpression of ABCB1 or XIAP partly reversed the chemoresistance inhibition-induced by miR-214-3p overexpression. Conclusion Our data demonstrate that miR-214-3p functions as a tumor suppressor to inhibit the chemoresistance in retinoblastoma, suggesting that miR-214-3p might be potential diagnostic and therapeutic targets for retinoblastoma treatment.
Collapse
Affiliation(s)
- Lidong Yang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Liyou Zhang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Lu Lu
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Yan Wang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| |
Collapse
|
4
|
Co-expression of XIAP and CIAP1 Play Synergistic Effect on Patient's Prognosis in Head and Neck Cancer. Pathol Oncol Res 2018; 25:1111-1116. [PMID: 30421089 DOI: 10.1007/s12253-018-0533-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023]
Abstract
To explore the influence of chemotherapy on prognosis of Head and Neck Squamous Cell Carcinoma (HNSCC) and the relationship between XIAP and CIAP1 co-expression and the prognosis in HNSCC. 129 patients were recruited in our study, they were divided into two groups, neoadjuvant group (n = 60) and non-neoadjuvant group (n = 69). Expression level of XIAP and CIAP1 were examed in neoadjuvant group, and was correlated with clinical outcomes of the patients. The unselected patients were not benefit from neoadjuvant chemotherapy. Moreover, the patients whose tumors co-express high level of XIAP and CIAP1 presented poorer overall and disease-free survival rates than those whose tumors co-express low level of XIAP and CIAP1 (overall survival P < 0.001, disease-free survival P < 0.001). Our results validate that individual chemotherapy is important for HNSCC, and co-expression of XIAP and CIAP1 prompted a worse prognosis.
Collapse
|
5
|
An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:240. [PMID: 30285798 PMCID: PMC6169080 DOI: 10.1186/s13046-018-0899-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023]
Abstract
Background Pancreatic cancer is a deadly disease with a very low 5-year patient survival rate of 6–8%. The major challenges of eliminating pancreatic cancer are treatment resistance and stromal barriers to optimal drug access within the tumor. Therefore, effective molecular targeting drugs with high intra-tumor access and retention are urgently needed for managing this devastating disease in the clinic. Methods This study has used the following in vitro and in vivo techniques for the investigation of exceptional anticancer drug FL118’s efficacy in treatment of resistant pancreatic cancer: cell culture; immunoblotting analysis to test protein expression; DNA sub-G1 flow cytometry analyses to test cell death; MTT assay to test cell viability; pancreatic cancer stem cell assays (fluorescence microscopy tracing; matrigel assay; CD44-positive cell colony formation assay); human luciferase-labeled pancreatic tumor orthotopic animal model in vivo imaging; pancreatic cancer patient-derived xenograft (PDX) animal models; and toxicology studies with immune-competent BALB/cj mice and beagle dogs. Results Our studies found that FL118 alone preferentially killed cisplatin-resistant cancer cells, while a combination of FL118 with cisplatin synergistically killed resistant pancreatic cancer cells and reduced spheroid formation of treatment-resistant pancreatic cancer stem-like cells. Furthermore, using in vivo-imaging, we found that FL118 in combination with cisplatin strongly inhibited both drug-resistant pancreatic xenograft tumor growth and metastasis. In PDX model, we demonstrated that FL118 alone effectively eliminated PDX tumors, while FL118 in combination with gemcitabine eliminated PDX tumors that showed relative resistance (less sensitivity) to treatment with FL118. These FL118 efficacy results are consistent with our molecular-targeting data showing that FL118 inhibited the expression of multiple antiapoptotic proteins (survivin, Mcl-1, XIAP, cIAP2) and ERCC6, a critical regulator of DNA repair, in treatment-resistant pancreatic stem-like cancer cells. Furthermore, FL118 toxicity studies in BALB/cj mice and beagle dogs indicated that FL118 exhibits favorable hematopoietic and biochemical toxicities. Conclusion Together, our studies suggest that FL118 is a promising anticancer drug for further clinical development to effectively treat drug-resistant pancreatic cancer alone or in combination with other pancreatic cancer chemotherapeutic drugs.
Collapse
|
6
|
Placet M, Arguin G, Molle CM, Babeu JP, Jones C, Carrier JC, Robaye B, Geha S, Boudreau F, Gendron FP. The G protein-coupled P2Y₆ receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1539-1551. [PMID: 29454075 DOI: 10.1016/j.bbadis.2018.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Colorectal tumors are immersed in an array of tumor-promoting factors including extracellular nucleotides such as uridine 5'‑diphosphate (UDP). UDP is the endogenous agonist of the G protein-coupled P2Y6 receptor (P2Y6R), which may contribute to the formation of a tumor-promoting microenvironment by coordinating resistance to apoptosis. Colorectal cancer (CRC) was chemically induced in P2ry6 knockout (P2ry6-/-) mice using azoxymethane and dextran sulfate sodium challenges. Mice were euthanatized and their tumor load determined. Fixed tissues were stained for histological and immunohistochemistry analysis. Tumoroids were also prepared from CRC tumors resected from P2ry6+/+ mice to determine the role of P2Y6R in resistance to apoptosis, whereas HT29 carcinoma cells were used to elucidate the signaling mechanism involved in P2Y6R anti-apoptotic effect. P2ry6-/- mice developed a reduced number of colorectal tumors with apparent tumors having smaller volumes. Overall dysplastic score was significantly lower in P2ry6-/- animals. Stimulation of P2Y6R with the selective agonist MRS2693 protected HT-29 cells from TNFα-induced apoptosis. This protective effect was mediated by the stabilizing phosphorylation of the X-linked inhibitor of apoptosis protein (XIAP) by AKT. Using CRC-derived tumoroids, P2Y6R activation was found to contribute to chemoresistance since addition of the P2Y6R agonist MRS2693 significantly prevented the cytotoxic effect of 5-fluorouracil. The present study shows that sustained activation of P2Y6R may contribute to intestinal tumorigenesis by blocking the apoptotic process and by contributing to chemoresistance, a substantial concern in the treatment of patients with CRC. These results suggest that P2Y6R may represent a prime target for reducing colorectal carcinogenesis.
