1
|
Park S. Biochemical, structural and physical changes in aging human skin, and their relationship. Biogerontology 2022; 23:275-288. [PMID: 35292918 DOI: 10.1007/s10522-022-09959-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
Skin is the largest organ of the human body, having the purpose of regulating temperature, protecting us from microbes or mechanical shocks, and allowing the sensations from touch. It is generally accepted that aging induces profound changes in the skin's biochemical, structural and physical properties, which can lead to impaired biological functions and/or diverse diseases. So far, the effects of aging on these skin properties have been well documented. However, very few studies have focused exclusively on the relationship among these critical properties in the aging process, which is this review's primary focus. Many in vivo, ex vivo, and in vitro techniques have been previously used to characterize these properties of the skin. This review aims to provide a comprehensive overview on the effects of aging on the changes in biochemical, structural, and physical properties, and explore the potential mechanisms of skin with the relation between these properties. First, we review different or contradictory results of aging-related changes in representative parameters of each property, including the interpretations of the findings. Next, we discuss the need for a standardized method to characterize aging-related changes in these properties, to improve the way of defining age-property relationship. Moreover, potential mechanisms based on the previous results are explored by linking the biochemical, structural, and physical properties. Finally, the need to study changes of various functional properties in the separate skin layers is addressed. This review can help understand the underlying mechanism of aging-related alterations, to improve the evaluation of the aging process and guide effective treatment strategies for aging-related diseases.
Collapse
Affiliation(s)
- Seungman Park
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
A Multidisciplinary Approach to Malocclusion Caused by Facial Multiple Fracture. Case Rep Dent 2022; 2022:5209667. [PMID: 35284144 PMCID: PMC8913153 DOI: 10.1155/2022/5209667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
In the case of multiple facial fractures, a simple open reduction occasionally causes various disorders during healing process after the surgery. Moreover, esthetic disturbance of a facial deformity might be induced. Therefore, the acquisition of facial symmetry and the recovery of occlusal and masticatory functions become increasingly important. This case report presents a successful treatment of facial multiple fracture induced by a car accident. A 20-year-old male was diagnosed with suffered multiple midface and mandibular fractures induced by a car accident. Midface fractures included the LeFort I and II type fractures, as well as sagittal fracture at midline and fractures from right maxillary sinus anterior wall to orbital wall. In the mandible, midline and left body fractures were detected. The patient underwent open reduction and rigid fixation of the fractured left zygoma, comminuted LeFort I and II fractures, and midline and left body of the mandible with intermaxillary fixation by multibracket appliance; maxillary osteotomy with iliac bone grafting; orthognathic two-jaw surgery with coronoid process grafts onto the depressed zygoma; and onlay graft of hydroxyapatite block on mandible. As the result, the multidisciplinary treatments successfully recover functions and esthetics to the satisfactory level of the patient with multiple facial fractures. As treatments for multiple facial fractures are required complexity due to the extent of trauma, multidisciplinary approach under the close cooperation between hospital departments is thought to be important.
Collapse
|
3
|
Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20174221. [PMID: 31466409 PMCID: PMC6747264 DOI: 10.3390/ijms20174221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review is aimed at evaluating the effectiveness of synthetic block materials for bone augmentation in preclinical in vivo studies. An electronic search was performed on Pubmed, Scopus, EMBASE. Articles selected underwent risk-of-bias assessment. The outcomes were: new bone formation and residual graft with histomorphometry, radiographic bone density, soft tissue parameters, complications. Meta-analysis was performed to compare new bone formation in test (synthetic blocks) vs. control group (autogenous blocks or spontaneous healing). The search yielded 214 articles. After screening, 39 studies were included, all performed on animal models: rabbits (n = 18 studies), dogs (n = 4), rats (n = 7), minipigs (n = 4), goats (n = 4), and sheep (n = 2). The meta-analysis on rabbit studies showed significantly higher new bone formation for synthetic blocks with respect to autogenous blocks both at four-week (mean difference (MD): 5.91%, 95% confidence intervals (CI): 1.04, 10.79%, p = 0.02) and at eight-week healing (MD: 4.44%, 95% CI: 0.71, 8.17%, p = 0.02). Other animal models evidenced a trend for better outcomes with synthetic blocks, though only based on qualitative analysis. Synthetic blocks may represent a viable resource in bone regenerative surgery for achieving new bone formation. Differences in the animal models, the design of included studies, and the bone defects treated should be considered when generalizing the results. Clinical studies are needed to confirm the effectiveness of synthetic blocks in bone augmentation procedures.
