1
|
Wei Z, Ye J, Wei S, Su X, Chen C, Chen M, Jiang H, Lei C, Wang M. An experimental investigation into the correlation between the diameter of reimplanted cartilage blocks and efficacy of cartilage regeneration after auricular reconstruction. J Plast Reconstr Aesthet Surg 2025; 104:359-368. [PMID: 40168919 DOI: 10.1016/j.bjps.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 04/03/2025]
Abstract
Preventing thoracic deformities during auricular reconstruction is a challenge for surgeons who utilize multiple costal cartilage grafts to fabricate a 3-dimensional framework. Reimplantation of cartilage blocks reduces thoracic deformities, but there is no consensus on how to maximize the effectiveness of reimplantation. We aimed to investigate the correlation between the block diameter and the efficacy of cartilage regeneration at the donor site in a rabbit model. Seventy-two rabbits were randomly placed into 6 groups: those with reimplanted cartilage blocks with a diameter of (1) 0.7 mm, (2) 0.6 mm, (3) 0.5 mm, (4) 0.4 mm, (5) 0.3 mm, and (6) the control group. Cartilage blocks of various diameters were shredded and returned to the perichondrial pocket at the donor site. The efficacy of promoting biomechanical strength, cartilage tissue growth, activation of chondrocyte proliferation, and stimulation of cartilage-specific extracellular matrix secretion was assessed. The diameter of the implanted cartilage block was a highly correlated factor during regeneration. Smaller diameters with appropriate interstitial spaces between blocks promoted better cartilage tissue growth, chondrocyte proliferation, and extracellular matrix secretion. According to our findings, 0.4 mm is the maximum diameter for achieving the best regeneration performance (range, 0.3-0.7 mm).
Collapse
Affiliation(s)
- Zhenni Wei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Plastic and Cosmetic Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, China; Department of Plastic and Cosmetic Surgery, Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350012, China
| | - Jiong Ye
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Shijie Wei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaohui Su
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Chenxu Chen
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Minjian Chen
- Department of Plastic and Cosmetic Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China.
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Meishui Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Plastic Surgery and Wound Repair, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
2
|
Kofler B, Steinkellner T, Liu M, Rettenbacher T, Straif S, Klarer J, Steinbichler T, Santer M, Khoury C, Leichtle A, Hofauer B, Völklein C. Ultrasound visualization of augmentation rhinoplasty using diced cartilage framework: A pictorial study. J Plast Reconstr Aesthet Surg 2024; 97:115-123. [PMID: 39151282 DOI: 10.1016/j.bjps.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Diced cartilage (DC) plays an integral role in rhinoplasty, and its application is well established in nasal dorsal augmentation rhinoplasty as a diced cartilage framework (DCF). METHODS Fifteen patients requiring nasal dorsal augmentation were included. Two different types of DCF were applied: DC wrapped in fascia lata or Lyomesh® and DC embedded in platelet-rich fibrin (PRF). Postoperative ultrasound follow-ups were performed at intervals of one month, three months, and one year after surgery using a high-frequency linear ultrasound transducer. The aim was to depict the viability of the DCF in vivo. RESULTS DCF was successfully depicted using ultrasound imaging in all 15 patients. Ultrasound rendered DC as hypoechoic and inhomogeneous areas. Perifocal hypoechoic edema was detected, which significantly decreased by the one-year follow-up. During the one-year postoperative period, very little DC had decreased in diameter and the framework was fully intact, with no signs of migration. On high-frequency ultrasound, DC wrapped in fascia lata or Lyomesh® appeared as a hypoechoic and inhomogeneous area clearly limited by a thin hyperechoic envelope material, whereas DC embedded in PRF presented as a hypoechogenic area that spread laterally along the bone and nasal cartilage on both sides. Using color Doppler imaging, neovascularization of the DCF was identified in 7 of 15 patients at the postoperative examination. CONCLUSION High-resolution ultrasound is an accurate, non-invasive imaging method appropriate for visualizing DCF in augmentation rhinoplasty. Additionally, it is possible to detect nascent neovascularization within grafts by using color Doppler imaging.
Collapse
Affiliation(s)
- Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; Department of Otorhinolaryngology and Maxillofacial Surgery, Hospital Franz Tappeiner, Meran/Merano, South Tyrol, Italy.
| | - Theresia Steinkellner
- Department of Plastic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Michelle Liu
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Thomas Rettenbacher
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sonja Straif
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johanna Klarer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Teresa Steinbichler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Matthias Santer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Charbel Khoury
- Department of Otorhinolaryngology and Maxillofacial Surgery, Hospital Franz Tappeiner, Meran/Merano, South Tyrol, Italy
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Benedikt Hofauer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudia Völklein
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi MG. Tissue engineering of human ear pinna. Cell Tissue Bank 2022; 23:441-457. [PMID: 35103863 DOI: 10.1007/s10561-022-09991-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Auricular deformities (Microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. These limitations can be overcome with the help of tissue engineering. In this article, the authors presented molding and three dimensional (3D) printing to generate a flexible, human size ear pinna. The decellularization of goat ear cartilage protocol and bioink alkaline digestion protocol was followed to yield complete removal of all cellular components without changing the properties of the Extra Cellular Matrix (ECM). Decellularized scaffold used in molding technology and 3D printing technology Computer-Aided Design /Stereolithography (CAD/STL) uses bioink to construct the patient-specific ear. In vivo biocompatibility of the both ear pinnae showed demonstrable recellularization. Histology and scanning electron microscopy analysis revealed the recellularization of cartilage-specific cells and the development of ECM in molded and 3D printed ear pinna after transplantation. Both the techniques provided ideal results for mechanical properties such as elasticity. Vascular Associated Protein expression revealed specific vasculogenic pattern (angiogenesis) in transplanted molded pinna. Chondrocyte specific progenitor cells express CD90+ which highlighted newly developed chondrocytes in both the grafts which indicated that the xenograft was accepted by the rat. Transplantation of molded as well as 3D ear pinna was successful in an animal model and can be available for clinical treatments as a medical object to cure auricular deformities.