Collapse
Affiliation(s)
- Morgane Placet
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caroline M Molle
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christine Jones
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bernand Robaye
- Institute of Interdisciplinary Research, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Boudreau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
7
|
Beyer K, Partecke LI, Roetz F, Fluhr H, Weiss FU, Heidecke CD, von Bernstorff W. LPS promotes resistance to TRAIL-induced apoptosis in pancreatic cancer. Infect Agent Cancer 2017; 12:30. [PMID: 28572836 PMCID: PMC5450120 DOI: 10.1186/s13027-017-0139-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Background Though TRAIL has been hailed as a promising drug for tumour treatment, it has been observed that many tumour cells have developed escape mechanisms against TRAIL-induced apoptosis. As a receptor of LPS, TLR 4, which is expressed on a variety of cancer cells, can be associated with TRAIL-resistance of tumour cells and tumour progression as well as with the generation of an anti-tumour immune response. Methods In this study, the sensitivity to TRAIL-induced apoptosis as well as the influence of LPS-co-stimulation on the cell viability of the pancreatic cancer cell lines PANC-1, BxPC-3 and COLO 357 was examined by FACS analyses and a cell viability assay. Subsequently, the expression of TRAIL-receptors was detected via FACS analyses. Levels of osteoprotegerin (OPG) were also determined using an enzyme-linked immunosorbent assay. Results PANC-1 cells were shown to be resistant to TRAIL-induced apoptosis. This was accompanied by significantly increased osteoprotegerin levels and a significantly decreased expression of DR4. In contrast, TRAIL significantly induced apoptosis in COLO 357 cells and to a lesser degree in BxPC-3 cells. Co-stimulation of COLO 357 as well as BxPC-3 cells combining TRAIL and LPS resulted in a significant decrease in TRAIL-induced apoptosis. In COLO 357 cells TRAIL-stimulation decreased the levels of OPG thereby not altering the expression of the TRAIL-receptors 1–4 resulting in a high susceptibility to TRAIL-induced apoptosis. Co-stimulation with LPS and TRAIL completely reversed the effect of TRAIL on OPG levels reaching a 2-fold increase beyond the level of non-stimulated cells resulting in a lower susceptibility to apoptosis. In BxPC-3, TRAIL stimulation decreased the expression of DR4 and significantly increased the decoy receptors TRAIL-R3 and TRAIL-R4 leading to a decrease in TRAIL-induced apoptosis. OPG levels remained unchanged. Co-stimulation with TRAIL and LPS further enhanced the changes in TRAIL-receptor-expression promoting apoptosis resistance. Conclusions Here it has been shown that TRAIL-resistance in pancreatic cancer cells can be mediated by the inflammatory molecule LPS as well as by different expression patterns of functional and non-functional TRAIL-receptors.
Collapse
Affiliation(s)
- Katharina Beyer
- Department of General, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of General, Visceral and Vascular Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Felicitas Roetz
- Department of General, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Herbert Fluhr
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Obstetrics and Gynaecology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Wolfram von Bernstorff
- Department of General, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
TRAIL Promotes Tumor Growth in a Syngeneic Murine Orthotopic Pancreatic Cancer Model and Affects the Host Immune Response. Pancreas 2016; 45:401-8. [PMID: 26390425 DOI: 10.1097/mpa.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being evaluated as a possible biological agent for cancer treatment. However, many tumor cells are resistant to TRAIL-induced apoptosis. In these cases, TRAIL may activate different pathways promoting tumor growth as well as showing different interactions with the immunological tumor microenvironment. In this study, the impact of TRAIL on tumor growth and survival in a syngeneic model of TRAIL-resistant pancreatic cancer cells was investigated. METHODS Murine 6606PDA pancreatic cancer cells were injected into the pancreatic heads of TRAIL mice and their littermates. To examine a direct effect of TRAIL on tumor cells, cultures of 6606PDA were TRAIL stimulated. RESULTS The TRAIL mice displayed significantly decreased tumor volumes and an enhanced overall survival in pancreatic cancer. The decreased tumor growth in TRAIL mice was accompanied by a decrease of regulatory CD4 cells within tumors. Concordantly, TRAIL treatment of wild-type mice enhanced tumor growth and increased the fraction of regulatory CD4 cells. Yet, a direct effect of TRAIL on 6606PDA cells was not detected. CONCLUSIONS Thus, TRAIL can promote tumor growth in TRAIL-resistant tumor cells. This may restrict possible future clinical applications of TRAIL in pancreatic cancer.
