1
|
Kumada Y, Takahashi T, Shimizu H, Nakamura R, Omori E, Inoue K, Morimatsu H. Therapeutic effect of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation. Exp Ther Med 2019; 17:3429-3440. [PMID: 30988722 PMCID: PMC6447800 DOI: 10.3892/etm.2019.7390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 01/14/2023] Open
Abstract
Hemorrhagic shock and resuscitation (HSR) induces a pulmonary inflammatory response and frequently causes acute lung injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been reported to liberate and deliver CO under physiological conditions, which exerts organ-protective effects during systemic insults. The present study aimed to determine whether the administration of CORM-3 following HSR exerts a therapeutic effect against HSR-induced lung injury without any detrimental effects on oxygenation and hemodynamics. To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mmHg for 45 min and then resuscitated with the shed blood. CORM-3 or a vehicle was intravenously administered immediately following the completion of resuscitation. The rats were divided into four groups, including sham, HSR, HSR/CORM-3 and HSR/inactive CORM-3 groups. Arterial blood gas parameters and vital signs were recorded during HSR. The histopathological changes to the lungs were evaluated using a lung injury score, while pulmonary edema was evaluated on the basis of the protein concentration in bronchoalveolar lavage fluid and the lung wet/dry ratio. We also investigated the pulmonary expression levels of inflammatory mediators and apoptotic markers such as cleaved caspase-3 and transferase-mediated dUTP-fluorescein isothiocyanate nick-end labeling (TUNEL) staining. Although HSR caused significant lung histopathological damage and pulmonary edema, CORM-3 significantly ameliorated this damage. CORM-3 also attenuated the HSR-induced upregulation of tumor necrosis factor-α, inducible nitric oxide synthase and interleukin-1β genes, and the expression of interleukin-1β and macrophage inflammatory protein-2. In addition, the expression of interleukin-10, an anti-inflammatory cytokine, was inversely enhanced by CORM-3, which also reduced the number of TUNEL-positive cells and the expression of cleaved caspase-3 following HSR. Although CORM-3 was administered during the acute phase of HSR, it did not exert any influence on arterial blood gas analysis data and vital signs during HSR. Therefore, treatment with CORM-3 ameliorated HSR-induced lung injury, at least partially, through anti-inflammatory and anti-apoptotic effects, without any detrimental effects on oxygenation and hemodynamics.
Collapse
Affiliation(s)
- Yuta Kumada
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Takahashi
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ryu Nakamura
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuyoshi Inoue
- Department of Anesthesiology, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
2
|
Liu F, Li W, Pauluhn J, Trübel H, Wang C. Rat models of acute lung injury: exhaled nitric oxide as a sensitive, noninvasive real-time biomarker of prognosis and efficacy of intervention. Toxicology 2013; 310:104-14. [PMID: 23770417 DOI: 10.1016/j.tox.2013.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 12/23/2022]
Abstract
Exhaled nitric oxide (eNO) has received increased attention in clinical settings because this technique is easy to use with instant readout. However, despite the simplicity of eNO in humans, this endpoint has not frequently been used in experimental rat models of septic (endotoxemia) or irritant acute lung injury (ALI). The focus of this study is to adapt this method to rats for studying ALI-related lung disease and whether it can serve as instant, non-invasive biomarker of ALI to study lung toxicity and pharmacological efficacy. Measurements were made in a dynamic flow of sheath air containing the exhaled breath from spontaneously breathing, conscious rats placed into a head-out volume plethysmograph. The quantity of eNO in exhaled breath was adjusted (normalized) to the physiological variables (breathing frequency, concentration of exhaled carbon dioxide) mirroring pulmonary perfusion and ventilation. eNO was examined on the instillation/inhalation exposure day and first post-exposure day in Wistar rats intratracheally instilled with lipopolysaccharide (LPS) or single inhalation exposure to chlorine or phosgene gas. eNO was also examined in a Brown Norway rat asthma model using the asthmagen toluene diisocyanate (TDI). The diagnostic sensitivity of adjusted eNO was superior to the measurements not accounting for the normalization of physiological variables. In all bioassays - whether septic, airway or alveolar irritant or allergic, the adjusted eNO was significantly increased when compared to the concurrent control. The maximum increase of the adjusted eNO occurred following exposure to the airway irritant chlorine. The specificity of adjustment was experimentally verified by decreased eNO following inhalation dosing of the non-selective nitric oxide synthase inhibitor amoniguanidine. In summary, the diagnostic sensitivity of eNO can readily be applied to spontaneously breathing, conscious rats without any intervention or anesthesia. Measurements are definitely improved by accounting for the disease-related changes in exhaled CO2 and breathing frequency. Accordingly, adjusted eNO appears to be a promising methodological improvement for utilizing eNO in inhalation toxicology and pharmacological disease models with fewer animals.