Collapse
Affiliation(s)
- Nilesh Bhamare
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India.
| | - Kishor Tardalkar
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India
| | - Archana Khadilkar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Kolhapur, India
| | - Pratima Parulekar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India. .,Stem Plus Biotech Pvt. Ltd.Sangli Miraj Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road,Gaon Bhag, 416416, Sangli, MS, India.
| |
Collapse
|
4
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
5
|
Abstract
The field of Tissue Engineering and Regenerative Medicine has evolved rapidly over the past thirty years. This review will summarize its history, current status and direction through the lens of clinical need, its progress through science in the laboratory and application back into patients. We can take pride in the fact that much effort and progress began with the surgical problems of children and that many surgeons in the pediatric surgical specialties have become pioneers and investigators in this new field of science, engineering, and medicine. Although the field has yet to fulfill its great promise, there have been several examples where a therapy has progressed from the first idea to human application within a short span of time and, in many cases, it has been applied in the surgical care of children.
Collapse
|
6
|
Wang M, Chen G, Li G, Wang B, Lei C. Creating Cartilage in Tissue-Engineered Chamber Using Platelet-Rich Plasma Without Cell Culture. Tissue Eng Part C Methods 2020; 26:375-383. [PMID: 32539669 DOI: 10.1089/ten.tec.2020.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Clinically available cartilage, such as large-volume tissue-engineered cartilage, is urgently required for various clinical applications. Tissue engineering chamber (TEC) models are a promising organ-level strategy for efficient enlargement of cells or tissues within the chamber. The conventional TEC technology is not suitable for cartilage culture, because it lacks the necessary chondrogenic growth factor, which is present in platelet-rich plasma (PRP). In this study, we added autogenous auricular cartilage fragments mixed with PRP in a TEC to obtain a large amount of engineered cartilage. Experiment: To prove the efficacy of this method, 48 New Zealand white rabbits were randomly divided into 4 groups: PRP, vascularized (Ves), PRP, PRP+Ves, and control. Auricular cartilage was harvested from the rabbits, cut into fragments (2 mm), and then injected into TECs. Cartilage constructs were harvested at week 8, and construct volumes were measured. Histological morphology, immunochemical staining, and mechanical strength were evaluated. Results: At week 8, PRP+Ves constructs developed a white, cartilage-like appearance. The volume of cartilage increased by 600% the original volume from 0.30 to 1.8 ± 0.1789 mL. Histological staining showed proliferation of edge chondrocytes in the embedded cartilage in the PRP and PRP+Ves groups. Furthermore, the cartilage constructs in the PRP+Ves group show mechanical characteristics similar to those of normal cartilage. Conclusions: Auricular cartilage fragments mixed with PRP and vascularization of the TEC showed a significantly increased cartilage tissue volume after 8 weeks of incubation in rabbits. Impact Statement Repair of defects of ear cartilage tissue has always been a huge challenge to plastic surgeons. In this article, a new method is presented to produce within 8 weeks auricular cartilage in a tissue engineering chamber without cell culture. Having such a method is a valuable step toward creating a large volume of functional cartilage tissue, which may lead to successful construction of normal auricular structure with minimal donor-site morbidity.
Collapse
Affiliation(s)
- Meishui Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Guojie Chen
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Department of Burn and Plastic Surgery, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Guanmin Li
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
7
|
Lim MH, Jeun JH, Kim DH, Park SH, Kim SJ, Lee WS, Hwang SH, Lim JY, Kim SW. Evaluation of Collagen Gel-Associated Human Nasal Septum-Derived Chondrocytes As a Clinically Applicable Injectable Therapeutic Agent for Cartilage Repair. Tissue Eng Regen Med 2020; 17:387-399. [PMID: 32399775 DOI: 10.1007/s13770-020-00261-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Articular cartilage injury has a poor repair ability and limited regeneration capacity with therapy based on articular chondrocytes (ACs) implantation. Here, we validated the hypothesis that human nasal septum-derived chondrocytes (hNCs) are potent therapeutic agents for clinical use in cartilage tissue engineering using an injectable hydrogel, type I collagen (COL1). METHODS We manufactured hNCs incorporated in clinical-grade soluble COL1 and investigated their clinical potential as agents in an articular defect model. RESULTS The hNCs encapsulated in COL1 (hNC-collagen) were uniformly distributed throughout the collagen and showed much greater growth rate than hACs encapsulated in collagen for the 14 days of culture. Fluorescent staining of hNC-collagen showed high expression levels of chondrocyte-specific proteins under clinical conditions. Moreover, a negative mycoplasma screening result were obtained in culture of hNC-collagen. Notably, implantation of hNC-collagen increased the repair of osteochondral defects in rats compared with implantation of collagen only. Many human cells were detected within the cartilage defects. CONCLUSION These results provide reliable evidences supporting for clinical applications of hNC-collagen in regenerative medicine for cartilage repair.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeun
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok-Jung Kim
- Department of Orthopedics, Uijeongbu St. Mary's Hospital, 271 Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Weon Sun Lee
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea.
| | - Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Simulating natural characteristics and aesthetics in reconstructed ears has provided a complex 3-dimensional puzzle for those treating patients with microtia. Costochondral grafts remain the gold standard for autologous reconstruction. However, other options such as Medpor and prosthetics are indicated depending on patient circumstances and personal choice. Research into tissue engineering offers an alternative method to a traditional surgical approach that may reduce donor-site morbidity. However, tissue engineering for microtia reconstruction brings new challenges such as cell sourcing, promotion of chondrogenesis, scaffold vascularization, and prevention of scaffold contraction. Advancements in 3D printing, nanofiber utilization, stem cell technologies, and decellularization techniques have played significant roles in overcoming these challenges. These recent advancements and reports of a successful clinical-scale study in an immunocompetent animal suggest a promising outlook for future clinical application of tissue engineering for auricular reconstruction.
Collapse
|
9
|
Reighard CL, Hollister SJ, Zopf DA. Auricular reconstruction from rib to 3D printing. JOURNAL OF 3D PRINTING IN MEDICINE 2018; 2:35-41. [PMID: 29607095 PMCID: PMC5824712 DOI: 10.2217/3dp-2017-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
The human ear imparts critical form and function and remains one of the most challenging facial features to reconstruct. Over the past century, surgeons have developed numerous techniques and materials for total auricular reconstruction. Refined costal cartilage techniques have remained the gold standard for the past half-century. Recent advancements with novel materials, tissue engineering and 3D printing provide immense potential; however, prohibitive costs and regulatory steps remain as barriers to clinical translation.
Collapse
Affiliation(s)
| | - Scott J Hollister
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David A Zopf
- Otolaryngology – Head & Neck Surgery, Pediatric Division, University of Michigan Health Systems, CS Mott Children's Hospital, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa. Plast Reconstr Surg 2017; 140:297-305. [DOI: 10.1097/prs.0000000000003522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Tiruvannamalai Annamalai R, Rioja AY, Putnam AJ, Stegemann JP. Vascular Network Formation by Human Microvascular Endothelial Cells in Modular Fibrin Microtissues. ACS Biomater Sci Eng 2016; 2:1914-1925. [PMID: 29503863 PMCID: PMC5830175 DOI: 10.1021/acsbiomaterials.6b00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microvascular endothelial cells (MVEC) are a preferred cell source for autologous revascularization strategies, since they can be harvested and propagated from small tissue biopsies. Biomaterials-based strategies for therapeutic delivery of cells are aimed at tailoring the cellular microenvironment to enhance the delivery, engraftment, and tissue-specific function of transplanted cells. In the present study, we investigated a modular tissue engineering approach to therapeutic revascularization using fibrin-based microtissues containing embedded human MVEC and human fibroblasts (FB). Microtissues were formed using a water-in-oil emulsion process that produced populations of spheroidal tissue modules with a diameter of 100-200 µm. The formation of MVEC sprouts within a fibrin matrix over 7 days in culture was dependent on the presence of FB, with the most robust sprouting occurring at a 1:3 MVEC:FB ratio. Cell viability in microtissues was high (>90%) and significant FB cell proliferation was observed over time in culture. Robust sprouting from microtissues was evident, with larger vessels developing over time and FB acting as pericyte-like cells by enveloping endothelial tubes. These neovessels were shown to form an interconnected vascular plexus over 14 days of culture when microtissues were embedded in a surrounding fibrin hydrogel. Vessel networks exhibited branching and inosculation of sprouts from adjacent microtissues, resulting in MVEC-lined capillaries with hollow lumens. Microtissues maintained in suspension culture aggregated to form larger tissue masses (1-2 mm in diameter) over 7 days. Vessels formed within microtissue aggregates at a 1:1 MVEC:FB ratio were small and diffuse, whereas the 1:3 MVEC:FB ratio produced large and highly interconnected vessels by day 14. This study highlights the utility of human MVEC as a cell source for revascularization strategies, and suggests that the ratio of endothelial to support cells can be used to tailor vessel characteristics. The modular microtissue format may allow minimally invasive delivery of populations of prevascularized microtissues for therapeutic applications.
Collapse
Affiliation(s)
| | - Ana Y. Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|
12
|
Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS One 2016; 11:e0157894. [PMID: 27328066 PMCID: PMC4915699 DOI: 10.1371/journal.pone.0157894] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.