Collapse
|
9
|
Liu T, Zhang H, Xiong J, Yi S, Gu L, Zhou M. Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer 2015; 14:65. [PMID: 25888903 PMCID: PMC4379586 DOI: 10.1186/s12943-015-0334-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 03/05/2015] [Indexed: 04/13/2023] Open
Abstract
Background It is known that the MDM2 protein is stabilized when it forms a heterodimer with its partner MDM4, but MDM2 protein stability in its homodimer form is not known. The MDM2 protein contains a C-terminal RING domain that not only functions as an E3 ligase to regulate ubiquitination of p53 and MDM2 itself, but also is characterized to be able to bind several specific cellular mRNAs to regulate gene expression. In this study, we evaluate whether the MDM2 protein stability is regulated by the binding of a specific small RNA (XIAP IRES mRNA). Methods We performed chemical cross-linking and bimolecular fluorescence complementation (BiFC) assay to measure the human MDM2 protein stability in its homodimer form and the effect of XIAP IRES on MDM2 homodimerization and protein stabilization. Ubiquitination and pulse-chase assays were used to detect MDM2 self-ubiquitination and protein turn-over. Fluorescent titration and ITC were used to examine the binding between MDM2 RING protein and XIAP IRES. Western blot assay was used for determining protein expression. Clonogenic assay, WST and flow cytometry were used to test the effects of XIAP IRES, siXIAP and IR on cancer cell growth and apoptosis. Results We found that self-association (homodimerization) of MDM2 occurs through the C-terminal RING domain of MDM2 and that the MDM2 protein becomes unstable when it is homodimerized. MDM2 homodimerization resulted in an increased function of the RING domain for MDM2 self-ubiquitination. Binding of XIAP IRES to the RING domain inhibited MDM2 homodimerization and self-ubiquitination, which resulted in stabilization of MDM2, as well as increased XIAP expression. Upregulation of XIAP and MDM2 that led to inhibition of p53 by the XIAP IRES resulted in cell growth and survival in both p53-normal and -deficient cancer cells. Conclusions Our study identified a new IRES RNA that interacts with MDM2 protein and regulates its stabilization, which suggested that targeting of MDM2 through disruption of MDM2 protein-RNA interaction might be a useful strategy for developing novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Hailong Zhang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Jing Xiong
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Sha Yi
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, Das SK, Sarkar D, Fisher PB, Emdad L. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid. Cancer Res 2014; 74:6224-35. [PMID: 25205107 DOI: 10.1158/0008-5472.can-14-0819] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyinosine-polycytidylic acid [pIC] is a synthetic dsRNA that acts as an immune agonist of TLR3 and RLR to activate dendritic and natural killer cells that can kill tumor cells. pIC can also trigger apoptosis in pancreatic ductal adenocarcinoma cells (PDAC) but its mechanism of action is obscure. In this study, we investigated the potential therapeutic activity of a formulation of pIC with polyethylenimine ([pIC](PEI)) in PDAC and investigated its mechanism of action. [pIC](PEI) stimulated apoptosis in PDAC cells without affecting normal pancreatic epithelial cells. Mechanistically, [pIC](PEI) repressed XIAP and survivin expression and activated an immune response by inducing MDA-5, RIG-I, and NOXA. Phosphorylation of AKT was inhibited by [pIC](PEI) in PDAC, and this event was critical for stimulating apoptosis through XIAP and survivin degradation. In vivo administration of [pIC](PEI) inhibited tumor growth via AKT-mediated XIAP degradation in both subcutaneous and quasi-orthotopic models of PDAC. Taken together, these results offer a preclinical proof-of-concept for the evaluation of [pIC](PEI) as an immunochemotherapy to treat pancreatic cancer.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Bridget A Quinn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Qin Gui
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Steven R Grossman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. Department of Internal Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
11
|
Abstract
Cell death by apoptosis plays a critical role in regulating the subtle balance between cell death and proliferation to maintain tissue homeostasis. Accordingly, tipping the balance in either direction may cause human disease. Too little cell death may promote tumor formation and progression. In addition, killing of cancer cells by current therapies is largely due to induction of apoptosis in tumor cells. Since a hallmark of human cancers is their resistance to apoptosis, there is a demand to develop novel strategies that restore the apoptotic machinery in order to overcome cancer resistance. Inhibitor of apoptosis proteins (IAPs) block apoptosis at the core of the apoptotic machinery by inhibiting caspases. Elevated levels of IAPs are found in many human cancers and have been associated with poor prognosis. Recent insights into the role of IAPs have provided the basis for various exciting developments that aim to modulate the expression or function of IAPs in human cancers. Targeting IAPs (e.g., by antisense approaches or small-molecule inhibitors) presents a promising novel approach to either directly trigger apoptosis or to potentiate the efficacy of cytotoxic therapies in cancer cells. Thus, inhibition of IAPs such as X chromosome-linked IAP may prove to be a successful strategy to overcome apoptosis resistance of human cancers that deserves further exploitation.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Eythstr. 24-89075, Ulm, Germany.
| |
Collapse
|
12
|
Down-Regulation of BAX Gene During Carcinogenesis and Acquisition of Resistance to 5-FU in Colorectal Cancer. Pathol Oncol Res 2013; 20:301-7. [DOI: 10.1007/s12253-013-9695-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/11/2013] [Indexed: 01/24/2023]
|
13
|
Phase I trial of AEG35156 an antisense oligonucleotide to XIAP plus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma. Am J Clin Oncol 2013; 36:239-43. [PMID: 22441342 DOI: 10.1097/coc.0b013e3182467a13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES AEG35156 is an antisense oligonucleotide (ASO) that targets the X-linked inhibitor of apoptosis mRNA. Preclinical studies showed potent activity of AEG35156 in combination with gemcitabine in pancreatic ductal adenocarcinoma (PDA). A phase I study was conducted to establish the maximum-tolerated dose, safety, and antitumor activity of AEG35156 plus gemcitabine in metastatic PDA. METHODS Fourteen patients with metastatic PDA were enrolled. Nine patients were treated at 350 mg IV and 5 patients at 500 mg IV of AEG35156, 3 weeks on/1 week off of a 28-day cycle. Gemcitabine was administered at 1000 mg/m(2) IV over 30 minutes immediately after AEG35156 in both groups. Because of perceived neurotoxicity dose deescalation to 350 mg was recommended. RESULTS All 14 patients were evaluable for tolerability and toxicity. Toxicities include neutropenia (grade 3/4, 6 patients), thrombocytopenia (grade 3, 2 patients), peripheral neuropathy (grade 3, 2 patients), fatigue (grade 3, 4 patients), ascites (grade 3, 2 patients), and nausea/vomiting (grade 4, 2 patients). Five patients (45%) experienced stable disease with a median progression-free survival of 58 days (95% CI, 52-107 d). CONCLUSIONS The maximum-tolerated dose is AEG35156 500 mg plus gemcitabine 1000 mg/m(2) given on days 1, 8, and 15 every 28 days. AEG35156 plus gemcitabine failed to show significant clinical activity in advanced PDA.