Collapse
Affiliation(s)
- Fangfang Liu
- Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
3
|
Kosaka J, Morimatsu H, Takahashi T, Shimizu H, Kawanishi S, Omori E, Endo Y, Tamaki N, Morita M, Morita K. Effects of biliverdin administration on acute lung injury induced by hemorrhagic shock and resuscitation in rats. PLoS One 2013; 8:e63606. [PMID: 23667646 PMCID: PMC3646791 DOI: 10.1371/journal.pone.0063606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/07/2013] [Indexed: 11/23/2022] Open
Abstract
Hemorrhagic shock and resuscitation induces pulmonary inflammation that leads to acute lung injury. Biliverdin, a metabolite of heme catabolism, has been shown to have potent cytoprotective, anti-inflammatory, and anti-oxidant effects. This study aimed to examine the effects of intravenous biliverdin administration on lung injury induced by hemorrhagic shock and resuscitation in rats. Biliverdin or vehicle was administered to the rats 1 h before sham or hemorrhagic shock-inducing surgery. The sham-operated rats underwent all surgical procedures except bleeding. To induce hemorrhagic shock, rats were bled to achieve a mean arterial pressure of 30 mmHg that was maintained for 60 min, followed by resuscitation with shed blood. Histopathological changes in the lungs were evaluated by histopathological scoring analysis. Inflammatory gene expression was determined by Northern blot analysis, and oxidative DNA damage was assessed by measuring 8-hydroxy-2' deoxyguanosine levels in the lungs. Hemorrhagic shock and resuscitation resulted in prominent histopathological damage, including congestion, edema, cellular infiltration, and hemorrhage. Biliverdin administration prior to hemorrhagic shock and resuscitation significantly ameliorated these lung injuries as judged by histopathological improvement. After hemorrhagic shock and resuscitation, inflammatory gene expression of tumor necrosis factor-α and inducible nitric oxide synthase were increased by 18- and 8-fold, respectively. Inflammatory gene expression significantly decreased when biliverdin was administered prior to hemorrhagic shock and resuscitation. Moreover, after hemorrhagic shock and resuscitation, lung 8-hydroxy-2' deoxyguanosine levels in mitochondrial DNA expressed in the pulmonary interstitium increased by 1.5-fold. Biliverdin administration prior to hemorrhagic shock and resuscitation decreased mitochondrial 8-hydroxy-2' deoxyguanosine levels to almost the same level as that in the control animals. We also confirmed that biliverdin administration after hemorrhagic shock and resuscitation had protective effects on lung injury. Our findings suggest that biliverdin has a protective role, at least in part, against hemorrhagic shock and resuscitation-induced lung injury through anti-inflammatory and anti-oxidant mechanisms.