Collapse
Affiliation(s)
- Daniel J. Modulevsky
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles M. Cuerrier
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew E. Pelling
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Institute for Science, Society and Policy, University of Ottawa, Ottawa, Ontario, Canada
- SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
13
|
Park JY, Choi YJ, Shim JH, Park JH, Cho DW. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater 2016; 105:1016-1028. [PMID: 26922876 DOI: 10.1002/jbm.b.33639] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/04/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Surgical technique using autologs cartilage is considered as the best treatment for cartilage tissue reconstruction, although the burdens of donor site morbidity and surgical complications still remain. The purpose of this study is to apply three-dimensional (3D) cell printing to fabricate a tissue-engineered graft, and evaluate its effects on cartilage reconstruction. A multihead tissue/organ building system is used to print cell-printed scaffold (CPS), then assessed the effect of the CPS on cartilage regeneration in a rabbit ear. The cell viability and functionality of chondrocytes were significantly higher in CPS than in cell-seeded scaffold (CSS) and cell-seeded hybrid scaffold (CSHS) in vitro. CPS was then implanted into a rabbit ear that had an 8 mm-diameter cartilage defect; at 3 months after implantation the CPS had fostered complete cartilage regeneration whereas CSS and autologs cartilage (AC) fostered only incomplete healing. This result demonstrates that cell printing technology can provide an appropriate environment in which encapsulated chondrocytes can survive and differentiate into cartilage tissue in vivo. Moreover, the effects of CPS on cartilage regeneration were even better than those of AC. Therefore, we confirmed the feasibility of CPS as an alternative to AC for auricular reconstruction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1016-1028, 2017.
Collapse
Affiliation(s)
- Ju Young Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
14
|
Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Tissue Eng Part A 2015; 22:197-207. [PMID: 26529401 DOI: 10.1089/ten.tea.2015.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time.
Collapse
Affiliation(s)
- Irina Pomerantseva
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - David A Bichara
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Alan Tseng
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Michael J Cronce
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Thomas M Cervantes
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Anya M Kimura
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Craig M Neville
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | | | - Joseph P Vacanti
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Mark A Randolph
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Cathryn A Sundback
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
15
|
Otto IA, Melchels FPW, Zhao X, Randolph MA, Kon M, Breugem CC, Malda J. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 2015. [PMID: 26200941 DOI: 10.1088/1758-5090/7/3/032001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Auricular malformations, which impose a significant social and psychological burden, are currently treated using ear prostheses, synthetic implants or autologous implants derived from rib cartilage. Advances in the field of regenerative medicine and biofabrication provide the possibility to engineer functional cartilage with intricate architectures and complex shapes using patient-derived or donor cells. However, the development of a successful auricular cartilage implant still faces a number of challenges. These challenges include the generation of a functional biochemical matrix, the fabrication of a customized anatomical shape, and maintenance of that shape. Biofabrication technologies may have the potential to overcome these challenges due to their ability to reproducibly deposit multiple materials in complex geometries in a highly controllable manner. This topical review summarizes this potential of biofabrication technologies for the generation of implants for auricular reconstruction. In particular, it aims to discuss how biofabrication technologies, although still in pre-clinical phase, could overcome the challenges of generating and maintaining the desired auricular shapes. Finally, remaining bottlenecks and future directions are discussed.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands. Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Nimeskern L, Pleumeekers MM, Pawson DJ, Koevoet WLM, Lehtoviita I, Soyka MB, Röösli C, Holzmann D, van Osch GJVM, Müller R, Stok KS. Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs. J Biomech 2015; 48:1721-9. [PMID: 26065333 DOI: 10.1016/j.jbiomech.2015.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/07/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
Abstract
It is key for successful auricular (AUR) cartilage tissue-engineering (TE) to ensure that the engineered cartilage mimics the mechanics of the native tissue. This study provides a spatial map of the mechanical and biochemical properties of human auricular cartilage, thus establishing a benchmark for the evaluation of functional competency in AUR cartilage TE. Stress-relaxation indentation (instantaneous modulus, Ein; maximum stress, σmax; equilibrium modulus, Eeq; relaxation half-life time, t1/2; thickness, h) and biochemical parameters (content of DNA; sulfated-glycosaminoglycan, sGAG; hydroxyproline, HYP; elastin, ELN) of fresh human AUR cartilage were evaluated. Samples were categorized into age groups and according to their harvesting region in the human auricle (for AUR cartilage only). AUR cartilage displayed significantly lower Ein, σmax, Eeq, sGAG content; and significantly higher t1/2, and DNA content than NAS cartilage. Large amounts of ELN were measured in AUR cartilage (>15% ELN content per sample wet mass). No effect of gender was observed for either auricular or nasoseptal samples. For auricular samples, significant differences between age groups for h, sGAG and HYP, and significant regional variations for Ein, σmax, Eeq, t1/2, h, DNA and sGAG were measured. However, only low correlations between mechanical and biochemical parameters were seen (R<0.44). In conclusion, this study established the first comprehensive mechanical and biochemical map of human auricular cartilage. Regional variations in mechanical and biochemical properties were demonstrated in the auricle. This finding highlights the importance of focusing future research on efforts to produce cartilage grafts with spatially tunable mechanics.
Collapse
Affiliation(s)
- Luc Nimeskern
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Mieke M Pleumeekers
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Wendy L M Koevoet
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Michael B Soyka
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Christof Röösli
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Zürich, Zürich, Switzerland
| | - David Holzmann
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Gerjo J V M van Osch
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Kathryn S Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Nimeskern L, Rotter N, van Osch GJ, Müller R, Stok KS. Response to Letter to the Editor Concerning “Quantitative Evaluation of Mechanical Properties in Tissue-Engineered Auricular Cartilage”. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:244-5. [DOI: 10.1089/ten.teb.2014.0517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Luc Nimeskern
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Nicole Rotter
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Gerjo J.V.M. van Osch
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
18
|
Steinau HU, Podleska L, Tilkorn D, Farzalyiev F, Vogt P, Hauser J. [Prefabrication of transplants in plastic surgery]. Chirurg 2015; 86:263-7. [PMID: 25712785 DOI: 10.1007/s00104-014-2886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Complex three-dimensional defects with destruction of the external form, loss of functional stability and inner lining are associated with tactical and technical challenges in reconstructive plastic surgery. Causative factors are mutilating infections, resection of malignant tumors and trauma, predominantly located at the aerodigestive junction, the urogenital region and the extremities. Three-dimensional tissue constructions are preformed distant to the defect site allowing safe pedicled or microsurgical transfer into the defect.