Collapse
|
14
|
Williams KP, Allensworth JL, Ingram SM, Smith GR, Aldrich AJ, Sexton JZ, Devi GR. Quantitative high-throughput efficacy profiling of approved oncology drugs in inflammatory breast cancer models of acquired drug resistance and re-sensitization. Cancer Lett 2013; 337:77-89. [PMID: 23689139 DOI: 10.1016/j.canlet.2013.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/30/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Although there is no standard treatment protocol for inflammatory breast cancer (IBC), multi-modality treatment has improved survival. In this study we profiled the NCI approved oncology drug set in a qHTS format to identify those that are efficacious in basal type and ErbB2 overexpressing IBC models. Further, we characterized the sensitivity of an acquired therapeutic resistance model to the oncology drugs. We observed that lapatinib-induced acquired resistance in SUM149 cells led to cross-resistance to other targeted- and chemotherapeutic drugs. Removal of the primary drug to which the model was developed led to re-sensitization to multiple drugs to a degree comparable to the parental cell line; this coincided with the cells regaining the ability to accumulate ROS and reduced expression of anti-apoptotic factors and the antioxidant SOD2. We suggest that our findings provide a unique IBC model system for gaining an understanding of acquired therapeutic resistance and the effect of redox adaptation on anti-cancer drug efficacy.
Collapse
Affiliation(s)
- Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Katragadda L, Carter BZ, Borthakur G. XIAP antisense therapy with AEG 35156 in acute myeloid leukemia. Expert Opin Investig Drugs 2013; 22:663-70. [PMID: 23586880 DOI: 10.1517/13543784.2013.789498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AEG 35156 is an antisense oligonucleotide to X-linked inhibitor of apoptosis protein (XIAP). Overexpression of XIAP is common in acute myeloid leukemia (AML) and other cancers and is thought to cause resistance to cancer therapy. Effective treatment options for patients with relapsed or refractory AML are limited and survival continues to be poor. Targeting resistance mechanisms is expected to improve results in relapsed as well as front-line settings. AREAS COVERED Role of XIAP in apoptosis pathways, structure of AEG 35156, mechanism of action, pharmacokinetics and pharmacodynamics, clinical efficacy and review of clinical trials in AML. EXPERT OPINION AEG 35156 in combination with standard chemotherapy was generally very well-tolerated and had shown some evidence of anti-leukemic activity in AML. The target knock down was transient and has not always correlated with response. Future studies may be done with variations in dose scheduling and with more emphasis on comprehensive pharmacodynamic studies simultaneously analyzing other inhibitor of apoptosis proteins (IAPs) and various XIAP regulators. Use of small molecule mimetics of second mitochondria derived activator of caspases (Smac) simultaneously targeting other IAPs appears to be an attractive option.
Collapse
Affiliation(s)
- Lakshmikanth Katragadda
- MD Anderson Cancer Center, Department of Leukemia, 1515 Holcombe Boulevard, Unit 428, Houston, Texas 77030, USA
| | | | | |
Collapse
|
16
|
Cao LP, Song JL, Yi XP, Li YX. Double inhibition of NF-κB and XIAP via RNAi enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncol Rep 2013; 29:1659-65. [PMID: 23354694 DOI: 10.3892/or.2013.2246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/28/2012] [Indexed: 11/05/2022] Open
Abstract
The majority of patients with pancreatic cancer are resistant to gemcitabine. One of the mechanisms involved is the anti-apoptotic ability of these cells. The median lethal dose (LD50) of gemcitabine for PANC-1 cells was higher than that for Mia PaCa-2 cells and the former had higher nuclear factor-κB (NF-κB) and X-linked inhibitor of apoptosis protein (XIAP) levels. NF-κB contributes to the inhibition of apoptosis by the downregulation of downstream genes, such as XIAP and Bcl-2 and it confers chemoresistance. The two cell lines were infected with NF-κB p65 small interfering RNA (siRNA). p65 protein was effectively downregulated accompanied by the downregulation of XIAP protein. The combination treatment with gemcitabine and p65 siRNA increased the apoptotic rates in both cell lines; however, this was not sufficient. XIAP is involved in apoptosis to a greater extent compated to Bcl-2. XIAP may serve as another factor affecting the sufficiency of chemotherapy. XIAP siRNA was designed to knockdown XIAP. Mia PaCa-2 and PANC-1 cells were co-infected with XIAP siRNA and p65 siRNA. XIAP and p65 proteins were effectively downregulated and the gemcitabine-induced apoptotic rates were significantly increased. These results suggest that XIAP and NF-κB are two important factors conferring the chemoresistance of pancreatic cancer cells, and that their downregulation via RNAi effectively enhances the chemosensitivity of pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Li-Ping Cao
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, PR China
| | | | | | | |
Collapse
|
17
|
Cregan IL, Dharmarajan AM, Fox SA. Mechanisms of cisplatin-induced cell death in malignant mesothelioma cells: role of inhibitor of apoptosis proteins (IAPs) and caspases. Int J Oncol 2012; 42:444-52. [PMID: 23229133 PMCID: PMC3583754 DOI: 10.3892/ijo.2012.1715] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/25/2012] [Indexed: 12/13/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive and highly chemoresistant tumour. Although cisplatin is used in frontline therapy of this disease treatment remains palliative at best. The biochemical pathways activated by cisplatin and the mechanisms of resistance in mesothelioma cells are poorly understood. Overexpression of inhibitor of apoptosis proteins (IAPs) has been described in clinical mesothelioma tumours and proposed as therapeutic targets. In this study, we examined cisplatin-induced cell death pathways and IAPs in three mesothelioma-derived cell lines. Cisplatin induced cell death in mesothelioma cell lines was characterised by biochemical mechanisms classically associated with apoptosis including: mitochondrial depolarisation, phosphatidylserine translocation and caspase activation. Surprisingly mRNA expression of IAPs in mesothelioma was not upregulated relative to primary mesothelial cells except for survivin which was higher in the most resistant cell line. In contrast, protein expression of both XIAP and survivin was upregulated in all mesothelioma cells, consistent with post-translational regulation. Knockdown of either XIAP or survivin by RNAi did not affect the sensitivity to cisplatin in any of the cell lines. Survivin RNAi did, however, inhibit proliferation in the highest expressing cell line, ONE58. The pan-caspase inhibitor z-VAD and the more selective caspase 3/7 inhibitor z-DEVD had no effect upon the sensitivity of any of the cell lines to cisplatin indicating that caspase-independent pathways predominate. The findings of the present study provide insights into cisplatin-induced mechanisms in mesothelioma cells and show that alternative pathways are operating which may provide new options for targeting this extremely resistant tumour.
