1
|
Chernykh A, Sumer-Bayraktar Z, Lee JH, Meyer EJ, Torpy DJ, Thaysen-Andersen M. RCL glycosylation of serum corticosteroid-binding globulin: implications in cortisol delivery and septic shock. Glycobiology 2025; 35:cwaf013. [PMID: 40044123 PMCID: PMC11915215 DOI: 10.1093/glycob/cwaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Corticosteroid-binding globulin (CBG) is a serum glycoprotein that binds and delivers anti-inflammatory cortisol to inflammatory sites through neutrophil elastase-mediated proteolysis of an exposed reactive centre loop (RCL) on CBG. Timely and tissue-specific delivery of cortisol is critical to alleviate inflammation including in life-threatening septic shock conditions. Herein, we firstly summarise our recently published report of functional RCL O- and N-glycosylation events of serum CBG (Chernykh, J Biol Chem, 2023). A key finding of that published work was the LC-MS/MS-based discovery of RCL O-glycans at Thr342 and Thr345 of serum CBG and their inhibitory roles in neutrophil elastase-mediated RCL proteolysis. While these observations are of significance as they implicate RCL O-glycosylation as a potential regulator of cortisol delivery, the link to septic shock remains unexplored. To this end, we used a similar LC-MS/MS approach to profile the RCL O-glycosylation of CBG purified from serum of twelve septic shock patients. Serum CBG from all patients exhibited RCL O-glycosylation comprising (di)sialyl T (NeuAc1-2Gal1GalNAc1) core 1-type O-glycan structures decorating exclusively the Thr342 site. Importantly, relative to less severe cases, individuals presenting with the most severe illness displayed elevated RCL O-glycosylation upon ICU admission, suggesting a previously unknown link to septic shock severity. Overall, we have elucidated the coordinated RCL N- and O-glycosylation events of serum CBG, which improve our understanding of molecular mechanisms governing the timely and tissue-specific delivery of cortisol to inflammatory sites. This work provides clues to molecular aberrations and disease mechanisms underpinning septic shock.
Collapse
Affiliation(s)
- Anastasia Chernykh
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, Macquarie Park, 2109, New South Wales, Australia
| | - Zeynep Sumer-Bayraktar
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, Macquarie Park, 2109, New South Wales, Australia
| | - Jessica H Lee
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - Emily J Meyer
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - David J Torpy
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, Macquarie Park, 2109, New South Wales, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| |
Collapse
|
2
|
Friganović T, Borko V, Weitner T. Protein sialylation affects the pH-dependent binding of ferric ion to human serum transferrin. Dalton Trans 2024; 53:10462-10474. [PMID: 38873789 DOI: 10.1039/d4dt01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Physiological or pathophysiological changes lead to posttranslational changes in the sialic acid content of human serum transferrin (hTf), an essential mediator of iron transport in the human body, resulting in a significantly increased concentration of desialylated hTf. The intrinsic fluorescence quenching upon binding of iron to hTf was successfully modeled using the binding polynomial for two iron-binding sites, allowing measurements in a high-throughput format. Removal of sialic acid residues resulted in a 3-fold increase in iron binding affinity for both sites of hTf at pH 7.4. The pH-dependence of iron binding showed significant differences in equilibrium constants, resulting in a 10-fold increase in binding affinity for desialylated hTf at pH 5.9. The changes in hTf sialylation apparently result in tuning of the stability of the conformational state, which in turn contributes to the stability of the diferric hTf. The observed differences in the conditional thermodynamic equilibrium constants suggest that the desialylated protein has a higher preference for diferric hTf over monoferric hTf species down to pH 6.5, which may also influence the interaction with transferrin receptors that preferentially bind to diferric hTf. The results suggest a link between changes in hTf glycan structure and alterations in iron binding equilibrium associated with tissue acidosis.
Collapse
Affiliation(s)
- Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
4
|
Donoghue SE, Heath O, Pitt J, Hong KM, Fuller M, Smith J. Free urinary sialic acid levels may be elevated in patients with pneumococcal sepsis. Clin Chem Lab Med 2022; 60:1855-1858. [PMID: 36000484 DOI: 10.1515/cclm-2022-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Urine free sialic acid (UFSA) is an important diagnostic biomarker for sialuria (GNE variants) and infantile sialic acid storage disease/Salla disease (SLC17A5 variants). Traditionally, UFSA has been measured using specific single-plex methodology in relatively small cohorts of patients with clinical symptoms suggestive of these disorders. The use of multiplex tandem mass spectrometry urine screening (UMSMS) has meant that UFSA can be measured semi-quantitatively in a much larger cohort of patients being investigated for suspected metabolic disorders. We hypothesised that the neuraminidase of Streptococcus pneumoniae may release free sialic acid from endogenous sialylated glycoconjugates and result in increased UFSA levels. METHODS We conducted a retrospective review of clinical records of patients who were identified as having S. pneumoniae infection and who also had UMSMS at the time of their acute infection. RESULTS We identified three cases of increased UFSA detected by UMSMS screening that were secondary to S. pneumoniae sepsis. Additional testing ruled out genetic causes of increased UFSA in the first patient. All three patients had overwhelming sepsis with multiorgan dysfunction which was fatal. Glycosylation abnormalities consistent with the removal of sialic acid were demonstrated in serum transferrin patterns in one patient. CONCLUSIONS We have demonstrated in a retrospective cohort that elevation of UFSA levels have been observed in cases of S. pneumoniae sepsis. This expands our knowledge of UFSA as a biomarker in human disease. This research demonstrates that infection with organisms with neuraminidase activity should be considered in patients with unexplained increases in UFSA.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Oliver Heath
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - James Pitt
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kai Mun Hong
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Joel Smith
- Laboratory Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
5
|
DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123880. [PMID: 35745003 PMCID: PMC9230633 DOI: 10.3390/molecules27123880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute pancreatitis (AP) is a pancreatic inflammatory disease that varies greatly in course and severity. To further the understanding of the pathology of AP, we carried out data-independent acquisition-based proteomic analyses using proteins extracted from the plasma of patients with severe acute pancreatitis (SAP) (experimental group) and healthy volunteers (control group). Compared to the control group, there were 35 differentially expressed proteins (DEPs) in the plasma of patients with SAP. Of those, the expression levels for 6 proteins were significantly increased, and 29 proteins were significantly decreased. Moreover, six candidate biomarkers—VWF, ORM2, CD5L, CAT, IGLV3-10, and LTF—were matched as candidate biomarkers of the disease severity of AP. The area under the receiver operating characteristic of 0.903 (95% CI: 0.839, 0.967) indicated that this combination of these six candidate biomarkers had a good prediction accuracy for predicting the severity of AP. Our study provides specific DEPs that may be useful in the diagnosis and prognosis of SAP, which suggests new theoretical bases for the occurrence and development of SAP and offers potential novel treatment strategies for SAP.
