1
|
Chen X, Yu B, Wang Z, Li Q, Dai C, Wei J. Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor. Orthop Surg 2022; 14:1930-1939. [PMID: 35794789 PMCID: PMC9483074 DOI: 10.1111/os.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Repairing large segment bone defects is still a clinical challenge. Bone tissue prefabrication shows great translational potentials and has been gradually accepted clinically. Existing bone reconstruction strategies, including autologous periosteal graft, allogeneic periosteal transplantation, xenogeneic periosteal transplantation, and periosteal cell tissue engineering, are all clinically valuable treatments and have made significant progress in research. Herein, we reviewed the research progress of these techniques and briefly explained the relationship among in vivo microenvironment, mechanical force, and periosteum osteogenesis. Moreover, we also highlighted the importance of the critical role of periosteum in osteogenesis and explained current challenges and future perspective.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| |
Collapse
|
2
|
Batista JM, Nakagaki WR, Soares EA, Camilli JA. Effects of low-intensity pulsed ultrasound exposure on rats tibia periosteum. AN ACAD BRAS CIENC 2020; 92:e20180903. [PMID: 32074178 DOI: 10.1590/0001-3765202020180903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
The periosteum is a rich source of osteoprogenitor cells and periosteal grafts can be used as an alternative method to replace bone grafts. The low-intensity pulsed ultrasound (LIPUS) has often been used as a noninvasive method to stimulate osteogenesis and reduce the fracture healing time. The aim of this study was to evaluate the effects of the ultrasound exposure on the rat tibia periosteum. Group I (7 animals) received LIPUS therapy on the left tibia for 7 days and group II (7 animals) on the left tibia for 14 days. After euthanasia, the tibias were processed. Number of periosteal cells and vessels and thickness of the periosteum were analyzed. The number of periosteal cells was higher in stimulated periosteum compared to controls at 7 and 14 days, but the number of vessels and the thickness only were higher in the group stimulated at 14 days. Furthermore, the ultrasound treatment for 14 days was more effective than 7 days. The ultrasound stimulation of the periosteum prior to grafting procedure can be advantageous, since it increases periosteal activity, and LIPUS may be an alternative method for stimulating the periosteum when the use of periosteal grafts in bone repair is needed.
Collapse
Affiliation(s)
- Jaqueline Martins Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil
| | - Wilson Romero Nakagaki
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil.,Programa de Mestrado em Ciências da Saúde, Universidade do Oeste Paulista/UNOESTE, Pró-Reitoria de Pesquisa e Pós-Graduação/Campus II, Rodovia Raposo Tavares, Km 572, Bairro do Limoeiro, 19067-175 Presidente Prudente, SP, Brazil
| | - Evelise Aline Soares
- Departamento de Anatomia, Universidade Federal de Alfenas/UNIFAL, Rua Gabriel Monteiro da Silva 700, 37130-001 Alfenas, MG, Brazil
| | - José Angelo Camilli
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil
| |
Collapse
|
3
|
Pinotti FE, Pimentel Lopes de Oliveira GJ, Scardueli CR, Costa de Medeiros M, Stavropoulos A, Chiérici Marcantonio RA. Use of a Non-Crosslinked Collagen Membrane During Guided Bone Regeneration Does Not Interfere With the Bone Regenerative Capacity of the Periosteum. J Oral Maxillofac Surg 2018; 76:2331.e1-2331.e10. [PMID: 30092216 DOI: 10.1016/j.joms.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To assess whether the use of a non-crosslinked porcine collagen type I and III bi-layered membrane inter-positioned between the periosteum and a bone defect would interfere with the bone regenerative capacity of the periosteum. MATERIALS AND METHODS Sixty rats, each with 1 critical-size calvarial defect (CSD; diameter, 5 mm) in the parietal bone, were randomly allocated to 1 of 3 equal-size groups after CSD creation: 1) the periosteum was excised and the flap was repositioned without interposition of a membrane (no-periosteum [NP] group); 2) the flap including the periosteum was repositioned (periosteum [P] group); and 3) a non-crosslinked collagen membrane was inter-positioned between the flap, including the periosteum, and the bone defect (membrane [M] group). Micro-computed tomography, qualitative histology, immunohistochemistry, and reverse transcription real-time quantitative polymerase chain reaction were performed at 3, 7, 15, and 30 days postoperatively. RESULTS A markedly increased radiographic residual defect length was observed in the NP group compared with the P group at 30 days. The NP group also presented a smaller radiographic bone fill area than the P group at 15 and 30 days and then the M group at 30 days. The P and M groups exhibited considerably greater expression of bone morphogenetic protein-2 and osteocalcin than the NP group at 7 days; expression of transforming growth factor-β1 was considerably greater in the NP group at 15 days. Further, the P group presented considerably higher gene expression levels of Runx2 and Jagged1 at 7 days and of alkaline phosphatase at 3 and 15 days compared with the M and NP groups. CONCLUSION Interposition of this specific non-crosslinked collagen membrane between the periosteum and the bone defect during guided bone regeneration interferes only slightly, if at all, with the bone regenerative capacity of the periosteum.
