1
|
Lin Y, Lin J, Huang J, Chen Y, Tan J, Li Y, Chen S. Lower T cell inhibitory receptor level in mononuclear cells from cord blood compared with peripheral blood. Stem Cell Investig 2019; 6:35. [PMID: 31728384 DOI: 10.21037/sci.2019.09.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
T cell inhibitory receptors play important role in maintaining T cell homeostasis. The feature of such negative costimulator signal transduction pathway in cord blood (CB) T cells remains unclear. In this study, the expression levels of T cell inhibitory receptors including programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell immunoglobulin mucin-3 (Tim-3), lymphocyte activation gene-3 (LAG-3) and B and T lymphocyte attenuator (BTLA) were characterized in CB and compared with peripheral blood (PB). Significant lower expression of PD-1, CTLA-4, LAG-3 and BTLA was found in CB, while similar expression level of Tim-3 was showed between CB and PB. Together, different expression pattern of such T cell inhibitory receptor in CB is worthy to further discuss their role on immune response when CB is used in cord blood stem cell transplantation as well as allogeneic chimeric antigen receptor T-cell producing.
Collapse
Affiliation(s)
- Ying Lin
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinrong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jiaxiong Tan
- Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China.,Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood 2013; 123:126-32. [PMID: 24184682 DOI: 10.1182/blood-2013-05-502385] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In vivo T-cell depletion might contribute to the delayed immune reconstitution observed after unrelated umbilical cord blood transplantation (UCBT). We studied the impact of early, late, and no antithymocyte globulin (ATG) on immune reconstitution and outcome. One hundred twenty seven children receiving UCBT in London or Utrecht were divided into 3 groups: early ATG (days -9 to -5; n = 33), late ATG (days -5 to 0; n = 48), and no ATG (n = 46). The no-ATG group received mycophenolate mofetile + cyclosporin A as graft-versus-host disease (GVHD) prophylaxis, while the ATG groups received cyclosporin A + prednisone. End points studied were survival, immune recovery, infections, and GVHD. The probability of survival was similar in all groups: no ATG, 71% ± 8%; early ATG, 68% ± 9%; and late ATG, 61% ± 7%. CD3(+), CD4(+), and CD4(+)-naive T-cell counts were significantly higher (P < .001) in the no-ATG group at 1, 2, 3, 6, and 12 months post-UCBT. In the no-ATG group, significantly fewer viral reactivations (P = .021) were noted. A higher probability of severe acute GVHD (aGVHD; 31%) was found in the no-ATG group compared with 18% (P = .018) for early-ATG and 5% (P < .001) for late-ATG groups. This was not associated with more chronic GVHD (cGVHD).
Collapse
|
3
|
Sharma SK, Pichichero ME. Deficiencies in the CD4 + T-Helper Cell Arm of the Immune System of Neonates and Young Children. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2013; 26:4-10. [PMID: 35927842 DOI: 10.1089/ped.2012.0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Newborns and young children rely on innate immunity to protect against infections until the adaptive immune system matures. Immunization helps facilitate protection, but multiple doses are needed to establish sufficient antibody levels and T-cell-facilitated immune memory. Deficient T-cell activation and function among neonates and young children are primarily present in the CD4+ compartment, whereas CD8+ T-cell function is at par with adults. CD4+ T cells in neonates and young children produce low levels of IFNγ, interleukin (IL)-2, IL-13, IL-5, and IL-17. This inherent deficiency in neonatal and young child CD4+ T-cell functionality has been linked to several mechanistic failures: (1) lower sensitivity to T-cell receptor stimulation, (2) increased apoptosis after proliferation, (3) unavailability of antigen for T-cell priming, and (4) inefficient stimulation by relatively immature antigen-presenting cells. In this review, we discuss evidence from infection and vaccination responses that shed light on the various checkpoints possibly involved in delayed maturation of CD4+ T-cell activation and function in newborns and young children.
Collapse
Affiliation(s)
- Sharad K Sharma
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| | - Michael E Pichichero
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| |
Collapse
|
4
|
Palin AC, Ramachandran V, Acharya S, Lewis DB. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. THE JOURNAL OF IMMUNOLOGY 2013; 190:2682-91. [PMID: 23408835 DOI: 10.4049/jimmunol.1202534] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Compared with older children and adults, human neonates have reduced and delayed CD4(+) T cell immunity to certain pathogens, but the mechanisms for these developmental differences in immune function remain poorly understood. We investigated the hypothesis that impaired human neonatal CD4(+) T cell immunity was due to reduced signaling by naive CD4(+) T cells following engagement of the αβ-TCR/CD3 complex and CD28. Surprisingly, calcium flux following engagement of CD3 was significantly higher in neonatal naive CD4(+) T cells from umbilical cord blood (CB) compared with naive CD4(+) T cells from adult peripheral blood. Enhanced calcium flux was also observed in adult CD4(+) recent thymic emigrants. Neonatal naive CD4(+) T cells also had higher activation-induced Erk phosphorylation. The microRNA miR-181a, which enhances activation-induced calcium flux in murine thymocytes, was expressed at significantly higher levels in CB naive CD4(+) T cells compared with adult cells. Overexpression of miR-181a in adult naive CD4(+) T cells increased activation-induced calcium flux, implying that the increased miR-181a levels of CB naive CD4(+) T cells contributed to their enhanced signaling. In contrast, AP-1-dependent transcription, which is downstream of Erk and required for full T cell activation, was decreased in CB naive CD4(+) T cells compared with adult cells. Thus, CB naive CD4(+) T cells have enhanced activation-dependent calcium flux, indicative of the retention of a thymocyte-like phenotype. Enhanced calcium signaling and Erk phosphorylation are decoupled from downstream AP-1-dependent transcription, which is reduced and likely contributes to limitations of human fetal and neonatal CD4(+) T cell immunity.