Collapse
|
6
|
Jin M, Kim J, Ha J, Kim A, Lee J, Park CS, Kang M, Kim J, Mun C, Kim J, Kim HH. Identification and quantification of sialylated and core-fucosylated N-glycans in human transferrin by UPLC and LC-MS/MS. Anal Biochem 2022; 647:114650. [PMID: 35331694 DOI: 10.1016/j.ab.2022.114650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
Sialylated and core-fucosylated N-glycans in human transferrin (HTF) are used as glycan biomarkers due to their increased or decreased characteristics in certain diseases. However, their absolute quantities remain unclear. In this study, N-glycans of HTF were identified by UPLC and LC-MS/MS using fluorescence tags [2-aminobenzamide (AB) and procainamide (ProA)] and columns [HILIC and anion exchange chromatography-HILIC (AXH)]. The structures of 14 (including five core-fucosylated) N-glycans in total comprising two non-, six mono-, four di-, and two tri-sialylated N-glycans were identified. The quantities (%) of each N-glycan relative to the total N-glycans (100%) were obtained. HILIC and AXH were better for peak identification and separability except for desialylation, respectively. Specifically, sialylated (in ProA-HILIC and ProA-AXH by UPLC or LC-MS/MS) and core-fucosylated (in AB-HILIC and ProA-AXH by UPLC) N-glycans were efficiently identified. Seven neuraminidase-treated (including three core-fucosylated) N-glycans were efficiently identified in ProA-AXH, even their poor separation. Additionally, ProA-AXH was more efficient for the estimation of the absolute quantities of N-glycans from the results of fluorescence intensity (by UPLC) and relative quantity (by LC-MS/MS). These results first demonstrate that ProA is useful for identifying and quantifying sialylated, core-fucosylated, and neuraminidase-treated desialylated N-glycans in HTF using AXH by UPLC and LC/MS.
Collapse
Affiliation(s)
- Mijung Jin
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jaeryong Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jeongeun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Mun
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Friganović T, Tomašić A, Šeba T, Biruš I, Kerep R, Borko V, Šakić D, Gabričević M, Weitner T. Low-pressure chromatographic separation and UV/Vis spectrophotometric characterization of the native and desialylated human apo-transferrin. Heliyon 2021; 7:e08030. [PMID: 34611562 PMCID: PMC8477197 DOI: 10.1016/j.heliyon.2021.e08030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Low-pressure pH gradient ion exchange separation provides a fast, simple and cost-effective method for preparative purification of native and desialylated apo-transferrin. The method enables easy monitoring of the extent of the desialylation reaction and also the efficient separation and purification of protein fractions after desialylation. The N-glycan analysis shows that the modified desialylation protocol successfully reduces the content of the sialylated fractions relative to the native apo-transferrin. In the optimized protocol, the desialylation capacity is increased by 150 %, compared to the original protocol provided by the manufacturer. The molar absorption coefficients in the near-UV region for the native and desialylated apo-transferrin differ by several percent, suggesting a subtle dependence of the glycoprotein absorbance on the variable sialic acid content. The method can easily be modified for other glycoproteins and is particularly appropriate for quick testing of sialic acid content in the protein glycosylation patterns prior to further verification by mass spectrometry.
Collapse
Affiliation(s)
- Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Antonela Tomašić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Tino Šeba
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivan Biruš
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Robert Kerep
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Davor Šakić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Mario Gabričević
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Iwaki T, Bennion BG, Stenson EK, Lynn JC, Otinga C, Djukovic D, Raftery D, Fei L, Wong HR, Liles WC, Standage SW. PPARα contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis. Physiol Rep 2019; 7:e14078. [PMID: 31102342 PMCID: PMC6525329 DOI: 10.14814/phy2.14078] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/05/2023] Open
Abstract
Sepsis-associated acute kidney injury (AKI) is a significant problem in critically ill children and adults resulting in increased morbidity and mortality. Fundamental mechanisms contributing to sepsis-associated AKI are poorly understood. Previous research has demonstrated that peroxisome proliferator-activated receptor α (PPARα) expression is associated with reduced organ system failure in sepsis. Using an experimental model of polymicrobial sepsis, we demonstrate that mice deficient in PPARα have worse kidney function, which is likely related to reduced fatty acid oxidation and increased inflammation. Ultrastructural evaluation with electron microscopy reveals that the proximal convoluted tubule is specifically injured in septic PPARα deficient mice. In this experimental group, serum metabolomic analysis reveals unanticipated metabolic derangements in tryptophan-kynurenine-NAD+ and pantothenate pathways. We also show that a subgroup of children with sepsis whose genome-wide expression profiles are characterized by repression of the PPARα signaling pathway has increased incidence of severe AKI. These findings point toward interesting associations between sepsis-associated AKI and PPARα-driven fatty acid metabolism that merit further investigation.
Collapse
Affiliation(s)
- Takuma Iwaki
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashington
- Department of PediatricsUniversity HospitalFaculty of MedicineKagawa UniversityKagawaJapan
| | - Brock G. Bennion
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashington
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouri
| | - Erin K. Stenson
- Department of PediatricsSection of Critical CareUniversity of Colorado School of MedicineAnschutz Medical CenterChildren's Hospital ColoradoAuroraColorado
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Jared C. Lynn
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashington
| | - Cynthia Otinga
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashington
| | - Danijel Djukovic
- Department of Chemistry and BiochemistryUniversity of ColoradoBoulderColorado
- Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashington
| | - Daniel Raftery
- Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashington
| | - Lin Fei
- Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhio
- Department of PediatricsUniversity of CincinnatiCincinnatiOhio
| | - Hector R. Wong
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhio
- Department of PediatricsUniversity of CincinnatiCincinnatiOhio
| | - W. Conrad Liles
- Department of MedicineUniversity of Washington School of MedicineSeattleWashington
| | - Stephen W. Standage
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashington
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhio
- Department of PediatricsUniversity of CincinnatiCincinnatiOhio
| |
Collapse
|
9
|
Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pepin B, Evans NP, Sharpe RM, Cotinot C, Rees WD, O'Shaughnessy P, Fowler PA. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. ENVIRONMENT INTERNATIONAL 2019; 124:98-108. [PMID: 30641261 DOI: 10.1016/j.envint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.