Collapse
Affiliation(s)
- Junko Kosaka
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Takahashi
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Susumu Kawanishi
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasumasa Endo
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naofumi Tamaki
- Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Morita
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Ardalan MR, Estakhri R, Hajipour B, Ansarin K, Asl NA, Nasirizade MR, Azar AN, Ghorbanihaghjou A, Vatankhah AM, Esmaili HA. Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung. Med Princ Pract 2013; 22:70-4. [PMID: 23006583 PMCID: PMC5586709 DOI: 10.1159/000340060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 06/10/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To study the effect of erythropoietin (EPO) treatment on renal and lung injury following renal ischemia/reperfusion (I/R). MATERIALS AND METHODS Thirty male Wistar rats were assigned to three groups of 10 rats each. The first group was sham-operated, the second was subjected to renal I/R (30 min of ischemia followed by 24 h of reperfusion). The third group was subjected to renal I/R and treated with EPO in two doses: the first dose 1 h prior to ischemia (1,000 U/kg) and the second dose 6 h after ischemia (1,000 U/kg). RESULTS The renal and lung tissue injury index, tissue serum blood urea nitrogen and creatinine (Cr) were higher in the renal I/R group compared to the renal I/R + EPO group; the difference was statistically significant (p < 0.05). Kidney and lung tissue glutathione peroxidase and superoxide dismutase levels were higher in the renal I/R + EPO group than the renal I/R group; the difference was also statistically significant (p < 0.05). CONCLUSION The data showed that EPO pretreatment could be effective in reducing renal and lung injury following renal I/R and could improve the cellular antioxidant defense system. Hence EPO pretreatment may be effective for attenuating renal and lung injury after renal I/R-induced injury during surgical procedures, hypotension, renal transplantation and other conditions inducing renal I/R.
Collapse
Affiliation(s)
| | | | - Babak Hajipour
- Urmia University of Medical Sciences, Urmia, Iran
- *Babak Hajipou, Young Researchers Club, Tabriz Branch, Islamic Azad University, Postbox 51385-3633, Tabriz (Iran), Tel. +98 914 107 5936, E-Mail
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Reza Nasirizade
- Department of Physiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Urmia, Iran
| | - Alireza Nour Azar
- Department of Physiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Urmia, Iran
| | | | | | | |
Collapse
|
5
|
KAWANISHI SUSUMU, TAKAHASHI TORU, MORIMATSU HIROSHI, SHIMIZU HIROKO, OMORI EMIKO, SATO KENJI, MATSUMI MASAKI, MAEDA SHIGERU, NAKAO ATSUNORI, MORITA KIYOSHI. Inhalation of carbon monoxide following resuscitation ameliorates hemorrhagic shock-induced lung injury. Mol Med Rep 2012; 7:3-10. [DOI: 10.3892/mmr.2012.1173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/30/2012] [Indexed: 11/06/2022] Open
|
6
|
Babicova A, Havlinova Z, Pejchal J, Tichy A, Rezacova M, Vavrova J, Chladek J. Early changes in L-arginine-nitric oxide metabolic pathways in response to the whole-body gamma irradiation of rats. Int J Radiat Biol 2011; 87:1067-73. [PMID: 21756062 DOI: 10.3109/09553002.2011.595873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Nitric oxide (NO), a reactive radical, is formed in higher amounts from L-arginine by inducible NO synthase (iNOS) during early response to ionizing radiation presumably as a part of signal transduction pathways. This study investigated the changes in L-arginine-NO metabolic pathways within a 24-hour period after whole-body gamma irradiation of rats with the range of low to supra-lethal doses. MATERIALS AND METHODS Young adult female Wistar rats received either 0-50 Gy whole-body irradiation or an intraperitoneal injection of bacterial lipopolysaccharide (LPS, 10 mg/kg). Exhaled NO was monitored using chemiluminiscence, nitrite + nitrate (NO(x)) and L-arginine were assayed by high-performance liquid chromatography, and expression of iNOS was determined using Western blot. RESULTS Irradiation resulted in a dose-dependent increase of plasma NO(x) to maximum levels which were 4-fold higher compared to controls (p < 0.001). The NO(x) levels increased less in the bronchoalveolar lavage fluid (BAL) (1.7-fold, p < 0.001) and liver homogenate (2.5-fold, p < 0.05), respectively, and were dose-independent. Exhaled NO, lung NO(x), plasma and BAL L-arginine, and the expression of iNOS in lung and liver tissues of irradiated rats and controls were similar. LPS caused a considerable increase (p < 0.001) in exhaled NO (61-fold), NO(x) levels (plasma 34-fold, BAL 6-fold, lung 5-fold, liver 4-fold), and in iNOS expression, respectively. CONCLUSION In contrast to the LPS treatment of rats, the radiation-induced changes in L-arginine-NO metabolic pathways are modest, particularly in the airways and lungs. Noninvasive measurement of exhaled NO within a 24-h period following the exposure of rats to ionizing radiation has no value for biodosimetry.