Collapse
|
4
|
Bone Morphogenetic Protein-7 Enhances Degradation of Osteoinductive Bioceramic Implants in an Ectopic Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1375. [PMID: 28740783 PMCID: PMC5505844 DOI: 10.1097/gox.0000000000001375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/21/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. METHODS Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92-94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. RESULTS Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. CONCLUSIONS BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual.
Collapse
|
5
|
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1255. [PMID: 28458969 PMCID: PMC5404440 DOI: 10.1097/gox.0000000000001255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). METHODS Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92-94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. RESULTS BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. CONCLUSIONS BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site.
Collapse
|
6
|
Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model. J Craniomaxillofac Surg 2016; 44:985-94. [PMID: 27328894 DOI: 10.1016/j.jcms.2016.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
Abstract
Polyetherketoneketone (PEKK) a high performance thermoplastic polymer that is FDA-approved for cranio- and maxillo-facial as well as spineal surgery. We studied the viability, growth and osteogenic differentiation of bone marrow-derived human and sheep mesenchymal stem cells (MSC) in combination with a 3D scaffold made of PEKK using different cell-based assays. To investigate if autologous MSC, either undifferentiated or osteogenically pre-differentiated, augmented bone formation after implantation, we implanted cell-seeded 3D PEKK scaffolds into calvarial defects in sheep for 12 weeks. The volume and quality of newly formed bone were investigated using micro-computer tomography (micro-CT) and histological stainings. Our results show that the 3D PEKK scaffolds were cyto- and bio-compatible. They allowed for adherence, growth and osteogenic differentiation of human and ovine MSC. However, bone healing seemed unaffected by whether the scaffolds were seeded with MSC. Considerable amounts of newly formed bone were found in all PEKK treated groups, but a fibrous capsule was formed around the implants regardless of cell seeding with MSC.
Collapse
|
7
|
Computer-Aided Design and Computer-Aided Manufacturing Hydroxyapatite/Epoxide Acrylate Maleic Compound Construction for Craniomaxillofacial Bone Defects. J Craniofac Surg 2016; 26:1477-81. [PMID: 26106993 DOI: 10.1097/scs.0000000000001410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65 mm and the three-dimensional mean deviation is 0.27 ± 0.07 mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.
Collapse
|
8
|
Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS One 2016; 11:e0148173. [PMID: 26828589 PMCID: PMC4734718 DOI: 10.1371/journal.pone.0148173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo. Moreover, there is evidence that Ca-P substrate triggers osteogenic differentiation through genes (SMAD and RAS family) that are typically regulated during dexamethasone (DEX) induced differentiation.
Collapse
Affiliation(s)
- Federica Viti
- Institute of Biophysics, National Research Council, Genoa, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Martina Landini
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | | | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Silvia Scaglione
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Genoa, Italy
- Advanced Biotechnology Center (CBA), Genoa, Italy
- * E-mail:
| |
Collapse
|
9
|
Sawamura T, Mizutani Y, Okuyama M, Kasuga T. Setting time and formability of calcium phosphate cements prepared using modified dicalcium phosphate anhydrous powders. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1631-1636. [PMID: 24715331 DOI: 10.1007/s10856-014-5209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Calcium phosphate cements (CPCs) were prepared using Ca4(PO4)2O (TeCP) and modified CaHPO4 (DCPA) to evaluate the effects of the powder properties for DCPA particles on the setting time and formability of the resulting CPCs. Two types of modified DCPA were prepared by milling commercially available DCPA with ethanol (to produce E-DCPA) or distilled water (to produce W-DCPA). The E-DCPA samples consisted of well-dispersed, fine primary particles, while the W-DCPA samples contained agglomerated particles, and had a smaller specific surface area. The mean particle size decreased with increased milling time in both cases. The raw CPC powders prepared using W-DCPA had a higher packing density than those prepared using E-DCPA, regardless of the mean particle size. The setting time of the CPC paste after mixing with distilled water decreased with decreases in the mean particle size and specific surface area, for both types of DCPA. The CPCs prepared using W-DCPA showed larger plasticity values compared with those prepared using E-DCPA, which contributed to the superior formability of the W-DCPA samples. The CPCs prepared using W-DCPA showed a short setting time and large plasticity values, despite the fact that only a small amount of liquid was used for the mixing of the raw CPC powders (a liquid-to-powder ratio of 0.25 g g(-1) was used). It is likely that the higher packing density of the raw CPC powders prepared using W-DCPA was responsible for the higher performance of the resulting CPCs.