Collapse
Affiliation(s)
- Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Linda Robertson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emily Eaton-Turner
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lauma Ramona
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - William D Rees
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
10
|
Itraq-Based Quantitative Proteomic Analysis of Lungs in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment. Shock 2019. [PMID: 28632510 DOI: 10.1097/shk.0000000000000927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis-associated acute lung injury (ALI), which carries a high morbidity and mortality in patients, has no effective therapeutic strategies to date. Our group has already reported that hydrogen gas (H2) exerts a protective effect against sepsis in mice. However, the molecular mechanisms underlying H2 treatment are not fully understood. This study investigated the effects of H2 on lung injuries in septic mice through the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis. Male ICR mice used in this study were subjected to cecal ligation and puncture (CLP) or sham operation. And 2% H2 was inhaled for 1 h beginning at 1 and 6 h after sham or CLP operation. The iTRAQ-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was preformed to investigate lung proteomics. Sepsis-challenged animals had decreased survival rate, as well as had increased bacterial burden in blood, peritoneal lavage, and lung sample, which were significantly ameliorated by H2 treatment. Moreover, a total of 4,472 proteins were quantified, and 192 differentially expressed proteins were related to the protective mechanism of H2 against sepsis. Functional enrichment analysis showed that H2-related differential proteins could be related to muscle contraction, oxygen transport, protein synthesis, collagen barrier membranes, cell adhesion, and coagulation function. These proteins were significantly enriched in four signaling pathways, and two of which are associated with coagulation. In addition, H2 alleviates ALI in septic mice through downregulating the expression of Sema 7A, OTULIN, and MAP3K1 as well as upregulating the expression of Transferrin. Thus, our findings provide an insight into the mechanism of H2 treatment in sepsis by proteomic approach, which may be helpful to the clinic application of H2 in patients with sepsis.
Collapse
|
11
|
Yang XK, Wang N, Yang C, Wang YM, Che TJ. Differential protein expression in patients with urosepsis. Chin J Traumatol 2018; 21:316-322. [PMID: 30340979 PMCID: PMC6354131 DOI: 10.1016/j.cjtee.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Urosepsis in adults comprises approximately 25% of all sepsis cases, and is due to complicated urinary tract infections in most cases. However, its mechanism is not fully clarified. Urosepsis is a very complicated disease with no effective strategy for early diagnosis and treatment. This study aimed to identify possible target-related proteins involved in urosepsis using proteomics and establish possible networks using bioinformatics. METHODS Fifty patients admitted to the Urology Unit of Lanzhou General PLA (Lanzhou, China), from October 2012 to October 2015, were enrolled in this study. The patients were further divided into shock and matched-pair non-shock groups. 2-DE technique, mass spectrometry and database search were used to detect differentially expressed proteins in serum from the two groups. RESULTS Six proteins were found at higher levels in the shock group compared with non-shock individuals, including serum amyloid A-1 protein (SAA1), apolipoprotein L1 (APOL1), ceruloplasmin (CP), haptoglobin (HP), antithrombin-III (SERPINC1) and prothrombin (F2), while three proteins showed lower levels, including serotransferrin (TF), transthyretin (TTR) and alpha-2-macroglobulin (A2M). CONCLUSION Nine proteins were differentially expressed between uroseptic patients (non-shock groups) and severe uroseptic patients (shock groups), compared with non-shock groups, serum SAA1, APOL1,CP, HP, SERPINC1and F2 at higher levels, while TF, TTR and A2M at lower levels in shock groups.these proteins were mainly involved in platelet activation, signaling and aggregation, acute phase protein pathway, lipid homeostasis, and iron ion transport, deserve further research as potential candidates for early diagnosis and treatment. (The conclusion seems too simple and vague, please re-write it. You may focus at what proteins have been expressed and introduce more detail about its significance.).
Collapse
Affiliation(s)
- Xu-Kai Yang
- Department of Urology, Lanzhou General Hospital PLA, Lanzhou 730050, China
| | - Nan Wang
- Department of Infection, Xi'an Central Hospital, Xi'an 710033, China
| | - Cheng Yang
- Student teams, Basic Medical College, The Fourth Military Medical University, Xi'an, 710032 China
| | - Yang-Min Wang
- Department of Urology, Lanzhou General Hospital PLA, Lanzhou 730050, China.
| | - Tuan-Jie Che
- Lanzhou Baiyuan Gene Technology Co. Ltd, Lanzhou 730000, China
| |
Collapse
|
12
|
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018; 9:51-72. [PMID: 28982002 DOI: 10.1021/acschemneuro.7b00271] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a posttranslational modification that affects more than half of all known proteins. Glycans covalently bound to biomolecules modulate their functions by both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that contribute to the control of protein conformation, stability, and turnover. The focus of this Review is the discussion of aberrant glycosylation related to brain cancer. Altered sialylation and fucosylation of N- and O-glycans play a role in the development and progression of brain cancer. Additionally, aberrant O-glycan expression has been implicated in brain cancer. This Review also addresses the clinical potential and applications of aberrant glycosylation for the detection and treatment of brain cancer. The viable roles glycans may play in the development of brain cancer therapeutics are addressed as well as cancer-glycoproteomics and personalized medicine. Glycoprotein alterations are considered as a hallmark of cancer while high expression in body fluids represents an opportunity for cancer assessment.