Collapse
Affiliation(s)
- Andrea Babicova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
7
|
Protective effect of carbon monoxide inhalation on lung injury after hemorrhagic shock/resuscitation in rats. ACTA ACUST UNITED AC 2010; 69:185-94. [PMID: 20622590 DOI: 10.1097/ta.0b013e3181bbd516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hemorrhagic shock and resuscitation (HSR) induces pulmonary inflammation that leads to acute lung injury. Carbon monoxide (CO), a by-product of heme catalysis, was shown to have potent cytoprotective and anti-inflammatory effects. The aim of this study was to examine the effects of CO inhalation at low concentration on lung injury induced by HSR in rats. METHODS Rats were subjected to HSR by bleeding to achieve mean arterial pressure of 30 mm Hg for 60 minutes followed by resuscitation with shed blood and saline as needed to restore blood pressure. HSR animals were either maintained in room air or were exposed to CO at 250 ppm for 1 hour before and 3 hours after HSR. RESULTS HSR caused an increase in the DNA binding activity of nuclear factor-kappaB and activator protein-1 in the lung followed by the up-regulation of pulmonary gene expression of tumor necrosis factor-alpha, inducible nitric oxide synthase, and interleukin (IL)-10. HSR also resulted in an increase in myeloperoxidase activity and wet weight to dry weight ratio in the lung, and more prominent histopathologic changes including congestion, edema, cellular infiltration, and hemorrhage. In contrast, CO inhalation significantly ameliorated these inflammatory events as judged by fewer histologic changes, less up-regulation of inflammatory mediators, and less activation of nuclear factor-kappaB and activator protein-1. Interestingly, the protective effects against lung injury afforded by CO were associated with further increases in mRNA expression of IL-10 in the lung. CONCLUSIONS These findings suggest that inhaled CO at a low concentration ameliorated HSR-induced lung injury and attenuated inflammatory cascades by up-regulation of anti-inflammatory IL-10.