Collapse
Affiliation(s)
- Inez L Cregan
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
18
|
Jiang C, Yi XP, Shen H, Li YX. Targeting X-linked inhibitor of apoptosis protein inhibits pancreatic cancer cell growth through p-Akt depletion. World J Gastroenterol 2012; 18:2956-65. [PMID: 22736919 PMCID: PMC3380323 DOI: 10.3748/wjg.v18.i23.2956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether lentivirus-mediated shRNA targeting the X-linked inhibitor of apoptosis protein (XIAP) gene could be exploited in the treatment of pancreatic cancer.
METHODS: Human pancreatic cancer cells Panc-1, Mia-paca2, Bxpc-3 and SW1990, infected with lentivirus, were analyzed by real-time polymerase chain reaction (PCR). Western blotting was used to examine XIAP protein levels, survivin and p-Akt to confirm the result of real-time PCR and determine the possible mechanism. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure IC50 to determine chemosensitivity to the chemotherapeutic drugs 5-fluorouracil (5-FU) and gemcitabine. A colony assay, MTT assay and a tumorigenicity experiment were used to study cell proliferation in vitro and in vivo. Caspase-3/7 activity, 4',6-diamidino-2-phenylindole-staining and flow cytometric measurements were used to study apoptosis in SW1990 cells.
RESULTS: XIAP proteins were found to be differentially expressed among pancreatic cancer cell lines Panc-1, Mia-paca2, Bxpc-3 and SW1990. Data of real-time PCR and Western blotting showed that XIAP was reduced persistently and markedly by lentivirus-mediated shRNA. Downregulation of XIAP by transfection with XIAP shRNA resulted in decreased p-Akt expression. XIAP shRNA also inhibited the growth of pancreatic cancer cells in vitro and in vivo, enhanced drug-induced apoptosis and increased chemosensitivity to 5-FU and gemcitabine. Results also suggest that inhibition of XIAP and subsequent p-Akt depletion may have an anti-tumor effect through attenuating the ability of cancer cells to survive.
CONCLUSION: Lentivirus-mediated gene therapy is an attractive strategy in the treatment of pancreatic cancer and justifies the use of lentivirus in pancreatic cancer gene therapy studies.
Collapse
|
19
|
Brunckhorst MK, Lerner D, Wang S, Yu Q. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. Cancer Biol Ther 2012; 13:804-11. [PMID: 22669575 DOI: 10.4161/cbt.20563] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ovarian carcinoma is the most deadly gynecological malignancy. Current chemotherapeutic drugs are only transiently effective and patients with advance disease often develop resistance despite significant initial responses. Mounting evidence suggests that anti-apoptotic proteins, including those of the inhibitor of apoptosis protein (IAP) family, play important roles in the chemoresistance. There has been a recent emergence of compounds that block the IAP functions. Here, we evaluated AT-406, a novel and orally active antagonist of multiple IAP proteins, in ovarian cancer cells as a single agent and in the combination with carboplatin for therapeutic efficacy and mechanism of action. We demonstrate that AT-406 has significant single agent activity in 60% of human ovarian cancer cell lines examined in vitro and inhibits ovarian cancer progression in vivo and that 3 out of 5 carboplatin-resistant cell lines are sensitive to AT-406, highlighting the therapeutic potential of AT-406 for patients with inherent or acquired platinum resistance. Additionally, our in vivo studies show that AT-406 enhances the carboplatin-induced ovarian cancer cell death and increases survival of the experimental mice, suggesting that AT-406 sensitizes the response of these cells to carboplatin. Mechanistically, we demonstrate that AT-406 induced apoptosis is correlated with its ability to down-regulate XIAP whereas AT-406 induces cIAP1 degradation in both AT-406 sensitive and resistance cell lines. Together, these results demonstrate, for the first time, the anti-ovarian cancer efficacy of AT-406 as a single agent and in the combination with carboplatin, suggesting that AT-406 has potential as a novel therapy for ovarian cancer patients, especially for patients exhibiting resistance to the platinum-based therapies.
Collapse
Affiliation(s)
- Melissa K Brunckhorst
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Yang XH, Feng ZE, Yan M, Hanada S, Zuo H, Yang CZ, Han ZG, Guo W, Chen WT, Zhang P. XIAP is a predictor of cisplatin-based chemotherapy response and prognosis for patients with advanced head and neck cancer. PLoS One 2012; 7:e31601. [PMID: 22403616 PMCID: PMC3293890 DOI: 10.1371/journal.pone.0031601] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/10/2012] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 60–80% of patients with advanced head and neck squamous cell carcinoma (HNSCC) die within five years after diagnosis. Cisplatin-based chemotherapy is the most commonly used palliative treatment for these patients. To evaluate the prognostic value of X-linked inhibitor of apoptosis (XIAP) level as a potential biomarker in these patients, we investigated the relationship between XIAP expression and cisplatin response of these patients and their prognosis. Methodology/Principal Findings Sixty patients with advanced HNSCC were recruited in this study. Expression of XIAP was examined both before and after chemotherapy and was correlated with chemotherapy response, clinicopathology parameters and clinical outcomes of the patients. We found that XIAP was expressed in 17 (20.83%) of the 60 advanced HNSCC samples and the expression was significantly associated with cisplatin resistance (P = 0.036) and poor clinical outcome (P = 0.025). Cisplatin-based chemotherapy induced XIAP expression in those post-chemotherapy samples (P = 0.011), was further associated with poorer clinical outcome (P = 0.029). Multivariate analysis demonstrated that only alcohol consumption, lymph node metastasis and XIAP level were independently associated with the prognosis of advanced HNSCC patients. Inhibiting XIAP expression with siRNA in XIAP overexpressed HNSCC cells remarkably increased their sensitivity to cisplatin treatment to nearly a 3 fold difference. Conclusions/Significance Our results demonstrate that XIAP overexpression plays an important role in the disease course and cisplatin-resistance of advanced HNSCC. XIAP is a valuable predictor of cisplatin-response and prognosis for patients with advanced head and neck cancer. Down-regulation of XIAP might be a promising adjuvant therapy for those patients of advanced HNSCC.