Collapse
Affiliation(s)
- Lucas Veillon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| | - Christina Fakih
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| |
Collapse
|
13
|
Caslavska J, Thormann W. Monitoring of transferrin isoforms in biological samples by capillary electrophoresis. J Sep Sci 2017; 41:303-322. [PMID: 28885776 DOI: 10.1002/jssc.201700914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022]
Abstract
Work dealing with the monitoring of transferrin isoforms in human serum and other body fluids by capillary electrophoresis is reviewed. It comprises capillary zone electrophoresis and capillary isoelectric focusing efforts that led to the exploration and use of assays for the determination of carbohydrate-deficient transferrin as a marker for excessive alcohol intake, genetic variants of transferrin, congenital disorders of glycosylation and β-2-transferrin, which is a marker for cerebrospinal fluid leakage. This paper provides insight into the development, specifications, strengths, weaknesses, and routine use of the currently known capillary electrophoresis based assays suitable to detect transferrin isoforms in body fluids. The achievements reached so far indicate that capillary zone electrophoresis is an attractive technology to monitor the molecular forms of transferrin in biological specimens as the assays do not require an elaborate sample pretreatment and thus can be fully automated for high-throughput analyses on multicapillary instruments. Assays based on capillary isoelectric focusing are less attractive. They require immunoextraction of transferrin from the biological matrix and mobilization after focusing if instrumentation with a whole-column imaging detector is not available. Interactions of the carrier ampholytes with the iron of transferrin may prevent iron saturation and thus provide more complicated isoform patterns.
Collapse
Affiliation(s)
- Jitka Caslavska
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Brehm MA. Von Willebrand factor processing. Hamostaseologie 2016; 37:59-72. [PMID: 28139814 DOI: 10.5482/hamo-16-06-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF's function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.
Collapse
Affiliation(s)
- Maria A Brehm
- PD Dr. Maria A. Brehm, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22399 Hamburg, Germany, Tel.: +49 40 7410 58523, Fax: +49 40 7410 54601, E-Mail:
| |
Collapse
|
15
|
Hennig R, Cajic S, Borowiak M, Hoffmann M, Kottler R, Reichl U, Rapp E. Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. Biochim Biophys Acta Gen Subj 2016; 1860:1728-38. [PMID: 27038647 DOI: 10.1016/j.bbagen.2016.03.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/25/2022]
Abstract
Facilitated by substantial advances in analytical methods, plasma N-glycans have emerged as potential candidates for biomarkers. In the recent years, several investigations could link aberrant plasma N-glycosylation to numerous diseases. However, due to often limited specificity and sensitivity, only a very limited number of glycan biomarkers were approved by the authorities up to now. The inter-individual heterogeneity of the plasma N-glycomes might mask disease related changes in conventional large cross-sectional cohort studies, with a one-time sampling approach. But, a possible benefit of longitudinal sampling in biomarker discovery could be, that already small changes during disease progression are revealed, by monitoring the plasma N-glycome of individuals over time. To evaluate this, we collected blood plasma samples of five healthy donors over a time period of up to six years (min. 1.5 years). The plasma N-glycome was analyzed by xCGE-LIF, to investigate the intra-individual N-glycome variability over time. It is shown, that the plasma N-glycome of an individual is remarkably stable over a period of several years, and that observed small longitudinal changes are independent from seasons, but significantly correlated with lifestyle and environmental factors. Thus, the potential of future longitudinal biomarker discovery studies could be demonstrated, which is a further step towards personalized diagnostics. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; glyXera GmbH, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | | | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Robert Kottler
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; Otto-von-Guericke University, Chair of Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; glyXera GmbH, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
16
|
Affiliation(s)
- Yu Chen
- Division of Clinical Biochemistry, Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - James Samsoondar
- Department of Pathology, Scarborough General Hospital, Scarborough, Canada
| | - Liju Yang
- Division of Clinical Biochemistry and Immunology, London Health Sciences Centre, London, Canada
- Department of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|
17
|
Novokmet M, Lukić E, Vučković F, Ðurić Ž, Keser T, Rajšl K, Remondini D, Castellani G, Gašparović H, Gornik O, Lauc G. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 2014; 4:4347. [PMID: 24614541 PMCID: PMC3949295 DOI: 10.1038/srep04347] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
Recovery after cardiac surgery is a complex process that has to compensate for both individual variability and extensive tissue damage in the context of systemic inflammation. Protein glycosylation is essential in many steps of the inflammatory cascade, but due to technological limitations the role of individual variation in glycosylation in systemic inflammation has not been addressed until now. We analysed composition of the total plasma and IgG N-glycomes in 107 patients undergoing cardiac surgery. In nearly all individuals plasma N-glycome underwent the same pattern of changes in the first 72 h, revealing a general mechanism of glycosylation changes. To the contrary, changes in the IgG glycome were very individualized. Bi-clustering analysis revealed the existence of four distinct patterns of changes. One of them, characterized by a rapid increase in galactosylated glycoforms, was associated with nearly double mortality risk measured by EuroSCORE II. Our results indicate that individual variation in IgG glycosylation changes during acute systemic inflammation associates with increased mortality risk and indicates new avenues for the development of personalized diagnostic and therapeutic approach.
Collapse
Affiliation(s)
| | - Edita Lukić
- Department of Orthopaedic Surgery University Hospital Centre Zagreb, Croatia
| | | | - Željko Ðurić
- Clinic for Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Toma Keser
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Katarina Rajšl
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Daniel Remondini
- Department of Physics and Astronomy DIFA, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy DIFA, University of Bologna, Bologna, Italy
| | - Hrvoje Gašparović
- Clinic for Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Olga Gornik
- 1] University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia [2]
| | - Gordan Lauc
- 1] Genos Glycoscience Laboratory, Zagreb, Croatia [2] University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia [3]
| |
Collapse
|
18
|
Bacterial neuraminidase inhibitory effects of prenylated isoflavones from roots of Flemingia philippinensis. Bioorg Med Chem 2013; 21:6398-404. [PMID: 24054487 DOI: 10.1016/j.bmc.2013.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022]
Abstract
Bacterial neuraminidase (NA) is one of the key enzymes involved in pathogenesis of inflammation during infection. The organic extract of the roots of Flemingia philippinensis showed high bacterial NA inhibitory activity with an IC50 of around 5μg/mL. Activity-guided separation of the methanol extract yielded nine prenylated isoflavones together with the novel species isoflavone (2) which was given the name flemingsin. Isolated prenylated isoflavones (1-9) were evaluated for NA inhibition and their IC50 values were determined to range between 0.30 and 56.8μM. The most potent inhibitor 4 (IC50=300nM, Ki=130nM) features a catechol motif in the B-ring and a furan in the A-ring. Structure-activity analysis also showed a 4-hydroxyl group within the B-ring was essential for NA inhibitory activity, because isoflavone (9) having protected 4-hydroxyl group was much less potent than its hydroxylated counterpart. All neuraminidase compounds screened were found to be reversible noncompetitive inhibitors. Furthermore, the most active NA inhibitors (1-9) were proven to be present in the native roots in high quantities by HPLC and LC-DAD-ESI/MS.
