1
|
van Grinsven EE, Guichelaar J, Philippens MEP, Siero JCW, Bhogal AA. Hemodynamic imaging parameters in brain metastases patients - Agreement between multi-delay ASL and hypercapnic BOLD. J Cereb Blood Flow Metab 2023; 43:2072-2084. [PMID: 37632255 PMCID: PMC10925872 DOI: 10.1177/0271678x231196989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Arterial spin labeling (ASL) MRI is a routine clinical imaging technique that provides quantitative cerebral blood flow (CBF) information. A related technique is blood oxygenation level-dependent (BOLD) MRI during hypercapnia, which can assess cerebrovascular reactivity (CVR). ASL is weighted towards arteries, whereas BOLD is weighted towards veins. Their associated parameters in heterogeneous tissue types or under different hemodynamic conditions remains unclear. Baseline multi-delay ASL MRI and BOLD MRI during hypercapnia were performed in fourteen patients with brain metastases. In the ROI analysis, the CBF and CVR values were positively correlated in regions showing sufficient reserve capacity (i.e. non-steal regions, rrm = 0.792). Additionally, longer hemodynamic lag times were related to lower baseline CBF (rrm = -0.822) and longer arterial arrival time (AAT; rrm = 0.712). In contrast, in regions exhibiting vascular steal an inverse relationship was found with higher baseline CBF related to more negative CVR (rrm = -0.273). These associations were confirmed in voxelwise analyses. The relationship between CBF, AAT and CVR measures seems to be dependent on the vascular status of the underlying tissue. Healthy tissue relationships do not hold in tissues experiencing impaired or exhausted autoregulation. CVR metrics can possibly identify at-risk areas before perfusion deficiencies become visible on ASL MRI, specifically within vascular steal regions.
Collapse
Affiliation(s)
- Eva E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jamila Guichelaar
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle EP Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen CW Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, Netherlands
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Hauser TK, Seeger A, Bender B, Klose U, Thurow J, Ernemann U, Tatagiba M, Meyer PT, Khan N, Roder C. Hypercapnic BOLD MRI compared to H 215O PET/CT for the hemodynamic evaluation of patients with Moyamoya Disease. NEUROIMAGE-CLINICAL 2019; 22:101713. [PMID: 30743136 PMCID: PMC6370561 DOI: 10.1016/j.nicl.2019.101713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022]
Abstract
Background and purpose Patients with Moyamoya Disease (MMD) need hemodynamic evaluation of vascular territories at risk of stroke. Today's investigative standards include H215O PET/CT with pharmacological challenges with acetazolamide (ACZ). Recent developments suggest that CO2-triggered blood‑oxygen-level-dependent (BOLD) functional MRI might provide comparable results to current standard methods for evaluation of territorial hemodynamics, while being a more widely available and easily implementable method. This study examines results of a newly developed quantifiable analysis algorithm for CO2-triggered BOLD MRI in Moyamoya patients and correlates the results with H215O PET/CT with ACZ challenge to assess comparability between both modalities. Methods CO2-triggered BOLD MRI was performed and compared to H215O PET/CT with ACZ challenge in patients with angiographically proven MMD. Images of both modalities were analyzed retrospectively in a blinded, standardized fashion by visual inspection, as well as with a semi-quantitative analysis using stimuli-induced approximated regional perfusion-weighted data and BOLD-signal changes with reference to cerebellum. Results 20 consecutive patients fulfilled the inclusion criteria, a total of 160 vascular territories were analyzed retrospectively. Visual analysis (4-step visual rating system) of standardized, color-coded cerebrovascular reserve/reactivity maps showed a very strong correlation (Spearman's rho = 0.9, P < 0.001) between both modalities. Likewise, comparison of approximated regional perfusion changes across vascular territories (normalized to cerebellar change) reveal a highly significant correlation between both methods (Pearson's r = 0.71, P < 0.001). Conclusions The present analysis indicates that CO2-triggered BOLD MRI is a very promising tool for the hemodynamic evaluation of MMD patients with results comparable to those seen in H215O PET/CT with ACZ challenge. It therefore holds future potential in becoming a routine examination in the pre- and postoperative evaluation of MMD patients after further prospective evaluation. Non-invasive cerebrovascular reactivity measurement with BOLD MRI. CO2-triggered BOLD MRI correlates strongly with H215O PET/CT with ACZ challenge Widely-available tool for the hemodynamic evaluation of Moyamoya patients.