Collapse
Affiliation(s)
- Xi-Hu Yang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhi-En Feng
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sayaka Hanada
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Hui Zuo
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Cheng-Zhe Yang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ze-Guan Han
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Guo
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Tao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
21
|
Elhasid R, Larisch S. ARTS-based anticancer therapy: taking aim at cancer stem cells. Future Oncol 2012; 7:1185-94. [PMID: 21992730 DOI: 10.2217/fon.11.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis related protein in TGF-β signaling pathway (ARTS/septin 4 isoform 2) hereforth referred to as ARTS, was originally found to promote apoptosis induced by TGF-β, but later was shown to promote apoptosis induced by a wide variety of apoptotic stimuli. In vivo and in vitro studies revealed that ARTS-induced apoptosis is mainly executed through direct binding and antagonizing XIAP. High levels of XIAP are found in many types of cancers and often correlate with poor prognosis. ARTS was shown to function as a tumor-suppressor protein in human patients and mouse-tumor models. In particular, Septin 4/ARTS-deficient mice have increased tumor susceptibility and contain increased numbers of stem cells (SCs) and progenitor cells, apparently owing to their resistance towards apoptosis. Based on these results we propose that loss of proapoptotic ARTS may act as the 'first hit' initiating tumorigenesis in two distinct ways. First, loss of ARTS-mediated apoptosis leads to increased numbers of normal SCs. Elevated numbers of normal SCs may lead to increased cancer risk due to higher numbers of cellular targets available for transforming mutations. Second, after these SCs acquire additional transforming mutations and become cancer SC (CSCs), they are more likely to survive in the absence of ARTS owing to increased resistance toward apoptosis. A combination of these two mechanisms, over time, is expected to significantly increase tumor risk. Because CSCs appear to share phenotypic markers with normal SCs, targeting the signaling pathways that affect normal SC development and maintenance can serve as a useful approach towards true eradication of cancer. In this article we describe the role of ARTS in apoptosis and cancer, with focus on its potential role as a CSC marker and as a potential target for anticancer and anti-CSC therapy.
Collapse
Affiliation(s)
- Ronit Elhasid
- Pediatric Hemato-Oncology Unit, 'Dana' Children's Hospital, Tel-Aviv, Israel
| | | |
Collapse
|
22
|
Carter BZ, Mak DH, Morris SJ, Borthakur G, Estey E, Byrd AL, Konopleva M, Kantarjian H, Andreeff M. XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34+38- cells in a phase 1/2 study of patients with relapsed/refractory AML. Apoptosis 2011; 16:67-74. [PMID: 20938744 PMCID: PMC3376026 DOI: 10.1007/s10495-010-0545-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
XIAP, a potent caspase inhibitor, is highly expressed in acute myeloid leukemia (AML) cells and contributes to chemoresistance. A multi-center phase 1/2 trial of XIAP antisense oligonucleotide AEG35156 in combination with idarubicin/cytarabine was conducted in 56 patients with relapsed/refractory AML. Herein we report the pharmacodynamic studies of the patients enrolled at M. D. Anderson Cancer Center. A total of 13 patients were enrolled in our institution: five in phase 1 (12-350 mg/m² AEG35156) and eight in phase 2 (350 mg/m² AEG35156) of the protocol. AEG35156 was administered on 3 consecutive days and then weekly up to a maximum of 35 days. Blood samples were collected from patients on days 1 through 5 and on day 28-35 post-chemotherapy for detection of XIAP levels and apoptosis. AEG35156 treatment led to dose-dependent decreases of XIAP mRNA levels (42-100% reduction in phase 2 patients). XIAP protein levels were reduced in all five samples measured. Apoptosis induction was detected in 1/4 phase 1 and 4/5 phase 2 patients. Importantly, apoptosis was most pronounced in CD34+38- AML stem cells and all phase 2 patients showing apoptosis induction in CD34+38- cells achieved response. We conclude that at 350 mg/m², AEG35156 is effective in knocking down XIAP in circulating blasts accompanied by the preferential induction of apoptosis in CD34+38- AML stem cells.
Collapse
Affiliation(s)
- Bing Z. Carter
- Department of Stem Cell Transplantation and Cellular Therapy, Unit 448, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Duncan H. Mak
- Department of Stem Cell Transplantation and Cellular Therapy, Unit 448, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Elihu Estey
- Seattle Cancer Care Alliance, University of Washington, Seattle, WA, USA
| | - Anna L. Byrd
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Stem Cell Transplantation and Cellular Therapy, Unit 448, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Dineen SP, Roland CL, Greer R, Carbon JG, Toombs JE, Gupta P, Bardeesy N, Sun H, Williams N, Minna JD, Brekken RA. Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res 2010; 70:2852-61. [PMID: 20332237 PMCID: PMC2848888 DOI: 10.1158/0008-5472.can-09-3892] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Failure of chemotherapy in the treatment of pancreatic cancer is often due to resistance to therapy-induced apoptosis. A major mechanism for such resistance is the expression and activity of inhibitors of apoptosis proteins (IAP). Smac (second mitochondria-derived activator of caspase) is a mitochondrial protein that inhibits IAPs. We show that JP1201, a Smac mimetic, is a potent enhancer of chemotherapy in robust mouse models of pancreatic cancer. Combination of JP1201 with gemcitabine reduced primary and metastatic tumor burden in orthotopic xenograft and syngenic tumor models, induced regression of established tumors, and prolonged survival in xenograft and transgenic models of pancreatic cancer. The effect of JP1201 was phenocopied by XIAP small interfering RNA in vitro and correlated with elevated levels of tumor necrosis factor alpha protein in vivo. The continued development of JP1201 and other strategies designed to enhance therapy-induced apoptosis in pancreatic cancer is warranted.