Collapse
Affiliation(s)
- H-U Steinau
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Sektion Sarkomchirurgie; Westdeutsches Tumorzentrum CCC, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufeland Str. 55, 45147, Essen, Deutschland,
| | | | | | | | | | | |
Collapse
|
19
|
Burghartz M, Gehrke T, Storck K, Staudenmaier R, Mandlik V, Schurr C, Hoang N, Hagen R, Kleinsasser N. Vascularization of engineered cartilage constructs in a mouse model. Cell Tissue Res 2014; 359:479-487. [PMID: 25381568 DOI: 10.1007/s00441-014-2026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 10/09/2014] [Indexed: 01/25/2023]
Abstract
Tissue engineering of cartilage tissue offers a promising method for reconstructing ear, nose, larynx and trachea defects. However, a lack of sufficient nutrient supply to cartilage constructs limits this procedure. Only a few animal models exist to vascularize the seeded scaffolds. In this study, polycaprolactone (PCL)-based polyurethane scaffolds are seeded with 1 × 10(6) human cartilage cells and implanted in the right hind leg of a nude mouse using an arteriovenous flow-through vessel loop for angiogenesis for the first 3 weeks. Equally seeded scaffolds but without access to a vessel loop served as controls. After 3 weeks, a transposition of the vascularized scaffolds into the groin of the nude mouse was performed. Constructs (verum and controls) were explanted 1 and 6 weeks after transposition. Constructs with implanted vessels were well vascularized. The amount of cells increased in vascularized constructs compared to the controls but at the same time noticeably less extracellular matrix was produced. This mouse model provides critical answers to important questions concerning the vascularization of engineered tissue, which offers a viable option for repairing defects, especially when the desired amount of autologous cartilage or other tissues is not available and the nutritive situation at the implantation site is poor.
Collapse
Affiliation(s)
- Marc Burghartz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany.
| | - Thomas Gehrke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Storck
- Department for Ear-Nose-Throat, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | - Veronika Mandlik
- Department for Plastic Surgery, Klinikum Kassel, Kassel, Germany
| | - Christian Schurr
- Department for Ear-Nose-Throat, Klinik Josephinum, München, Germany
| | - Nguyen Hoang
- Department of Hand Surgery and Microsurgery, Institute of Trauma and Orthopaedics, Central University Hospital 108, Hanoi, Vietnam
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Nimeskern L, van Osch GJ, Müller R, Stok KS. Quantitative Evaluation of Mechanical Properties in Tissue-Engineered Auricular Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:17-27. [DOI: 10.1089/ten.teb.2013.0117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Luc Nimeskern
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gerjo J.V.M. van Osch
- Departments of Otorhinolaryngology and Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits. PLoS One 2013; 8:e71667. [PMID: 23951215 PMCID: PMC3739741 DOI: 10.1371/journal.pone.0071667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/08/2013] [Indexed: 11/28/2022] Open
Abstract
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15×8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery.
Collapse
|
22
|
Current management of microtia: a national survey. Aesthetic Plast Surg 2013; 37:402-8. [PMID: 23354768 DOI: 10.1007/s00266-012-0008-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Microtia reconstruction remains one of the most challenging procedures encountered by the reconstructive surgeon. A national report on the current management of microtia has never been presented before. The purpose of this project was to survey members of the American Society of Plastic Surgeons (ASPS) to identify their preferences and practices and report their opinions regarding issues related to microtia reconstruction. METHODS An anonymous web-based survey consisting of 19 questions was distributed to the members of the ASPS. Questions focused on the management of microtia. The study design was descriptive, using categorical data analysis. RESULTS Thirty-eight percent of all respondents perform microtia reconstruction; 91 % learned the autogenous cartilage-based reconstruction technique, while only 16 % were exposed to alloplastic reconstruction. Seventy percent of all respondents learned autogenous cartilage-based ear reconstruction exclusively. Fifty percent of respondents who perform microtia reconstruction reported a steep learning curve. In the pediatric patient population, 49 % of microtia surgeons prefer performing the surgery when the patient is between 7 and 10 years of age, while 40 % of microtia surgeons prefer the patient to be 4-6 years of age. Fifty-nine percent of all respondents believe that in 15 years tissue engineering will represent the gold standard of microtia reconstruction. CONCLUSION Staged microtia repair using autogenous cartilage remains the heavily favored method of microtia reconstruction among plastic surgeons. Moreover, there is a deficiency in training the newer surgical techniques, such as alloplastic and osseointegrated options. This study also highlights the continuing need to elucidate the optimal timing for microtia repair in the pediatric patient to mitigate the potential psychosocial morbidity well described in the literature. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
23
|
Luo X, Liu Y, Zhang Z, Tao R, Liu Y, He A, Yin Z, Li D, Zhang W, Liu W, Cao Y, Zhou G. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials 2013; 34:3336-44. [PMID: 23380355 DOI: 10.1016/j.biomaterials.2013.01.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022]
Abstract