Collapse
Affiliation(s)
| | - Achim Seeger
- Department of Neuroradiology, Eberhard Karls University Tübingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Eberhard Karls University Tübingen, Germany
| | - Uwe Klose
- Department of Neuroradiology, Eberhard Karls University Tübingen, Germany
| | - Johannes Thurow
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Ernemann
- Department of Neuroradiology, Eberhard Karls University Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadia Khan
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany; Moyamoya Center, Division of Pediatric Neurosurgery, University Children's Hospital Zürich, Switzerland.
| | - Constantin Roder
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
4
|
Whittaker JR, Bright MG, Driver ID, Babic A, Khot S, Murphy K. Changes in arterial cerebral blood volume during lower body negative pressure measured with MRI. Neuroimage 2017; 187:166-175. [PMID: 28668343 PMCID: PMC6414398 DOI: 10.1016/j.neuroimage.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral Autoregulation (CA), defined as the ability of the cerebral vasculature to maintain stable levels of blood flow despite changes in systemic blood pressure, is a critical factor in neurophysiological health. Magnetic resonance imaging (MRI) is a powerful technique for investigating cerebrovascular function, offering high spatial resolution and wide fields of view (FOV), yet it is relatively underutilized as a tool for assessment of CA. The aim of this study was to demonstrate the potential of using MRI to measure changes in cerebrovascular resistance in response to lower body negative pressure (LBNP). A Pulsed Arterial Spin Labeling (PASL) approach with short inversion times (TI) was used to estimate cerebral arterial blood volume (CBVa) in eight healthy subjects at baseline and −40 mmHg LBNP. We estimated group mean CBVa values of 3.13 ± 1.00 and 2.70 ± 0.38 for baseline and lbnp respectively, which were the result of a differential change in CBVa during −40 mmHg LBNP that was dependent on baseline CBVa. These data suggest that the PASL CBVa estimates are sensitive to the complex cerebrovascular response that occurs during the moderate orthostatic challenge delivered by LBNP, which we speculatively propose may involve differential changes in vascular tone within different segments of the arterial vasculature. These novel data provide invaluable insight into the mechanisms that regulate perfusion of the brain, and establishes the use of MRI as a tool for studying CA in more detail.
Collapse
Affiliation(s)
- Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, United Kingdom.
| | - Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Adele Babic
- Department of Anaesthesia and Intensive Care Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Sharmila Khot
- Department of Anaesthesia and Intensive Care Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, United Kingdom
| |
Collapse
|
5
|
Respiratory challenge MRI: Practical aspects. NEUROIMAGE-CLINICAL 2016; 11:667-677. [PMID: 27330967 PMCID: PMC4901170 DOI: 10.1016/j.nicl.2016.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Respiratory challenge MRI is the modification of arterial oxygen (PaO2) and/or carbon dioxide (PaCO2) concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques. Oxygen and carbon dioxide affect cerebral blood flow and metabolism. This can be imaged with various MRI sequences. The practicalities of these techniques are reviewed. Examples of how this has been used to understand disease mechanisms.