Collapse
Affiliation(s)
- Takenori Sawamura
- R & D Center, NGK Spark Plug Co. Ltd., 2808 Iwasaki, Komaki, Aichi, 485-8510, Japan,
| | | | | | | |
Collapse
|
10
|
Atilgan S, Yaman F, Yilmaz U, Görgün B, Ünlü G. An Experimental Comparison of the Effects of Calcium Sulfate Particles and β-Tricalcium Phosphate/Hydroxyapatite Granules on Osteogenesis in Internal Bone Cavities. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2007.10817446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
One-year volume stability of human facial defects filled with a β-tricalcium phosphate-hydroxyl apatite mixture (Atlantik). J Craniofac Surg 2014; 25:372-4. [PMID: 24514891 DOI: 10.1097/scs.0000000000000636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION We investigated the applicability and 1-year stability of a β-tricalcium phosphate-hydroxyl apatite mixture (Atlantik) for secondary reconstruction of craniofacial defects and the application of OsiriX in evaluating bone and implant volumes. METHODS We included 6 patients (25-59 years) with craniofacial defects. A computed tomography scan was made preoperative, directly postoperative, and at least 1 year postoperative to evaluate volume changes. OsiriX was used to quantify volumes of the implanted Atlantik. Measurements were performed by 2 independent investigators and analyzed by calculating both Pearson correlation and interclass correlation coefficient. RESULTS After 1 year, the mean volume reduction of the implanted Atlantik was 9.8%. The absolute volume reduction in 1 year was 0.38 cm (range, 0.10-0.69 cm(3)). Pearson correlation test was 0.996, with a significance level of P < 0.01, and the interclass correlation coefficient was 0.998. CONCLUSIONS Atlantik is a stable osteoconductive material for the repair of various craniofacial defects. There is a reduction of only 10% of the augmented volume in the long term. Applying OsiriX for computed tomography image volume analysis proved to be a well-reproducible technique.
Collapse
|
12
|
Comparison of calcium phosphate preparations for onlay cranial augmentation in a murine model. EUROPEAN JOURNAL OF PLASTIC SURGERY 2012. [DOI: 10.1007/s00238-012-0702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Lomelino RDO, Castro-Silva II, Linhares ABR, Alves GG, Santos SRDA, Gameiro VS, Rossi AM, Granjeiro JM. The association of human primary bone cells with biphasic calcium phosphate (βTCP/HA 70:30) granules increases bone repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:781-788. [PMID: 22201029 DOI: 10.1007/s10856-011-4530-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
This work evaluates the suitability of biphasic calcium phosphate (BCP) granules (β-TCP/HA 70:30) as potential carriers for cell-guided bone therapy. The BCP granules were obtained by synthesis in the presence of wax, thermal treatment, crushing and sieving and characterized by scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared spectroscopy. The cytocompatibility of the BCP granules was confirmed by a multiparametric cytotoxicity assay. SEM analysis showed human bone cell adhesion and migration after seeding onto the material. Rat subcutaneous xenogeneic grafting of granules associated to human bone cells revealed a more accentuated moderate chronic inflammatory infiltrate, without signs of a strong xenoreactivity. Histomorphometrical analysis of bone repair of defects in rat skulls (∅ = 5 mm) has shown that bone cell associated-BCP and autograft promoted a two- and threefold increase, respectively, on new bone formation after 45 days, as compared to BCP alone and blood clot. The increase in bone repair supports the suitability the biocompatible (70:30) BCP granules as injectable and mouldable scaffolds for human cells in bone bioengineering.