Due to lack of satisfactory tracheal substitutes, reconstruction of long segmental tracheal defects (>6 cm) is always a major challenge in trachea surgery. Tissue-engineered trachea (TET) provides a promising approach to address this challenge, but no breakthrough has been achieved yet in repairing segmental tracheal defect. The longest survival time only reached 60 days. The leading reasons for the failure of segmental tracheal defect reconstruction were mainly related to airway stenosis (caused by the overgrowth of granulation tissue), airway collapse (caused by cartilage softening) and mucous impaction (mainly caused by lack of epithelium). To address these problems, the current study proposed an improved strategy, which involved in vitro pre-culture, in vivo maturation, and pre-vascularization of TET grafts as well as the use of silicone stent. The results demonstrated that the two-step strategy of in vitro pre-culture plus in vivo implantation could successfully regenerate tubular cartilage with a mechanical strength similar to native trachea in immunocompetent animals. The use of silicone stents effectively depressed granulation overgrowth, prevented airway stenosis, and thus dramatically enhanced the survival rate at the early stage post-operation. Most importantly, through intramuscular implantation and transplantation with pedicled muscular flap, the TET grafts established stable blood supply, which guaranteed maintenance of tubular cartilage structure and function, accelerated epithelialization of TET grafts, and thus realized long-term functional reconstruction of segmental tracheal defects. The integration of all these improved strategies finally realized long-term survival of animals: 60% of rabbits survived over 6 months. The current improved strategy provided a promising approach for long-term functional reconstruction of long segmental tracheal defect.
Collapse
Affiliation(s)
- Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Burns may represent one of the main indications for face allotransplantation. Severely disfigured faces featuring a devastating appearance and great functional impairments are not only seen as burn sequelae but also occur as a result of other traumatic injuries, oncological surgical resections, benign tumors (eg, neurofibromatosis), and major congenital malformations. To date, 20 human face composite tissue allotransplants have been performed with success. Despite the initial scepticism about its applicability, due mainly to ethical and technical reasons, the previous worldwide cases and their associated positive outcomes, including acceptable immunosuppressive regimens, excellent aesthetic and functional results, and good psychological acceptance by the recipient, enable the conclusion that face composite tissue allotransplantation has become another therapeutic strategy in the reconstructive surgical armamentarium, which bears special consideration when dealing with severely disfigured burned patients. The aim of this review is to describe the basics of face composite tissue allotransplantation and give an overview of some of the cases performed until now, with special attention paid to debating the pros and cons of its applicability in burn patients.
Collapse
Affiliation(s)
- Arno A
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Barret JP
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Harrison RA
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jeschke MG
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Bichara DA, O'Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, Randolph MA. The tissue-engineered auricle: past, present, and future. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:51-61. [PMID: 21827281 DOI: 10.1089/ten.teb.2011.0326] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The reconstruction, repair, and regeneration of the external auricular framework continue to be one of the greatest challenges in the field of tissue engineering. To replace like with like, we should emulate the native structure and composition of auricular cartilage by combining a suitable chondrogenic cell source with an appropriate scaffold under optimal in vitro and in vivo conditions. Due to the fact that a suitable and reliable substitute for auricular cartilage has yet to be engineered, hand-carved autologous costal cartilage grafts and ear-shaped porous polyethylene implants are the current treatment modalities for auricular reconstruction. However, over the last decade, significant advances have been made in the field of regenerative medicine and tissue engineering. A variety of scaffolds and innovative approaches have been investigated as alternatives to using autologous carved costal cartilage or porous polyethylene implants. A review of recent developments and the current state of the art and science is presented, focusing on scaffolds, cell sources, seeding densities, and mechanical characteristics of tissue-engineered auricular cartilage.
Collapse
Affiliation(s)
- David A Bichara
- Plastic Surgery Research Laboratory, Division of Plastic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res 2011; 4:685-98. [PMID: 21892744 DOI: 10.1007/s12265-011-9301-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/20/2011] [Indexed: 11/30/2022]
Abstract
Tissue engineering promises to restore tissue and organ function following injury or failure by creating functional and transplantable artificial tissues. The development of artificial tissues with dimensions that exceed the diffusion limit (1-2 mm) will require nutrients and oxygen to be delivered via perfusion (or convection) rather than diffusion alone. One strategy of perfusion is to prevascularize tissues; that is, a network of blood vessels is created within the tissue construct prior to implantation, which has the potential to significantly shorten the time of functional vascular perfusion from the host. The prevascularized network of vessels requires an extracellular matrix or scaffold for 3D support, which can be either natural or synthetic. This review surveys the commonly used biomaterials for prevascularizing 3D tissue engineering constructs.