Collapse
Affiliation(s)
- Sean P. Dineen
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Christina L. Roland
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Rachel Greer
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Juliet G. Carbon
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Jason E. Toombs
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Puja Gupta
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA, 02166
| | | | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-8593
| |
Collapse
|
24
|
Xiang G, Wen X, Wang H, Chen K, Liu H. Expression of X-linked inhibitor of apoptosis protein in human colorectal cancer and its correlation with prognosis. J Surg Oncol 2010; 100:708-12. [PMID: 19777490 DOI: 10.1002/jso.21408] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis family of proteins and deregulation of XIAP can result in tumorigenicity. The objective of this study was to evaluate the prognostic significance of XIAP expression in colorectal cancer (CRC). METHODS RT-PCR was performed to detect the expression of XIAP mRNA in CRC cells and tissues. The expression of XIAP protein in tissues was measured by immunohistochemistry. The correlation of XIAP expression with clinicopathologic factors and prognosis of CRC patients was evaluated. RESULTS CRC cells showed significantly higher levels of XIAP mRNA expression than normal human intestinal epithelial cell. The expression level of XIAP mRNA in CRC samples was significantly higher than that in corresponding non-tumor samples. XIAP staining was positive in the cytoplasm of CRC cells. Higher XIAP protein expression was significantly correlated with tumor differentiation (P = 0.016), venous invasion (P = 0.039), and Duke's staging (P = 0.002). Moreover, XIAP-high group showed lower disease-free (P = 0.0136) and overall survival (P = 0.0084) rates than XIAP-low group. Multivariate analysis indicated that the status of XIAP expression was an independent prognostic factor for CRC (P = 0.0206; HR: 2.730; 95% CI: 1.226-5.445). CONCLUSION The status of XIAP expression might become an independent prognostic marker for CRC.
Collapse
Affiliation(s)
- Guoan Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Guangzhou, China
| | | | | | | | | |
Collapse
|
25
|
RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett 2009; 276:189-95. [DOI: 10.1016/j.canlet.2008.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/30/2008] [Accepted: 11/07/2008] [Indexed: 11/21/2022]
|
26
|
Li X, Roginsky AB, Ding XZ, Woodward C, Collin P, Newman RA, Bell, Jr RH, Adrian TE. Review of the Apoptosis Pathways in Pancreatic Cancer and the Anti-apoptotic Effects of the Novel Sea Cucumber Compound, Frondoside A. Ann N Y Acad Sci 2008; 1138:181-98. [DOI: 10.1196/annals.1414.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Hamacher R, Schmid RM, Saur D, Schneider G. Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer 2008; 7:64. [PMID: 18652674 PMCID: PMC2515336 DOI: 10.1186/1476-4598-7-64] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/24/2008] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer related death. Despite the advances in understanding of the molecular pathogenesis, pancreatic cancer remains a major unsolved health problem. Overall, the 5-year survival rate is less than 5% demonstrating the insufficiency of current therapies. Most cytotoxic therapies induce apoptosis and PDAC cells have evolved a plethora of molecular mechanisms to assure survival. We will present anti-apoptotic strategies working at the level of the death receptors, the mitochondria or involving the caspase inhibitors of the IAP family. Furthermore, the survival function of the phosphotidylinositol-3' kinase (PI3K)/AKT- and NF-kappaB-pathways are illustrated. A detailed molecular knowledge of the anti-apoptotic mechanisms of PDAC cells will help to improve therapies for this dismal disease and therapeutic strategies targeting the programmed cell death machinery are in early preclinical and clinical development.
Collapse
Affiliation(s)
- Rainer Hamacher
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Roland M Schmid
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Dieter Saur
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Günter Schneider
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
28
|
Brucea javanica fruit induces cytotoxicity and apoptosis in pancreatic adenocarcinoma cell lines. Phytother Res 2008; 22:477-86. [DOI: 10.1002/ptr.2344] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Karikari CA, Roy I, Tryggestad E, Feldmann G, Pinilla C, Welsh K, Reed JC, Armour EP, Wong J, Herman J, Rakheja D, Maitra A. Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein. Mol Cancer Ther 2007; 6:957-66. [PMID: 17339366 PMCID: PMC3062431 DOI: 10.1158/1535-7163.mct-06-0634] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resistance to apoptosis is a hallmark of many solid tumors, including pancreatic cancers, and may be the underlying basis for the suboptimal response to chemoradiation therapies. Overexpression of a family of inhibitor of apoptosis proteins (IAP) is commonly observed in pancreatic malignancies. We determined the therapeutic efficacy of recently described small-molecule antagonists of the X-linked IAP (XIAP) in preclinical models of pancreatic cancer. Primary pancreatic cancers were assessed for XIAP expression by immunohistochemistry, using a pancreatic cancer tissue microarray. XIAP small-molecule antagonists ("XAntag"; compounds 1396-11 and 1396-12) and the related compound 1396-28 were tested in vitro in a panel of human pancreatic cancer cell lines (Panc1, Capan1, and BxPC3) and in vivo in s.c. xenograft models for their ability to induce apoptosis and impede neoplastic growth. In addition, pancreatic cancer cell lines were treated with XAntags in conjunction with either tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or with radiation to determine potential synergy for such dual targeting of the apoptotic machinery. XIAP was overexpressed in 14 of 18 (77%) of primary pancreatic cancers. The XAntags1396-11 and 1396-12, but not the inactive isomer 1396-28, induced profound apoptosis in multiple pancreatic cancer cell lines tested in vitro, with a IC(50) in the range of 2 to 5 mumol/L. Mechanistic specificity of the XAntags for the baculoviral IAP repeat-2 domain of XIAP was shown by preferential activation of downstream "effector" caspases (caspase-3 and caspase-7) versus the upstream "initiator" caspase-9. S.c. BxPC3 xenograft growth in athymic mice was significantly inhibited by monotherapy with XAntags; treated xenografts showed marked apoptosis and increased cleavage of caspase-3. Notably, striking synergy was demonstrable when XAntags were combined with either TRAIL or radiation therapy, as measured by growth inhibition in vitro and reduced colony formation in soft agar of pancreatic cancer cell lines, at dosages where these therapeutic modalities had minimal to modest effects when used alone. Finally, XAntags in combination with the standard-of-care agent for advanced pancreatic cancer, gemcitabine, resulted in significantly greater inhibition of in vitro growth than gemcitabine alone. Our results confirm that pharmacologic inhibition of XIAP is a potent therapeutic modality in pancreatic cancers. These antagonists are independently capable of inducing pancreatic cancer cell death and also show synergy when combined with proapoptotic ligands (TRAIL), with radiation, and with a conventional antimetabolite, gemcitabine. These preclinical results suggest that targeting of the apoptotic machinery in pancreatic cancers with XAntags is a promising therapeutic option that warrants further evaluation.