Collapse
|
19
|
Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 Suppl 1:202-11. [PMID: 23809124 DOI: 10.1111/jth.12226] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative deficiencies in von Willebrand factor (VWF) are associated with abnormal hemostasis that can manifest in bleeding or thrombotic complications. Consequently, many studies have endeavored to elucidate the mechanisms underlying the regulation of VWF plasma levels. This review focuses on the role of VWF clearance pathways. A summary of recent developments are provided, including results from genetic studies, the relationship between glycosylation and VWF clearance, the contribution of increased VWF clearance to the pathogenesis of von Willebrand disease and the identification of VWF clearance receptors. These different studies converge in their conclusion that VWF clearance is a complex phenomenon that involves multiple mechanisms. Deciphering how such different mechanisms coordinate their role in this process is but one of the remaining challenges. Nevertheless, a better insight into the complex clearance pathways of VWF may help us to better understand the clinical implications of aberrant clearance in the pathogenesis of von Willebrand disease and perhaps other disorders as well as aid in developing alternative therapeutic approaches.
Collapse
Affiliation(s)
- C Casari
- Unit 770, INSERM, Le Kremlin-Bicêtre, France; UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Jitka Caslavska
- Clinical Pharmacology Laboratory; Institute for Infectious Diseases; University of Bern; Bern; Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory; Institute for Infectious Diseases; University of Bern; Bern; Switzerland
| |
Collapse
|
21
|
Alterations of the Erythrocyte Membrane during Sepsis. Crit Care Res Pract 2012; 2012:702956. [PMID: 22675622 PMCID: PMC3363976 DOI: 10.1155/2012/702956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/27/2012] [Accepted: 03/18/2012] [Indexed: 01/12/2023] Open
Abstract
Erythrocytes have been long considered as “dead” cells with transport of oxygen (O2) as their only function. However, the ability of red blood cells (RBCs) to modulate the microcirculation is now recognized as an important additional function. This capacity is regulated by a key element in the rheologic process: the RBC membrane. This membrane is a complex unit with multiple interactions between the extracellular and intracellular compartments: blood stream, endothelium, and other blood cells on the one hand, and the intracytoplasmic compartment with possible rapid adaptation of erythrocyte metabolism on the other. In this paper, we review the alterations in the erythrocyte membrane observed in critically ill patients and the influence of these alterations on the microcirculatory abnormalities observed in such patients. An understanding of the mechanisms of RBC rheologic alterations in sepsis and their effects on blood flow and on oxygen transport may be important to help reduce morbidity and mortality from severe sepsis.
Collapse
|
22
|
Modifications in erythrocyte membrane protein content are not responsible for the alterations in rheology seen in sepsis. Shock 2012; 37:17-21. [PMID: 21941224 DOI: 10.1097/shk.0b013e318237d55a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Red blood cell (RBC) rheology is altered in sepsis and may contribute to the microcirculatory alterations in these patients, but the mechanisms of these changes are not well defined. An increase in the RBC protein band 3/α-spectrin ratio has been observed in a mouse model of septic shock, suggesting a possible alteration in the RBC membrane integral/peripheral protein ratio. This protein modification could contribute to the alterations in RBC rheology observed in sepsis. As there are interspecies differences in membrane composition, these observations need confirmation in humans. We studied RBCs from healthy volunteers (n = 10) and from patients with (n = 15) and without (n = 9) sepsis within 24 h of intensive care unit admission and also on day 3 for the septic patients. Exclusion criteria were recent RBC transfusion, hematologic diseases, cirrhosis, and diabetes mellitus. Procedures included screening for alterations in RBC membrane proteins using cryohemolysis and separation of RBC membrane and skeletal proteins by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The hemogram, including reticulocyte count, was similar between nonseptic and septic patients on day 1. The majority of RBC membrane protein ratios, including band 3/spectrin, were more elevated in critically ill patients (nonseptic and septic) than in volunteers, but RBC membrane skeletal protein content was similar in septic and nonseptic patients. There were no significant differences in cryohemolysis results among groups. Alterations in RBC rheology in sepsis are therefore mainly due to alterations in membrane compounds other than skeletal proteins, like carbohydrates, such as sialic acid and/or lipids.
Collapse
|
23
|
Bianchi V, Raspagni A, Arfini C, Vidali M. High performance liquid chromatography evaluation of serum carbohydrate-deficient transferrin and more sialylated transferrin glycoforms in children. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:274-80. [PMID: 22339393 DOI: 10.3109/00365513.2012.660537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The evaluation of the age-specific distribution of transferrin glycoforms in paediatric patients may help in defining reference intervals which are critical for an improved and earlier diagnosis. DESIGN AND METHODS Serum samples from 224 children (age: 2 months-14 years) were analyzed by HPLC (Bio-Rad CDT/HPLC kit) and glycoforms expressed as percentage of the total area of transferrin (Tf). RESULTS Asialo- and Monosialo-Tf were not detectable in any patient. Medians (IQR) were respectively 0.92% (0.80-1.04%) for Disialo-Tf; 3.47% (2.69-4.18%) for Trisialo-Tf; 82.54% (81.32-83.53%) for Tetrasialo-Tf; 12.73% (11.91-14.09%) for Pentasialo-Tf. Statistically significant differences in Trisialo-Tf (p < 0.0005), Tetrasialo-Tf (p = 0.001), Pentasialo-Tf (p < 0.0005), but not in Disialo-Tf, were observed between the age groups. CONCLUSIONS Age-specific Disialo-Tf cut-offs are not necessary. In children 1.3% and 6.4% may be suggested as upper limits of normal range to detect increases of Disialo- and Trisialo-Tf. The presence of Asialo- and Monosialo-Tf should be considered an abnormal finding and prompt further investigations.