Collapse
Affiliation(s)
- Lei Tian
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA
| | | |
Collapse
|
27
|
Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, Kulig KM, Vacanti JP, Randolph MA, Sundback CA. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011; 17:1573-81. [PMID: 21284558 DOI: 10.1089/ten.tea.2010.0627] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Engineered cartilage composed of a patient's own cells can become a feasible option for auricular reconstruction. However, distortion and shrinkage of ear-shaped constructs during scaffold degradation and neocartilage maturation in vivo have hindered the field. Scaffolds made of synthetic polymers often generate degradation products that cause an inflammatory reaction and negatively affect neocartilage formation in vivo. Porous collagen, a natural material, is a promising candidate; however, it cannot withstand the contractile forces exerted by skin and surrounding tissue during normal wound healing. We hypothesised that a permanent support in the form of a coiled wire embedded into a porous collagen scaffold will maintain the construct's size and ear-specific shape. Half-sized human adult ear-shaped fibrous collagen scaffolds with and without embedded coiled titanium wire were seeded with sheep auricular chondrocytes, cultured in vitro for up to 2 weeks, and implanted subcutaneously on the backs of nude mice. After 6 weeks, the dimensional changes in all implants with wire support were minimal (2.0% in length and 4.1% in width), whereas significant reduction in size occurred in the constructs without embedded wire (14.4% in length and 16.5% in width). No gross distortion occurred over the in vivo study period. There were no adverse effects on neocartilage formation from the embedded wire. Histologically, mature neocartilage extracellular matrix was observed throughout all implants. The amount of DNA, glycosaminoglycan, and hydroxyproline in the engineered cartilage were similar to that of native sheep ear cartilage. The embedded wire support was essential for avoiding shrinkage of the ear-shaped porous collagen constructs.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Neovaskularisation und freier mikrochirurgischer Transfer von in vitro gezüchteten Knorpelkonstrukten. HNO 2011; 59:239-47. [DOI: 10.1007/s00106-011-2270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Sonography of the Anterior Oblique Ligament of the Trapeziometacarpal Joint: A Study of Cadavers and Asymptomatic Volunteers. AJR Am J Roentgenol 2010; 195:W428-34. [DOI: 10.2214/ajr.10.4403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Liu L, Wu W, Tuo X, Geng W, Zhao J, Wei J, Yan X, Yang W, Li L, Chen F. Novel Strategy to Engineer Trachea Cartilage Graft With Marrow Mesenchymal Stem Cell Macroaggregate and Hydrolyzable Scaffold. Artif Organs 2010; 34:426-33. [DOI: 10.1111/j.1525-1594.2009.00884.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
It Is Time to Reconstruct Human Auricle More Precisely and Microinvasively. Plast Reconstr Surg 2010; 125:155e-156e. [DOI: 10.1097/prs.0b013e3181d45d07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:199-215. [PMID: 18544016 DOI: 10.1089/ten.teb.2007.0435] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
33
|
Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, Lowder E, Landis WJ. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 2009; 17:136-46. [PMID: 19152661 DOI: 10.1111/j.1524-475x.2008.00451.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examines the tissue engineering of a human ear model through use of bovine chondrocytes isolated from four different cartilaginous sites (nasoseptal, articular, costal, and auricular) and seeded onto biodegradable poly(l-lactic acid) and poly(L-lactide-epsilon-caprolactone) (50 : 50) polymer ear-shaped scaffolds. After implantation in athymic mice for up to 40 weeks, cell/scaffold constructs were harvested and analyzed in terms of size, shape, histology, and gene expression. Gross morphology revealed that all the tissue-engineered cartilages retained the initial human auricular shape through 40 weeks of implantation. Scaffolds alone lost significant size and shape over the same period. Quantitative reverse transcription-polymerase chain reaction demonstrated that the engineered chondrocyte/scaffolds yielded unique expression patterns for type II collagen, aggrecan, and bone sialoprotein mRNA. Histological analysis showed type II collagen and proteoglycan to be the predominant extracellular matrix components of the various constructs sampled at different implantation times. Elastin was also present but it was found only in constructs seeded with auricular chondrocytes. By 40 weeks of implantation, tissue-engineered cartilage of costal origin became calcified, marked by a notably high relative gene expression level of bone sialoprotein and the presence of rigid, nodular protrusions formed by mineralizing rudimentary cartilaginous growth plates. The collective data suggest that nasoseptal, articular, and auricular cartilages represent harvest sites suitable for development of tissue-engineered human ear models with retention over time of three-dimensional construct architecture, gene expression, and extracellular matrix composition comparable to normal, nonmineralizing cartilages. Calcification of constructs of costal chondrocyte origin clearly shows that chondrocytes from different tissue sources are not identical and retain distinct characteristics and that these specific cells are inappropriate for use in engineering a flexible ear model.
Collapse
Affiliation(s)
- Hirohisa Kusuhara
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-sayama, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoang NT, Hoehnke C, Hien PT, Mandlik V, Feucht A, Staudenmaier R. Neovascularization and free microsurgical transfer of in vitro cartilage-engineered constructs. Microsurgery 2009; 29:52-61. [PMID: 18942651 DOI: 10.1002/micr.20565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cartilage tissue engineering shows to have tremendous potential for the reconstruction of three-dimensional cartilage defects. To ensure survival, shape, and function, in vitro cartilage-engineered constructs must be revascularized. This article presents an effective method for neovascularization and free microsurgical transfer of these in vitro constructs. Twelve female Chinchilla Bastard rabbits were used. Cartilage-engineered constructs were created by isolating chondrocytes from auricular biopsies, amplifying in monolayer culture, and then seeding them onto polycaprolactone scaffolds. In each prefabricated skin flap, three in vitro cartilage-engineered constructs (2 x 2 x 0.5 cm) and one construct without cells (served as the control) were implanted beneath an 8 x 15 cm random-pattern skin flap, neovascularized by implantation of an arteriovenous vascular pedicle with maximal blood flow. Six weeks later, the neovascularized flaps with embedded cartilage-engineered constructs were completely removed based on the newly implanted vascular pedicle, and then freely retransferred into position using microsurgery. Macroscopic observation, selective microangiography, histology, and immunohistochemistry were performed to determine the construct vitality, neovascularization, and new cartilage formation. The results showed that all neovascularized skin flaps with embedded constructs were successfully free-transferred as free flaps. The implanted constructs were well integrated and protected within the flap. All constructs were well neovascularized and showed histologically stability in both size and form. Immunohistology showed the existence of cartilage-like tissue with extracellular matrix neosynthesis.