Collapse
|
8
|
de Amorim CG, Malbouisson LMS, Saraiva BM, Pedro FMDS, Martins MA, Carmona MJC. Evaluation of Exhaled Nitric Oxide in Patients Undergoing Myocardial Revascularization with Cardiopulmonary Bypass. Rev Bras Anestesiol 2009; 59:286-96. [DOI: 10.1590/s0034-70942009000300003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/20/2009] [Indexed: 11/21/2022] Open
|
9
|
Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery 2007; 141:32-40. [PMID: 17188165 DOI: 10.1016/j.surg.2006.03.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/23/2006] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) results in the release of destructive proinflammatory cytokines and oxygen-derived radicals, which in turn cause injury to liver and other organs such as kidney, lung, and intestine. Splenectomy protects organs from intestinal I/R injury. Therefore, the present study aims to investigate whether splenectomy could also ameliorate multiple organ damage caused by liver I/R. METHODS Wistar rats randomly assigned into 4 groups underwent sham-operation, splenectomy, hepatic I/R induced by occlusion of hepatic artery and portal vein, and splenectomy plus hepatic I/R, respectively. Blood samples were collected for assessing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity, and tumor necrosis factor-alpha (TNF-alpha) levels. The activity of myeloperoxidase (MPO) in liver tissues was assessed. Livers, kidneys, lungs, and small intestines underwent histopathologic examination for scoring injury severity and TUNEL assay for cell apoptosis. The expression of caspase-3 was evaluated with Western blot analysis. RESULTS Liver I/R resulted in liver injury as evidenced by morphologic abnormalities, increased serum activities of AST and ALT, and increased percentage of apoptotic cells. The activity of MPO in liver tissues and the serum levels of TNF-alpha were increased after I/R. Splenectomy significantly decreased the histologic severity score, apoptotic index, MPO activity, and serum levels of AST, ALT, and TNF-alpha. Hepatic I/R also caused damage to kidneys, lungs, and small intestines, as evaluated by histologic alterations and increased apoptotic cells; these changes were ameliorated by splenectomy. The expression of caspase-3 was upregulated in the 4 organs by hepatic I/R and inhibited by splenectomy. CONCLUSIONS Splenectomy protects the liver as well as the kidney, lung, and intestine from injury by hepatic I/R. Although the mechanism needs further investigation, this study demonstrated that splenectomy inhibited leukocyte infiltration in livers, release of TNF-alpha, cell apoptosis, and expression of caspase-3.
Collapse
Affiliation(s)
- Hongchi Jiang
- Hepatosplenic Surgery Center/Department of General Surgery, the First Clinical College, Harbin Medical University, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Zegdi R, Fabiani JN. Exhaled Nitric Oxide After Cardiopulmonary Bypass. Ann Thorac Surg 2005; 80:1977; author reply 1977-8. [PMID: 16242508 DOI: 10.1016/j.athoracsur.2005.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 12/28/2004] [Accepted: 01/04/2005] [Indexed: 11/24/2022]
|
11
|
Alexiou C, Tang AT, Smith DC, Sheppard SV, Haw MP, Gibbs R. Reply. Ann Thorac Surg 2005. [DOI: 10.1016/j.athoracsur.2005.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
|
13
|
Szabó G, Soós P, Mandera S, Heger U, Flechtenmacher C, Bährle S, Seres L, Cziráki A, Gries A, Zsengellér Z, Vahl CF, Hagl S, Szabó C. INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation. Shock 2004; 21:426-32. [PMID: 15087818 DOI: 10.1097/00024382-200405000-00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation plays a key role in free radical-induced injury in the context of systemic inflammation and ischemia/reperfusion. In the present preclinical study, we investigated the effects of INO-1001, a novel PARP inhibitor, on cardiac and pulmonary function during reperfusion in an experimental model of cardioplegic arrest and extracorporal circulation. Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 min of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or INO-1001 (1 mg/kg), a potent PARP inhibitor (n = 6). Biventricular hemodynamic variables were measured by combined pressure-volume-conductance catheters. Coronary and pulmonary blood flow and vasodilative responses to acetylcholine and sodium nitroprusside as well as pulmonary gas exchange were also determined. The administration of INO-1001 led to a significantly better recovery of left and right ventricular systolic function (P < 0.05) after 60 min of reperfusion. Coronary blood flow was also significantly higher in the INO-1001 group (P < 0.05). Although the vasodilative response to sodium nitroprusside was similar in both groups, acetylcholine resulted in a significantly greater increase in coronary and pulmonary blood flow in the INO-1001 group (P < 0.05). Pulmonary function in terms of alveolar arterial oxygen difference was better preserved in the INO-1001-treated group (P < 0.05). Thus, PARP inhibition improves the recovery of myocardial and endothelial function after hypothermic cardiac arrest and reduces pulmonary injury associated with extracorporal circulation.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany, D-69120.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|