Collapse
|
14
|
Oppenheimer AJ, Tong L, Buchman SR. Craniofacial Bone Grafting: Wolff's Law Revisited. Craniomaxillofac Trauma Reconstr 2011; 1:49-61. [PMID: 22110789 DOI: 10.1055/s-0028-1098963] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bone grafts are used for the reconstruction of congenital and acquired deformities of the facial skeleton and, as such, comprise a vital component of the craniofacial surgeon's armamentarium. A thorough understanding of bone graft physiology and the factors that affect graft behavior is therefore essential in developing a more intelligent use of bone grafts in clinical practice. This article presents a review of the basic physiology of bone grafting along with a survey of pertinent concepts and current research. The factors responsible for bone graft survival are emphasized.
Collapse
|
15
|
Van Lieshout EMM, Van Kralingen GH, El-Massoudi Y, Weinans H, Patka P. Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet Disord 2011; 12:34. [PMID: 21288333 PMCID: PMC3040718 DOI: 10.1186/1471-2474-12-34] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many (artificial) bone substitute materials are currently available for use in orthopaedic trauma surgery. Objective data on their biological and biomechanical characteristics, which determine their clinical application, is mostly lacking. The aim of this study was to investigate structural and in vitro mechanical properties of nine bone substitute cements registered for use in orthopaedic trauma surgery in the Netherlands. METHODS Seven calcium phosphate cements (BoneSource®, Calcibon®, ChronOS®, Eurobone®, HydroSet™, Norian SRS®, and Ostim®), one calcium sulphate cement (MIIG® X3), and one bioactive glass cement (Cortoss®) were tested. Structural characteristics were measured by micro-CT scanning. Compression strength and stiffness were determined following unconfined compression tests. RESULTS Each bone substitute had unique characteristics. Mean total porosity ranged from 53% (Ostim®) to 0.5% (Norian SRS®). Mean pore size exceeded 100 μm only in Eurobone® and Cortoss® (162.2 ± 107.1 μm and 148.4 ± 70.6 μm, respectively). However, 230 μm pores were found in Calcibon®, Norian SRS®, HydroSet™, and MIIG® X3. Connectivity density ranged from 27/cm3 for HydroSet™ to 0.03/cm3 for Calcibon®. The ultimate compression strength was highest in Cortoss® (47.32 MPa) and lowest in Ostim® (0.24 MPa). Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa). CONCLUSIONS The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications. The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications.
Collapse
Affiliation(s)
- Esther M M Van Lieshout
- Department of Surgery-Traumatology, Erasmus MC, University Medical Centre Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Parthiban SP, Kim IY, Kikuta K, Ohtsuki C. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:209-216. [PMID: 21153686 DOI: 10.1007/s10856-010-4201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
Double-step hydrothermal processing is a process where powder compacts of calcium phosphates are exposed to vapor of solvent solution, followed by being immersed in the solution. In the present study, we investigated the effects of ammonium carbonate on formation of calcium-deficient hydroxyapatite (CDHA) through double-step hydrothermal processing. The synthesized CDHA has high crystallinity when the solution has relatively low concentration of the ammonium carbonate ranging from 0.01 to 0.25 mol dm(-3). Carbonate content in the prepared samples were distinctly increased with increasing the concentration of ammonium carbonate to indicate formation of carbonate-containing calcium-deficient hydroxyapatite (CHAp) with low crystallinity. Morphology of the CHAp formed on the compacts varied progressively from rods and rosette-like shape to irregular shape with increase in the initial concentration of the ammonium carbonate in the solution. Application of ammonium carbonate in the double-step hydrothermal processing allows fabrication of irregular-shaped CDHA containing carbonate ions in both phosphate and hydroxide site, with low crystallinity, when the initial concentration of ammonium carbonate was 0.5 mol dm(-3) and more.