Collapse
Affiliation(s)
- Amy C Palin
- Department of Pediatrics, Program in Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
5
|
Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol 2012; 42:45-57. [PMID: 22134956 DOI: 10.1007/s12016-011-8289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because of its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This review updates the phenotypic and functional deficiencies of various immune cell populations in UCB compared with their adult counterparts and discusses clinical implications and possible therapeutic strategies to improve the outcome of stem cell transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010. [PMID: 20814429 DOI: 10.1371/journal.pone.0012232.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
|
7
|
Waasdorp Hurtado C, Golden-Mason L, Brocato M, Krull M, Narkewicz MR, Rosen HR. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010; 5:e12232. [PMID: 20814429 PMCID: PMC2923602 DOI: 10.1371/journal.pone.0012232] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/24/2010] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∼80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and γδ-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
Affiliation(s)
- Christine Waasdorp Hurtado
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | - Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Integrated Program in Immunology, University of Colorado and National Jewish Hospital, Denver, Colorado, United States of America
| | - Megan Brocato
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mona Krull
- Department of Obstetrics and Gynecology, Denver Health Medical Center, Denver, Colorado, United States of America
| | - Michael R. Narkewicz
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | - Hugo R. Rosen
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Integrated Program in Immunology, University of Colorado and National Jewish Hospital, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hurtado CW, Golden-Mason L, Brocato M, Krull M, Narkewicz MR, Rosen HR. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010. [PMID: 20814429 DOI: 10.1371/journal.pone.001223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
Affiliation(s)
- Christine Waasdorp Hurtado
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Cantó E, Moga E, Ricart E, Garcia-Bosch O, Garcia-Planella E, Juarez C, Vidal S. MDP-Induced selective tolerance to TLR4 ligands: impairment in NOD2 mutant Crohn's disease patients. Inflamm Bowel Dis 2009; 15:1686-1696. [PMID: 19572373 DOI: 10.1002/ibd.21013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pathogen infection is a complex process in which several pathogen-recognition receptor (PRR) pathways are activated to induce proinflammatory mediators. The activation of multiple PRRs suggests an interaction between Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptor (NOD) signaling pathways. METHODS To understand the modulation induced by NOD2 signals on successive responses to pathogen-associated molecular patterns (PAMPs), we examined how muramyl dipeptide (MDP) pretreatment reprograms the MDP+LPS (lipopolysaccharide) response of monocytes from human peripheral blood. RESULTS Preexposure to bacterial MDP components induced selective tolerance to a subsequent NOD2+TLR4 stimulation. MDP pretreatment inhibited the production of tumor necrosis factor alpha (TNFalpha) and interleuken 10 (IL10), whereas IL6 and IL8 remained unaffected. MDP-induced tolerance was independent of receptor downregulation but was associated with reduced levels of phosphorylated TAK1 and abrogated phosphorylation of the downstream MAPK.Since Nod2 mutations have been associated with susceptibility to develop Crohn's disease (CD), we compared the MDP-induced tolerance in healthy donors and CD patients with compound heterozygous Nod2 mutations (Mut-Nod2) expressing variant NOD2 proteins. MDP-induced tolerance in Mut-Nod2 patients reduced IL10 but not TNFalpha production. In contrast with healthy donors, a p38-independent TNFalpha production was observed during the kinetics of the MDP+LPS response in Mut-Nod2 patients. CONCLUSIONS Our findings suggest that the selective tolerance induced by MDP in healthy donors was related to the modulation of a convergent nub of NOD2 and TLR4 signaling pathways. This MDP-induced tolerance was impaired in Mut-Nod2 CD patients, resulting in a p38-independent TNFalpha production and an imbalance between pro- and antiinflammatory cytokines that could be partly responsible for the pathogenesis of CD.
Collapse
Affiliation(s)
- Elisabet Cantó
- Department of Immunology, Institut Rec & Hospital Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Lin SJ, Yan DC, Lee YC, Kuo ML. Role of interleukin-15 in umbilical cord blood transplantation. Int Rev Immunol 2009; 27:518-31. [PMID: 19065354 DOI: 10.1080/08830180802317940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem-cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This article reviews UCB immunology and addresses the potential therapeutic role of interleukin (IL)-15, a pleiotropic gamma chain signaling cytokine, in modulating immune reconstitution, graft-versus-host disease (GVHD), graft-versus-leukemia effect, and infection susceptibility during the post-UCB transplant period. Cytokine immunotherapy using IL-15 simultaneously modulates several immune compartments, thus holds promise for facilitating post-transplant recovery and augmenting antitumor effect without aggravating GVHD in the setting of UCB transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy and Rheumatology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
11
|
Regulation of IL-2 expression by transcription factor BACH2 in umbilical cord blood CD4+ T cells. Leukemia 2008; 22:2201-7. [DOI: 10.1038/leu.2008.234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|