Collapse
Affiliation(s)
- Vincenza Bianchi
- Reference Toxicology Laboratory, Department of Clinical Pathology, SS. Antonio e Biagio e C. Arrigo Hospital, Alessandria, Italy
| | | | | | | |
Collapse
|
24
|
Mariño K, Saldova R, Adamczyk B, Rudd PM. Changes in Serum N-Glycosylation Profiles: Functional Significance and Potential for Diagnostics. CARBOHYDRATE CHEMISTRY 2011:57-93. [DOI: 10.1039/9781849732765-00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Gornik O, Gornik I, Kolednjak IZ, Lauc G. Change of transferrin sialylation differs between mild sepsis and severe sepsis and septic shock. Intern Med 2011; 50:861-9. [PMID: 21498934 DOI: 10.2169/internalmedicine.50.4704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE AND DESIGN To investigate the association between the severity of sepsis and changes in sialylation of serum proteins we have conducted a single center pilot study. SUBJECTS AND METHODS Sialylation of transferrin (with enzyme-linked lectin assay-ELLA) and total serum proteins (with colorimetric assay) as well as serum iron and transferrin levels were measured in 27 patients with sepsis through the first eight days of the disease. RESULTS Total serum sialylation increased in the first two days, transferrin sialylation decreased, while serum iron and transferrin fell. Patients who developed severe sepsis had either a small or marked change in transferrin sialylation while in patients with mild sepsis sialylation decreased moderately. CONCLUSION We hypothesize that the change in transferrin sialylation could be a reflection of the intensity of inflammatory response which is insufficient if under-expressed and detrimental if over-expressed. This new feature is a potential marker of sepsis severity early in the disease.
Collapse
Affiliation(s)
- Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Croatia.
| | | | | | | |
Collapse
|
26
|
Robotti A, Natale M, Albo AG, Lis K, Perga S, Marnetto F, Gilli F, Bertolotto A. Acute-phase proteins investigation based on lectins affinity capture prior to 2-DE separation: Application to serum from multiple sclerosis patients. Electrophoresis 2010; 31:2882-93. [DOI: 10.1002/elps.201000171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Richards AA, Colgrave ML, Zhang J, Webster J, Simpson F, Preston E, Wilks D, Hoehn KL, Stephenson M, Macdonald GA, Prins JB, Cooney GJ, Xu A, Whitehead JP. Sialic acid modification of adiponectin is not required for multimerization or secretion but determines half-life in circulation. Mol Endocrinol 2009; 24:229-39. [PMID: 19855092 DOI: 10.1210/me.2009-0133] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is an adipocyte-secreted, insulin-sensitizing hormone the circulating levels of which are reduced in conditions of insulin resistance and diabetes. Previous work has demonstrated the importance of posttranslational modifications, such as proline hydroxylation and lysine hydroxylation/glycosylation, in adiponectin oligomerization, secretion, and function. Here we describe the first functional characterization of adiponectin sialylation. Using a variety of biochemical approaches we demonstrated that sialylation occurs on previously unidentified O-linked glycans on Thr residues of the variable domain in human adiponectin. Enzymatic removal of sialic acid or its underlying O-linked sugars did not affect adiponectin multimer composition. Expression of mutant forms of adiponectin (lacking the modified Thr residues) or of wild-type adiponectin in cells defective in sialylation did not compromise multimer formation or secretion, arguing against a structural role for this modification. Activity of desialylated adiponectin was comparable to control adiponectin in L6 myotubes and acute assays in adiponectin(-/-) mice. In contrast, plasma clearance of desialylated adiponectin was accelerated compared with that of control adiponectin, implicating a role for this modification in determining the half-life of circulating adiponectin. Uptake of desialylated adiponectin by isolated primary rat hepatocytes was also accelerated, suggesting a role for the hepatic asialoglycoprotein receptor. Finally, after chronic administration in adiponectin(-/-) mice steady-state levels of desialylated adiponectin were lower than control adiponectin and failed to recapitulate the improvements in glucose and insulin tolerance tests observed with control adiponectin. These data suggest an important role for sialic acid content in the regulation of circulating adiponectin levels and highlight the importance of understanding mechanisms regulating adiponectin sialylation/desialylation.
Collapse
Affiliation(s)
- Ayanthi A Richards
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gornik O, Wagner J, Pucic M, Knezevic A, Redzic I, Lauc G. Stability of N-glycan profiles in human plasma. Glycobiology 2009; 19:1547-53. [DOI: 10.1093/glycob/cwp134] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
29
|
Denecke J. Biomarkers and diagnosis of congenital disorders of glycosylation. ACTA ACUST UNITED AC 2009; 3:395-409. [DOI: 10.1517/17530050902878023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Abstract
OBJECTIVE To investigate the influence of neuraminidase, an enzyme that cleaves sialic acid from the red blood cell (RBC) membrane, on RBC shape and biochemistry in critically ill patients. DESIGN Prospective, observational study and in vitro laboratory study. SETTING A 31-bed medico-surgical department of intensive care and a university-affiliated cell biology laboratory. SUBJECTS Acutely ill patients with and without sepsis and healthy volunteers. INTERVENTIONS Blood sampling in volunteers. MEASUREMENTS AND MAIN RESULTS Neuraminidase activity was measured using a fluorescent assay. RBC shape was assessed by the second coefficient of dissymmetry of Pearson using a flow cytometry technique at 25 degrees C. Intraerythrocytic 2,3-diphosphoglycerate and lactate contents were also measured. Neuraminidase activity was significantly higher in septic patients compared with nonseptic patients and healthy volunteers (5.42 [4.85-6.00] vs. 4.53 [4.23-5.23] and 1.26 [0.83-1.83] mU/mL; all p < 0.05). Neuraminidase treatment modified the RBC shape in vitro in a dose-response fashion, and most of these alterations were present after 10 hours of incubation. Incubation of RBCs with phosphatidylinositol phospholipase C modified RBC shape and increased sialic acid concentrations in the supernatant, suggesting a leakage of neuraminidase from the RBC membrane. Alterations in shape were associated with increased 2,3-diphosphoglycerate (0.46 +/- 0.25 vs. 0.19 +/- 0.05 mumol/mL; p = 0.006) and lactate content (0.81 +/- 0.07 vs. 0.66 +/- 0.05 mmoL/L; p = 0.002). CONCLUSIONS In sepsis, desialylation under the influence of increased neuraminidase activity may contribute to the alterations in RBC rheology. Inhibition of neuraminidase may represent a new therapeutic option to ameliorate RBC rheology and perhaps oxygen delivery to the cells.