Collapse
Affiliation(s)
- Collins A. Karikari
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Indrajit Roy
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric Tryggestad
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Georg Feldmann
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kate Welsh
- Burnham Institute for Medical Research, La Jolla, California
| | - John C. Reed
- Burnham Institute for Medical Research, La Jolla, California
| | - Elwood P. Armour
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph Herman
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dinesh Rakheja
- Department of Pathology, Children's Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anirban Maitra
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
N/A, 刘 芝, 张 林. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:2626-2631. [DOI: 10.11569/wcjd.v14.i26.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Spee B, Jonkers MDB, Arends B, Rutteman GR, Rothuizen J, Penning LC. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin. Mol Cancer 2006; 5:34. [PMID: 16953886 PMCID: PMC1569868 DOI: 10.1186/1476-4598-5-34] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 09/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis resistance occurs in various tumors. The anti-apoptotic XIAP protein is responsible for inhibiting apoptosis by reducing caspase-3 activation. Our aim is to evaluate whether RNA inhibition against XIAP increases the sensitivity of canine cell-lines for chemotherapeutics such as TRAIL and doxorubicin. We used small interfering RNA's (siRNA) directed against XIAP in three cell-lines derived from bile-duct epithelia (BDE), mammary carcinoma (P114), and osteosarcoma (D17). These cell-lines represent frequently occurring canine cancers and are highly comparable to their human counterparts. XIAP down-regulation was measured by means of quantitative PCR (Q-PCR) and Western blotting. The XIAP depleted cells were treated with a serial dilution of TRAIL or doxorubicin and compared to mock- and nonsense-treated controls. Viability was measured with a MTT assay. RESULTS All XIAP siRNA treated cell-lines showed a mRNA down-regulation over 80 percent. Western blot analysis confirmed mRNA measurements. No compensatory effect of IAP family members was seen in XIAP depleted cells. The sensitivity of XIAP depleted cells for TRAIL was highest in BDE cells with an increase in the ED50 of 14-fold, compared to mock- and nonsense-treated controls. The sensitivity of P114 and D17 cell-lines increased six- and five-fold, respectively. Doxorubicin treatment in XIAP depleted cells increased sensitivity in BDE cells more than eight-fold, whereas P114 and D17 cell-lines showed an increase in sensitivity of three- and five-fold, respectively. CONCLUSION XIAP directed siRNA's have a strong sensitizing effect on TRAIL-reduced cell-viability and a smaller but significant effect with the DNA damaging drug doxorubicin. The increase in efficacy of chemotherapeutics with XIAP depletion provides the rationale for the use of XIAP siRNA's in insensitive canine tumors.
Collapse
Affiliation(s)
- Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| | - Martijn DB Jonkers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| | - Brigitte Arends
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| | - Gerard R Rutteman
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
32
|
|
33
|
Esposito I, Kleeff J, Abiatari I, Shi X, Giese N, Bergmann F, Roth W, Friess H, Schirmacher P. Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J Clin Pathol 2006; 60:885-95. [PMID: 16775116 PMCID: PMC1994512 DOI: 10.1136/jcp.2006.038257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM To determine the role of two antiapoptotic proteins of the inhibitor of apoptosis protein family, cellular inhibitor of apoptosis protein 1 (cIAP1) and cellular inhibitor of apoptosis protein 2 (cIAP2), in human pancreatic carcinogenesis. METHODS mRNA levels were measured in pancreatic tissues and pancreatic cancer cell lines by quantitative reverse transcriptase PCR. Protein expression was assessed in pancreatic cancer cell lines by immunoblotting and in pancreatic tissues by immunohistochemistry, and correlated with pathological and survival data. RESULTS cIAP1 expression was constantly high in non-neoplastic pancreatic tissues, in pancreatic intraepithelial neoplasia (PanIN) lesions, as well as in a subset of primary and metastatic pancreatic ductal adenocarcinomas (PDAC), and a preferential cytoplasmatic localisation was observed in the tumour tissues. cIAP1 expression was rare in a cohort of cystic tumours. cIAP2 mRNA levels were significantly higher (2.4 fold) in PDAC than in normal tissues. cIAP2 protein was overexpressed in PDAC, and was detectable in low- and high-grade PanIN lesions. Moreover, cIAP2 was often expressed in pancreatic cystic tumours. cIAP1 and cIAP2 mRNA and protein were detected in all the examined cell lines. Survival analysis revealed a shorter survival in patients with cIAP1/cIAP2-positive tumours. CONCLUSIONS cIAP1 might contribute to the regulation of the apoptotic process in the normal and in the neoplastic pancreas, depending on its subcellular localisation. Overexpression of cIAP2 is a common and early event in the progression of pancreatic cancer, and could therefore potentially influence the important pathophysiological aspects of PDAC, such as anoikis or chemoresistance.
Collapse
Affiliation(s)
- Irene Esposito
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|