Collapse
Affiliation(s)
- S Prakash Parthiban
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,
| | | | | | | |
Collapse
|
17
|
Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater 2011; 7:739-50. [PMID: 20688196 DOI: 10.1016/j.actbio.2010.07.035] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/28/2023]
Abstract
Autologous bone grafting is currently considered as the gold standard to restore bone defects. However, clinical benefit is not guaranteed and there is an associated 8-39% complication rate. This has resulted in the development of alternative (synthetic) bone substitutes. The aim of this systematic literature review was to provide a comprehensive overview of literature data of bone substitutes registered in the Netherlands for use in trauma and orthopedic surgery. Brand names of selected products were used as search terms in three available databases: Embase, PubMed and Cochrane. Manuscripts written in English, German or Dutch that reported on structural, biological or biomechanical properties of the pure product or on its use in trauma and orthopedic surgery were included. The primary search resulted in 475 manuscripts from PubMed, 653 from Embase and 10 from Cochrane. Of these, 218 met the final inclusion criteria. Of each product, structural, biological and biomechanical characteristics as well as their clinical indications in trauma and orthopedic surgery are provided. All included products possess osteoconductive properties but differ in resorption time and biomechanical properties. They have been used for a wide range of clinical applications; however, the overall level of clinical evidence is low. The requirements of an optimal bone substitute are related to the size and location of the defect. Calcium phosphate grafts have been used for most trauma and orthopedic surgery procedures. Calcium sulphates were mainly used to restore bone defects after tumour resection surgery but offer minimal structural support. Bioactive glass remains a potential alternative; however, its use has only been studied to a limited extent.
Collapse
|
18
|
Almasri M, Altalibi M. Efficacy of reconstruction of alveolar bone using an alloplastic hydroxyapatite tricalcium phosphate graft under biodegradable chambers. Br J Oral Maxillofac Surg 2010; 49:469-73. [PMID: 20970227 DOI: 10.1016/j.bjoms.2010.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/30/2010] [Indexed: 10/18/2022]
Abstract
Our aim was to test the efficacy of a synthetic alloplastic graft under biodegradable chambers to reconstruct a horizontal bony deficiency as an alternative to autogenous, allogeneic, or xenogenic grafts. We used 11 New Zealand white rabbits. On each rabbit's mandible one test sample (grafted chamber) was placed on the (right or left) body, while its control sample (empty (E) chamber) was placed on the other side. Twelve weeks postoperatively the animals were sacrificed and the samples extracted for gross assessment, micro-computed tomographic imaging, and histological and histomorphometric analyses. There was significantly more new bone with a greater surface area in the test group than in the control group, and the alloplastic graft was osteoconductive when used as an onlay graft under a synthetic biodegradable chamber. Synthetic products can be efficient alternatives to autogenic, allogeneic, or xenogenic grafts.
Collapse
Affiliation(s)
- Mazen Almasri
- Oral Maxillofacial Surgery Dept., King Khalid University, Faculty of Dentistry, Saudi Arabia.
| | | |
Collapse
|
19
|
Schneider G, Blechschmidt K, Linde D, Litschko P, Körbs T, Beleites E. Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2853-2859. [PMID: 20859655 DOI: 10.1007/s10856-010-4143-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
Hydroxyapatite cement (BoneSource®) and brushite calcium phosphate cement (chronOS™ Inject) were tested for fixation of glass ceramic implants (Bioverit®) in experimentally created cranial defects in 24 adult New Zealand White rabbits. Aim of the in vivo study was to assess and compare the biocompatibility and osseointegration of the implanted materials. Macroscopic and histological evaluations were performed 1 month, 3 months, and 6 months postoperatively. All implanted materials were well tolerated by the surrounding tissue. Both bone cements exhibited osteoconductive properties. Differences could be detected regarding to the rates of cement resorption and new bone formation. The brushite cement was resorbed faster than the hydroxyapatite cement. The chronOS™ Inject samples exhibited a higher rate of connective tissue formation and an insufficient osseointegration. BoneSource® was replaced by bone with minimal invasion of connective tissue. New bone formation occurred faster compared to the chronOS™ Inject group. Bioverit® implants fixed with BoneSource® were successfully osseointegrated.