Collapse
|
31
|
Bacterial neuraminidase increases IL-8 production in lung epithelial cells via NF-κB-dependent pathway. Biochem Biophys Res Commun 2009; 379:754-9. [DOI: 10.1016/j.bbrc.2008.12.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 01/09/2023]
|
32
|
Purcell AW, van Driel IR, Gleeson PA. Impact of glycans on T-cell tolerance to glycosylated self-antigens. Immunol Cell Biol 2008; 86:574-9. [PMID: 18626489 DOI: 10.1038/icb.2008.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is now substantial evidence that antigen post-translational modifications are recognized by T cells, and alterations in epitope modification has been linked to a number of autoimmune diseases. An estimated one third of the MHC ligands contain post-translational modification of epitopes. A common post-translational modification of proteins is glycosylation and it is predicted on theoretical grounds that approximately 1-5% of MHC ligands may bear a glycan. From numerous studies over the past 15 years it is clear that glycans can influence T cell responses either by contribution to the structure of the epitope or by influencing the profile of peptide epitopes presented by APCs. The influence of glycans on antigen processing and T cell recognition has particular relevance to the induction of tolerance to self-antigens. Here we discuss the potential impact of glycans on the profile of self-epitopes presented by APCs and the consequence of changes in glycosylation to generate neo self-epitopes resulting in the loss of tolerance and the development of autoimmune diseases. With the recent developments in profiling T cell epitopes, and with strategies for modulating glycosylation in vivo, it is now feasible to directly examine the global influence of glycans on self-tolerance and autoimmunity.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
33
|
Gornik O, Gornik I, Gašparović V, Lauc G. Change in transferrin sialylation is a potential prognostic marker for severity of acute pancreatitis. Clin Biochem 2008; 41:504-10. [DOI: 10.1016/j.clinbiochem.2008.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/10/2007] [Accepted: 01/29/2008] [Indexed: 11/16/2022]
|
34
|
Chiarla C, Giovannini I, Siegel JH. Hypotransferrinemia and changes in plasma lipid and metabolic patterns in sepsis. Amino Acids 2008; 36:327-31. [PMID: 18392771 DOI: 10.1007/s00726-008-0072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
This study was performed to obtain a characterization of the changes in plasma transferrin (Tf, g/L) in sepsis. More than four hundred determinations of Tf, and of a large series of simultaneously collected blood and hemodynamic variables, were obtained in 17 patients with post-traumatic sepsis. Tf during sepsis was consistently low (mean +/- SD = 1.46 +/- 0.46) however fluctuated markedly according to changes in metabolic and hemodynamic patterns. Regression analysis showed that decreases in Tf were simultaneously correlated with the plasma lipid pattern (in particular with decreasing cholesterol and increasing triglycerides), with decreases in albumin and peripheral O2 extraction, and with increasing cardiac index (p < 0.001 for all). Decreases in Tf were moderated by increasing the parenteral amino acid dose (p < 0.001). Combinations of these variables in multiple regressions explained nearly 80% of the variability of Tf. There were no similar correlations for other acute phase proteins except ceruloplasmin, which showed opposite changes compared to those of Tf. These results show that within the hypotransferrinemia which characterizes sepsis, Tf may oscillate remaining strongly correlated with changes in metabolic and hemodynamic patterns, which may account for nearly 80% of the variability of Tf.
Collapse
Affiliation(s)
- Carlo Chiarla
- IASI-CNR Center for Pathophysiology of Shock, Catholic University School of Medicine, Largo Agostino Gemelli, 8, I-00168 Rome, Italy.
| | | | | |
Collapse
|
35
|
HPLC evaluation of clinical and pharmacological factors reported to cause false-positive carbohydrate-deficient transferrin (CDT) levels. Clin Chim Acta 2008; 389:164-6. [DOI: 10.1016/j.cca.2007.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/22/2007] [Accepted: 11/22/2007] [Indexed: 11/23/2022]
|
36
|
Muñoz M, Leal-Noval SR, García-Erce JA, Naveira E. [Prevalence and treatment of anemia in critically ill patients]. Med Intensiva 2008; 31:388-98. [PMID: 17942062 DOI: 10.1016/s0210-5691(07)74843-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anemia is a common condition among medical and surgical patients admitted to the intensive care unit (ICU) and generally has a multifactorial origin. In order to avoid the deleterious effects of anemia, 40% of ICU patients receive allogenic blood transfusion (ABT). This figure increases up to 70% if the ICU stay is longer than 7 days. However, ABT is associated with a dose-dependent increase in morbidity and mortality. In contrast, the administration of exogenous erythropoietin plus iron supplements, especially iv iron, improves anemia and reduces ABT requirements, although it does not reduce mortality. To ascertain whether treatment of anemia in the critically ill with exogenous erythropoietin and iron might improve outcomes and to optimize drug administration schedules and dosage, further studies with sufficient statistical power and adequate follow-up are warranted.