Collapse
Affiliation(s)
- Nguyen The Hoang
- Department of Hand Surgery and Microsurgery, Institute of Trauma and Orthopedics, Central University Hospital, Hanoi, Vietnam.
| | | | | | | | | | | |
Collapse
|
35
|
Prefabricated Flaps or Grafts? Plast Reconstr Surg 2008. [DOI: 10.1097/prs.0b013e31817749ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor. J Surg Res 2008; 149:47-56. [PMID: 18316094 DOI: 10.1016/j.jss.2007.12.788] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/10/2007] [Accepted: 12/26/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based tissue engineering is a promising future alternative to autologous cartilage grafting. This study evaluates the potential of using MSCs, seeded into electrospun, biodegradable polymeric nanofibrous scaffolds, to engineer cartilage with defined dimensions and shape, similar to grafts used for subcutaneous implantation in plastic and reconstructive surgery. MATERIALS AND METHODS Human bone marrow derived MSCs seeded onto nanofibrous scaffolds and placed in custom-designed molds were cultured for up to 42 days in bioreactors. Chondrogenesis was induced with either transforming growth factor-beta1 (TGF-beta1) alone or in combination with insulin-like growth factor-I (IGF-I). RESULTS Constructs exhibited hyaline cartilage histology with desired thickness and shape as well as favorable tissue integrity and shape retention, suggesting the presence of elastic tissue. Time-dependent increase in cartilage matrix gene expression was seen in both types of culture: at Day 42, TGF-beta1/IGF-I treated cultures showed higher collagen Type 2 and aggrecan expression. Both culture conditions showed significant time-dependent increase in sulfated glycosaminoglycan and hydroxyproline contents. TGF-beta1/IGF-I-treated samples were significantly stiffer; with equilibrium compressive Young's modulus values reaching 17 kPa by Day 42. CONCLUSIONS The successful ex vivo development of geometrically defined cartilaginous construct using customized molding suggests the potential of cell-based cartilage tissue for reconstructive surgery.
Collapse
Affiliation(s)
- Sasa Janjanin
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-8022, USA
| | | | | | | | | |
Collapse
|
37
|
Ogawa R, Oki K, Hyakusoku H. Vascular tissue engineering and vascularized 3D tissue regeneration. Regen Med 2007; 2:831-7. [PMID: 17907934 DOI: 10.2217/17460751.2.5.831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vascularized tissue regeneration has a great deal of potential in clinical medicine. Appropriate 3D tissue regeneration that yields tissue with the desired function and shape requires both growth signals and vascularization. In this paper, we discuss vascularized tissue regeneration using various vessel systems: artificial vessel, autologous vascular graft, autologous vascular bundle transfer and tissue engineered vessel. Vascularized 3D tissue regeneration will require a great deal of additional research before it can be applied to clinical situations. Several promising studies of vascularized tissue regeneration have been reported. However, additional studies into the maturation of neovascularization, the development of effective biomaterial, and the possibility of using stem cells will be needed before these techniques can be used in the clinical situation.
Collapse
Affiliation(s)
- Rei Ogawa
- Nippon Medical School, Department of Plastic and Reconstructive Surgery1, 1-5 Sendagi Bunkyoku, Tokyo 113-8603, Japan.
| | | | | |
Collapse
|
38
|
Megee DM, Berry N, Russell RC, Neumeister MW. Tissue engineering: bridging the gap between replantation and composite tissue allografts. Clin Plast Surg 2007; 34:319-25, xi. [PMID: 17418680 DOI: 10.1016/j.cps.2006.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article explores issues related to tissue engineering and composite tissue allografts that employ physiologic and anatomic autogenous replicates to restore tissue loss. Composite tissue allotransplantation has become a controversial option for reconstruction, most prominently for reconstruction involving the hand and, recently, the face. While the side-effect profile of systemic immunosuppression continues to improve, the long-term risks of immunosuppression leaves composite tissue allotransplantation a domain for cautious exploration. Meanwhile, tissue engineering could, conceivably, be the gap between replantation and composite tissue allografts. Whereas the perils of immunosuppression may limit the routine use of allografts, employing constructions made of the patient's own cells negates the need for any antirejection therapy.
Collapse
Affiliation(s)
- David M Megee
- Division of Plastic Surgery, Southern Illinois University School of Medicine, Plastic Surgery Institute, P.O. Box 19653, Springfield, IL 62794
| | | | | | | |
Collapse
|
39
|
Sekiya S, Shimizu T, Yang J, Yamato M, Okano T. Induction technology of vascular networks within bioengineered tissues. Inflamm Regen 2006. [DOI: 10.2492/inflammregen.26.501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|