Collapse
Affiliation(s)
- Gerlind Schneider
- Department of Otorhinolaryngology, Faculty of Medicine, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Ahern BJ, Harten RD, Gruskin EA, Schaer TP. Evaluation of a fiber reinforced drillable bone cement for screw augmentation in a sheep model--mechanical testing. Clin Transl Sci 2010; 3:112-5. [PMID: 20590681 DOI: 10.1111/j.1752-8062.2010.00201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated the mechanical properties of a novel fiber reinforced calcium phosphate at time zero and after 12 weeks in vivo using a sheep long bone osteotomy model. Time zero data were obtained and compared by pullout testing of 4.5 mm bone screws from bone proper and overdrilled defects of 4.5 and 8 mm diameter. Defects were augmented with: polymethylmethacrylate (PMMA), calcium phosphate, and fiber reinforced calcium phosphate using cadaveric sheep tibiae. Twelve-week data were obtained from explanted tibiae of sheep that underwent unilateral tibial osteotomy surgery repaired with a locking compression plate. The most distal hole was overdrilled to 4.5 or 8 mm diameter, filled with fiber reinforced cement, drilled, tapped and a 4.5 mm screw was placed. Screw holding strength at t= 0 was significantly higher for reinforced when compared to nonreinforced cement, but not different from bone or PMMA in 4.5 mm defects. There was no difference in pullout strength for the 8 mm defect data. After 12 weeks fiber reinforced pullout strength increased by 45% and 8.9% for 4.5 and 8 mm defects, respectively, when compared to t= 0 testing. Fiber reinforced calcium phosphate bone cement can be drilled and tapped to support orthopedic hardware for trauma applications.
Collapse
Affiliation(s)
- Benjamin J Ahern
- Comparative Orthopedic Research Laboratory, Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | | | | | | |
Collapse
|
21
|
Application of EH compound artificial bone material combined with computerized three-dimensional reconstruction in craniomaxillofacial surgery. J Craniofac Surg 2010; 21:440-3. [PMID: 20216453 DOI: 10.1097/scs.0b013e3181cfe9bc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To explore the application prospects of EH compound artificial bone material combined with computerized three-dimensional reconstruction in craniomaxillofacial surgery. METHODS Computed tomographic scan, computer-aided design/computer-aided manufacturing three-dimensional reconstruction, and rapid prototyping were conducted on 39 patients during 2005 to 2008. An EH compound artificial bone material was made into the exact geometric shapes of the defect to be corrected and then implanted during surgical reconstruction. RESULTS The EH compound artificial bone implants were perfectly matched with the facial areas needed for repair. The reconstructed faces were symmetric on the whole, and postoperative results were satisfying. CONCLUSIONS The EH compound artificial bone material combined with computerized three-dimensional reconstruction offers a new method in craniomaxillofacial surgical practice. Aesthetic results after reconstruction surgery can therefore be effectively improved.
Collapse
|
22
|
Application-Specific Selection of Biomaterials for Pediatric Craniofacial Reconstruction: Developing a Rational Approach to Guide Clinical Use. Plast Reconstr Surg 2009; 123:319-330. [DOI: 10.1097/prs.0b013e318193478c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
|
24
|
Krishnamoorthy K, Pensa ML, Samy RN. Delayed extrusion of hydroxyapatite after transpetrosal reconstruction. Laryngoscope 2006; 116:1817-9. [PMID: 17003723 DOI: 10.1097/01.mlg.0000232536.41126.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES : To review the long-term results of hydroxyapatite closure of transpetrosal defects. STUDY DESIGN : Retrospective chart review. METHODS : One hundred seventy-seven patients were followed for more than 5 years. After surgical management by way of transpetrosal routes, hydroxyapatite was placed after medial wound closure with abdominal fat and before a three-layered lateral soft tissue closure. RESULTS : Among this group of patients, three (1.7%) cerebrospinal fluid (CSF) leaks were encountered. None of these required re-operation. Delayed extrusion of hydroxyapatite with concomitant superficial wound infections have occurred in seven (4%) patients. All required operative re-intervention. CONCLUSIONS : Hydroxyapatite has proven to be an effective material in the closure of skull base defects. Nevertheless, delayed extrusion of this agent can occur, resulting in the potential for morbidity and the need for operative re-intervention.
Collapse
Affiliation(s)
- Kumaresh Krishnamoorthy
- The Neurosciences Institute (TNI), Department of Otolaryngology, University of Cincinnati/Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
25
|
Bibliography. Current world literature. Head and neck reconstruction. Curr Opin Otolaryngol Head Neck Surg 2006; 14:289-91. [PMID: 16832188 DOI: 10.1097/01.moo.0000233602.37541.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|