Collapse
Affiliation(s)
- M Muñoz
- Medicina Transfusional, Facultad de Medicina, Málaga, and Servicio de Cuidados Intensivos y Urgencias, Hospital Universitario Virgen del Rocío, Sevilla, Spain.
| | | | | | | |
Collapse
|
37
|
Piagnerelli M, Zouaoui Boudjeltia K, Vanhaeverbeek M. Red Blood Cell Desialylation in Critically III Patients: An Underestimated Cause of Anemia. Intensive Care Med 2007. [DOI: 10.1007/0-387-35096-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
PIAGNERELLI MICHAEL, BOUDJELTIA KARIMZOUAOUI, GULBIS BÉATRICE, VANHAEVERBEEK MICHEL, VINCENT JEANLOUIS. Anemia in sepsis: the importance of red blood cell membrane changes. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1778-428x.2007.00072.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Gornik O, Lauc G. Enzyme linked lectin assay (ELLA) for direct analysis of transferrin sialylation in serum samples. Clin Biochem 2007; 40:718-23. [PMID: 17320850 DOI: 10.1016/j.clinbiochem.2007.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/29/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Glycosylation analysis provides many opportunities for diagnostics, but its complexity hampers its routine application. Aiming to alleviate this problem, we developed a simple assay that can measure sialylation of transferrin directly from serum. DESIGN AND METHODS Transferrin samples with different levels of sialylation were prepared by desialylation. Enzyme-linked-lectin assay (ELLA) and high-performance anion-exchange chromatography (HPAEC) have been used to analyze transferrin sialylation. Periodate oxidation was used to oxidize carbohydrates on antibodies. RESULTS ELLA was developed for the analysis of serum transferrin sialylation. Antibodies oxidized in situ with periodate have been used to capture transferrin from serum samples. Sialic acid on transferrin has been detected with Sambucus nigra agglutinin (SNA) lectin. Transferrin samples with different sialylation levels prepared by differential desialylation have been used as standards. Accuracy of the method has been confirmed by comparison to HPAEC analysis. CONCLUSIONS A rapid and simple ELLA that can be routinely used for the analysis of serum transferrin sialylation has been developed.
Collapse
Affiliation(s)
- Olga Gornik
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacića 1, 10000 Zagreb, Croatia
| | | |
Collapse
|
40
|
Büchele GL, Ospina-Tascon GA, De Backer D. How microcirculation data have changed my clinical practice. Curr Opin Crit Care 2007; 13:324-31. [PMID: 17468566 DOI: 10.1097/mcc.0b013e3280c1e5c5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The present review discusses how microcirculation assessment, which was recently made feasible, has altered clinical practice. RECENT FINDINGS Experimental data have provided important information on microcirculation alterations in disease states. Recent advances in imaging techniques have allowed microcirculation studies in critically ill patients. Derangements in microcirculation are variable and unpredictable, associated with organ dysfunction and outcome, and can be improved by therapeutic interventions. Recent studies not only confirm the beneficial effects of some drugs on the microcirculation, but also suggest new mechanisms of actions of these drugs. In particular, the interaction between the endothelial surface and circulating cells, and especially white blood cells, seems to be crucial. Although these imaging techniques provide important information, these remain difficult to implement at the bedside. Assessment of vasoreactivity using transient occlusion tests and indirect measurements of microvascular blood flow with laser Doppler or near infrared spectroscopy may be good alternatives. SUMMARY Microcirculation alterations are present in shock states, mainly septic shock, and can have a prognostic role and be the target of therapeutic interventions. To date, microcirculation analysis remains in the field of clinical investigation, but recently interesting clinical data have encouraged assessment of the microcirculation at the bedside.
Collapse
Affiliation(s)
- Gustavo Luiz Büchele
- Department of Intensive Care, Erasme University Hospital, Free University of Brussels, Belgium
| | | | | |
Collapse
|
41
|
|
42
|
Bortolotti F, De Paoli G, Tagliaro F. Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001-2005. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 841:96-109. [PMID: 16725384 DOI: 10.1016/j.jchromb.2006.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 01/21/2023]
Abstract
The diagnosis of alcohol abuse based on objective data is a necessary requirement in both clinical and forensic environments. Among the different biomarkers of chronic alcohol abuse, carbohydrate-deficient transferrin (CDT) is world wide recognized as the most reliable indicator. However, several problems about the real meaning of CDT and the reliability of its use for the diagnosis of alcohol abuses are still open, as reported by numerous research articles and reviews. The present article presents a critical review of the literature on CDT appeared in the period from 2001 to 2005 (included). The article is organized in the following sections: (1) introduction, (2) definition and structure of human serum CDT, (3) pathomechanisms of the ethanol-induced CDT increase, (4) preanalysis, (5) analysis, (6) data interpretation, (7) review papers, (8) conclusions. As many as 127 papers appeared in the international literature and retrieved by the search engines PubMed and Scopus are quoted.
Collapse
Affiliation(s)
- Federica Bortolotti
- University of Verona, Department Medicine/Public Health, Chair of Forensic Medicine, Policlinico G.B. Rossi, I-37134 Verona, Italy
| | | | | |
Collapse
|
43
|
Morrell ED, Tsai BM, Crisostomo PR, Hammoud ZT, Meldrum DR. EXPERIMENTAL THERAPIES FOR HYPOXIA-INDUCED PULMONARY HYPERTENSION DURING ACUTE LUNG INJURY. Shock 2006; 25:214-26. [PMID: 16552352 DOI: 10.1097/01.shk.0000191380.44972.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) and pulmonary hypertension present a common and formidable clinical problem for practicing thoracic, transplant, and trauma surgeons. The recent discovery of efficacious drugs that are selective for the pulmonary vasculature has brought about the potential for very powerful therapeutic agents. Inhaled nitric oxide (NO) therapy has already found broad clinical utility, yet its use is limited by potential toxicities. Rho kinase (ROK) has been discovered to play a very central role in the formation of hypoxia induced pulmonary hypertension, and the advent of very specific ROK inhibitors has shown positive clinical results. Finally, phosphodiesterase-5 inhibitors have been found to selectively vasodilate the pulmonary vasculature in the midst of HPV. The purposes of this review are to: 1) discuss the advantages and disadvantages of inhaled preparations of NO; 2) address experimental alternatives to inhaled preparations of NO to treat HPV; 3) explore potential therapeutic avenues associated with inhibition of Rho-kinase; and, 4) examine the use of phosphodiesterase-5 (PDE-5) inhibitors and combination therapy in the treatment of HPV.
Collapse
Affiliation(s)
- Eric D Morrell
- Section of Cardiothoracic Surgery, Department of Surgery, Indiana University Medical Center, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
44
|
Piagnerelli M, Zouaoui Boudjeltia K, Vanhaeverbeek M. Red Blood Cell Desialylation in Critically III Patients: An Underestimated Cause of Anemia. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-33396-7_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|