1
|
Emoto S, Shibasaki S, Nagatsu A, Goto R, Ono H, Fukasaku Y, Igarashi R, Ota T, Fukai M, Shimamura T, Saiga K, Taketomi A, Murakami M, Todo S, Yamashita K. Triazolopyrimidine derivative NK026680 and donor-specific transfusion induces CD4 +CD25 +Foxp3 + T cells and ameliorates allograft rejection in an antigen-specific manner. Transpl Immunol 2020; 65:101338. [PMID: 33022372 DOI: 10.1016/j.trim.2020.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated the unique properties of a new triazolopyrimidine derivative, NK026680, which exerts immunosuppressive effects in rat heart transplant model and confers tolerogeneic properties on ex vivo-conditioned dendritic cells in mice. We herein demonstrate that NK026680 promotes the expansion of regulatory T cells (Tregs) with potent immunoregulatory effects when used in combination with donor-specific transfusion (DST). BALB/c (H-2d) heart graft were transplanted into C57BL/6 (H-2b) mice following intravenous injection of donor splenocytes (DST) and oral administration of NK026680. The NK026680 plus DST treatment markedly prolonged the survival time of the donor-graft, but not that of the 3rd party-graft (C3H; H-2k). Treg cells in the recipient spleen on day 0 expanded when stimulated with donor-antigens in vivo and in vitro. After heart transplantation, Treg cells accumulated into the graft and increased in the spleen. NK026680 plus DST also decreased activated CD8+ T cells in the spleen and inhibited infiltration of CD8+ T cells into the graft. Depletion of CD25+ cells inhibited the graft prolonging effect of the NK026680 plus DST treatment. NK026680 administration together with DST induces potent immunoregulatory effects in an antigen-specific manner, likely due to the in vivo generation of donor-specific Tregs.
Collapse
Affiliation(s)
- Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Susumu Shibasaki
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Hitoshi Ono
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Rumi Igarashi
- Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Moto Fukai
- Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan.
| | - Kan Saiga
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan.
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Satoru Todo
- Research Institute of St. Mary's Hospital, Kurume, Japan.
| | - Kenichiro Yamashita
- Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant 2014; 34:254-63. [PMID: 25455753 DOI: 10.1016/j.healun.2014.09.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/22/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA), a precursor of heme biosynthesis, plays a fundamentally important role in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO) and iron (Fe(2+)). The anti-inflammatory properties of biliverdin and CO help to alleviate ischemia/reperfusion injury as well as acute and/or chronic allograft rejection. We investigated whether 5-ALA and Fe(2+) exerts salutary effects in the setting of organ transplantation. METHODS An in vitro mixed-lymphocyte reaction (MLR) assay and cardiac allotransplantation model (CBA to C57BL/10) were used to evaluate the effects of 5-ALA and Fe(2+) on transplantation tolerance. RESULTS Treatment with 5-ALA and sodium ferrous citrate (SFC) resulted in permanent acceptance in the murine cardiac allografts in a dose-, SFC- and HO-1-dependent manner. The number of graft-infiltrating CD8 T cells was lower and the survival response of recipient spleen T cells to donor-type alloantigens was less compared with control recipients; however, numbers of both regulatory T cells and dendritic cells were significantly increased in 5-ALA/SFC-treated recipients. CONCLUSIONS Our findings show that 5-ALA/SFC inhibits T-cell proliferation in response to alloantigens and an increased number of regulatory cells, resulting in permanent cardiac allograft acceptance in mice. These findings highlight the major roles of CO and/or HO-1 in inducing tolerance and suggest that 5-ALA/SFC may be a clinically effective treatment for allograft rejection.
Collapse
|
4
|
Tsuji AB, Morita M, Li XK, Sogawa C, Sudo H, Sugyo A, Fujino M, Sugioka A, Koizumi M, Saga T. 18F-FDG PET for Semiquantitative Evaluation of Acute Allograft Rejection and Immunosuppressive Therapy Efficacy in Rat Models of Liver Transplantation. J Nucl Med 2009; 50:827-30. [DOI: 10.2967/jnumed.108.058925] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Funeshima-Fuji N, Fujino M, Xie L, Kimura H, Takahara S, Ezaki T, Zhu BT, Li XK. Prolongation of Rat Major Histocompatibility Complex–compatible Cardiac Allograft Survival During Pregnancy. J Heart Lung Transplant 2009; 28:176-82. [PMID: 19201344 DOI: 10.1016/j.healun.2008.11.914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/06/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022] Open
|