Collapse
Affiliation(s)
- Felipe Eduardo Pinotti
- PhD Student, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | - Cássio Rocha Scardueli
- PhD Student, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcell Costa de Medeiros
- Postdoctoral Student, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Andreas Stavropoulos
- Department Head, Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | |
Collapse
|
4
|
de Freitas Silva L, de Carvalho Reis ENR, Barbara TA, Bonardi JP, Garcia IR, de Carvalho PSP, Ponzoni D. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochem 2017; 119:624-631. [PMID: 28732677 DOI: 10.1016/j.acthis.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/23/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Evaluating the osteoconductive property of tricalcium phosphate beta (β-TCP) in comparison to that of inorganic bovine bone for repair in a critical-size defect in the rat calvarium. MATERIALS AND METHODS Critical-size defects of 7mm were made with a trephine in the calvaria of 48 Wistar rats. The animals were divided into four groups, and the defects in each group were filled with tricalcium phosphate beta (β-TCP), inorganic bovine bone (Bio-Oss), autogenous bone, or left empty. The animals were euthanized at two different time points (30 and 60days post-operation). All defects were recovered with a absorbable membrane of bovine cortical bone. Histological, histometric, and immunohistochemical (osteocalcin) assessments were carried out at 30 and 60days post-operation. RESULTS At 30days post-operation, all groups showed areas of bone formation, predominantly when autogenous grafts were used. However, there were no statistically significant differences between the treatment groups (p>0.05). After 60days, there were similarities in the bone formation patterns between the β-TCP (26.32±) and Bio-Oss (17.35±) groups (p=0.549). In terms of the immunohistochemical assessment of osteocalcin, the clot group showed light to moderate staining at 30 and 60days. The autogenous group showed moderate staining at 30days and moderate to intense staining after 60days. The Bio-Oss group showed light to moderate staining after 30days and intense staining at 60days. The β-TCP group showed moderate staining at 30 and 60days post-operation. CONCLUSION β-TCP is a good osteoconductive material with similar effects to those of inorganic bovine bone graft and is suitable for utilization in the repair of bone defects.
Collapse
|
5
|
Chen KY, Chung CM, Chen YS, Bau DT, Yao CH. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. J Tissue Eng Regen Med 2012; 7:708-19. [PMID: 22392838 DOI: 10.1002/term.1461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 10/07/2011] [Accepted: 11/24/2011] [Indexed: 12/23/2022]
Abstract
Repair of bone defects remains a major challenge in orthopaedic surgery. Bone tissue engineering is an attractive approach for treating bone loss in various shapes and amounts. The aim of this study was to prepare and evaluate the feasibility of a porous scaffold, which was composed of oligomeric proanthocyanidin crosslinked gelatin mixed with β-tricalcium phosphate (GTP) and was seeded with bone marrow stromal cells (BMSCs) as a bone substitute. GTP scaffolds were made porous using a salt-leaching method. The physicochemical properties of the scaffold were evaluated to determine the optimal salt:composite weight ratio. The results indicated that the GTP scaffold had a favourable macroporous structure and higher porosity when the salt:composite weight ratio was 4:1. Cytotoxic tests demonstrated that extracts from the GTP scaffolds promoted the proliferation of BMSCs. Rat BMSCs were seeded on a GTP scaffold and cultured in a spinner flask. After 2 weeks of culture, scanning electron microscopy observation showed that the cells adhered well to the surfaces of the pores in the scaffold. Moreover, this study explored the biological response of rat calvarial bone to the scaffold to evaluate its potential in bone tissue engineering. Bone defects were filled with BMSC-seeded GTP scaffold and acellular GTP scaffold. After 8 weeks, the scaffold induced new bone formation at a bone defect, as was confirmed by X-ray microradiography and histology. The BMSC-seeded scaffold induced more new bone formation than did an acellular scaffold. These observations suggest that the BMSCs-seeded GTP scaffold can promote the regeneration of defective bone tissue.
Collapse
Affiliation(s)
- Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Histologic evaluation of human alveolar sockets treated with an artificial bone substitute material. J Craniofac Surg 2011; 22:490-3. [PMID: 21415629 DOI: 10.1097/scs.0b013e318208bacf] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study involved a histologic, enzyme histologic, immunohistologic, and three-dimensional microstructure evaluating the extent of osteogenesis and repair in the human alveolar extraction socket achievable with an artificial bone substitute. After tooth extraction in 7 patients, extraction sockets were filled with Mastergraft (15% hydroxyapatite, 85% β-tricalcium phosphate complex). Radiomicrographs and histologic examinations were performed on samples obtained during dental implant placement procedure. On micro-computed tomography, new bone was observed in all collected samples, and osteogenesis was observed to have taken place around the artificial bone substitute. Histologically, active osteogenesis was found throughout the region observed. Addition of new bone around the Mastergraft was observed, and osteoblast-like cells were present. Cells that had partially invaded the artificial bone included tartrate-resistant acid phosphate-positive and CD34-positive cells. These findings indicate that the Mastergraft artificial bone induced osteogenesis in the jawbone and seemed effective for repairing bone defects.
Collapse
|
7
|
Becker ST, Douglas T, Acil Y, Seitz H, Sivananthan S, Wiltfang J, Warnke PH. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1255-62. [PMID: 20140699 DOI: 10.1007/s10856-009-3878-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/17/2009] [Indexed: 05/08/2023]
Abstract
UNLABELLED The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation of human periosteal cells. Human periosteum cells were cultured using an osteogenic medium consisting of Dulbecco's modified Eagle medium supplemented with fetal calf serum, Penicillin, Streptomycin and ascorbic acid at 37 degrees C with 5% CO(2). Three scaffolds were tested: 3D-printed HA, 3D-printed TCP and bovine HA. Cell vitality was assessed by Fluorescein Diacetate (FDA) and Propidium Iodide (PI) staining, biocompatibility with LDH, MTT, WST and BrdU tests, and scanning electron microscopy. Data were analyzed with ANOVAs. RESULTS After 24 h all samples showed viable periosteal cells, mixed with some dead cells for the bovine HA group and very few dead cells for the printed HA and TCP groups. The biocompatibility tests revealed that proliferation on all scaffolds after treatment with eluate was sometimes even higher than controls. Scanning electron microscopy showed that periosteal cells formed layers covering the surfaces of all scaffolds 7 days after seeding. CONCLUSION It can be concluded from our data that the tested materials are biocompatible for periosteal cells and thus can be used as scaffolds to augment bone using tissue engineering methods.
Collapse
Affiliation(s)
- Stephan T Becker
- Department of Oral and Maxillofacial Surgery, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ueno T, Honda K, Hirata A, Kagawa T, Kanou M, Shirasu N, Sawaki M, Yamachika E, Mizukawa N, Sugahara T. Histological comparison of bone induced from autogenously grafted periosteum with bone induced from autogenously grafted bone marrow in the rat calvarial defect model. Acta Histochem 2007; 110:217-23. [PMID: 18082248 DOI: 10.1016/j.acthis.2007.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 11/19/2022]
Abstract
Both periosteum and bone marrow have the potential to induce heterotopic bone when grafted. Whether the process of bone formation is controlled by the recipient environment where the donor graft is placed or by factors from the donor site is not well documented. The purpose of this study was to examine the histology of new bone induced by either autogenously grafted periosteum or autogenously grafted bone marrow using the rat calvarial defect model in Sprague-Dawley rats. Grafts of either bone marrow or periosteum obtained from tibias were placed in calvarial defects with beta-tricalcium phosphate. Ten days after grafting, active cell proliferation was observed in the defects of both types of grafts. After 20 days, cancellous bone formation was observed in the defects with bone marrow grafts, and intramembranous bone formation was observed in the defects with periosteal grafts. After 30 days, bone marrow grafts had developed bone with a bone marrow-like structure, and the periosteal grafts had produced cortical bone structure in the defects. The findings suggest that the type of bone formation is determined by characteristics of the donor site.
Collapse
Affiliation(s)
- Takaaki Ueno
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Medical and Dental School, 2-5-1 Shikata, Okayama City 7008525, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ueno T, Kagawa T, Kanou M, Shirasu N, Sawaki M, Imura H, Hirata A, Yamachika E, Mizukawa N, Sugahara T. Evaluation of Osteogenic Potential of Cultured Periosteum Derived Cells. J HARD TISSUE BIOL 2007. [DOI: 10.2485/jhtb.16.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|