Collapse
|
6
|
Fierstra J, Burkhardt JK, van Niftrik CHB, Piccirelli M, Pangalu A, Kocian R, Neidert MC, Valavanis A, Regli L, Bozinov O. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI. Magn Reson Med 2016; 77:806-813. [PMID: 26918794 DOI: 10.1002/mrm.26135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/29/2015] [Accepted: 12/26/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. METHODS Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. RESULTS Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. CONCLUSION We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jorn Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Roman Kocian
- Department of Neuro-anesthesia, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Antonios Valavanis
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
7
|
Geranmayeh F, Wise RJS, Leech R, Murphy K. Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies. Hum Brain Mapp 2015; 36:1755-71. [PMID: 25727648 PMCID: PMC4413362 DOI: 10.1002/hbm.22735] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022] Open
Abstract
Blood oxygenation level‐dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath‐hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task‐related BOLD signal changes. Three methods of analyzing the breath‐hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri‐infarct tissue, both sub‐acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri‐infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group‐level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath‐hold‐based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity. Hum Brain Mapp 36:1755–1771, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | | | | | | |
Collapse
|
8
|
Buterbaugh J, Wynstra C, Provencio N, Combs D, Gilbert M, Parthasarathy S. Cerebrovascular reactivity in young subjects with sleep apnea. Sleep 2015; 38:241-50. [PMID: 25409111 DOI: 10.5665/sleep.4406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 10/24/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Regional brain alterations may be involved in the pathogenesis and adverse consequences of obstructive sleep apnea (OSA). The objectives for the current study were to (1) determine cerebrovascular reactivity in the motor areas that control upper airway musculature in patients with OSA, and (2) determine whether young patients with OSA have decreased cerebrovascular reactivity in response to breath holding. DESIGN Case-control study. SETTING Academic center. PARTICIPANTS Twelve subjects with OSA (age 24-42 y; apnea-hypopnea index 17; interquartile range [IQR] 9, 69 per hour) and control subjects (n = 10; age 29-44 y; AHI 2; IQR 1, 3 per hour). MEASUREMENTS AND RESULTS Subjects underwent blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) while awake, swallowing, and breath holding. In subjects with OSA, during swallowing, there was less activity in the brainstem than in controls (P = 0.03) that remained reduced after adjusting for cortical motor strip activity (P = 0.036). In OSA subjects, brain regions of increased cerebrovascular reactivity (38; IQR 17, 96 cm(3)) was smaller than that in controls (199; IQR 5, 423 cm(3); P = 0.01). In OSA subjects, brain regions of decreased cerebrovascular reactivity during breath hold was greater (P = 0.01), and the ratio of increased-to-decreased brain regions was lower than that of controls (P = 0.006). Adjustment for cerebral volumes, body mass index, and white matter lesions did not change these results substantively. CONCLUSIONS In patients with obstructive sleep apnea (OSA), diminished change in brainstem activity during swallowing and reduced cerebrovascular reactivity may contribute to the etiopathogenesis and adverse cerebrovascular consequences, respectively. We speculate that decreased cerebral auto-regulation may be causative of gray matter loss in OSA.
Collapse
Affiliation(s)
- John Buterbaugh
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ
| | - Charles Wynstra
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ
| | - Natalie Provencio
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ
| | - Daniel Combs
- Arizona Respiratory Center, Tucson, AZ.,Department of Medicine of University of Arizona, Tucson, AZ
| | - Michael Gilbert
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ
| | - Sairam Parthasarathy
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ.,Department of Medicine of University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Reproducibility of hypocapnic cerebrovascular reactivity measurements using BOLD fMRI in combination with a paced deep breathing task. Neuroimage 2014; 98:31-41. [DOI: 10.1016/j.neuroimage.2014.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022] Open
|
10
|
Pillai JJ, Mikulis DJ. Cerebrovascular reactivity mapping: an evolving standard for clinical functional imaging. AJNR Am J Neuroradiol 2014; 36:7-13. [PMID: 24788129 DOI: 10.3174/ajnr.a3941] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SUMMARY This review article explains the methodology of breath-hold cerebrovascular reactivity mapping, both in terms of acquisition and analysis, and reviews applications of this method to presurgical mapping, particularly with respect to blood oxygen level-dependent fMRI. Its main application in clinical fMRI is for the assessment of neurovascular uncoupling potential. Neurovascular uncoupling is potentially a major limitation of clinical fMRI, particularly in the setting of mass lesions in the brain such as brain tumors and intracranial vascular malformations that are associated with alterations in regional hemodynamics on either an acquired or congenital basis. As such, breath-hold cerebrovascular reactivity mapping constitutes an essential component of quality control analysis in clinical fMRI, particularly when performed for presurgical mapping of eloquent cortex. Exogenous carbon dioxide challenges used for cerebrovascular reactivity mapping will also be discussed, and their applications to the evaluation of cerebrovascular reserve and cerebrovascular disease will be described.
Collapse
Affiliation(s)
- J J Pillai
- From the Division of Neuroradiology (J.J.P.), Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D J Mikulis
- Department of Medical Imaging (D.J.M.), The University of Toronto, The University Health Network, The Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Bright MG, Murphy K. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 2013; 83:559-68. [PMID: 23845426 PMCID: PMC3899001 DOI: 10.1016/j.neuroimage.2013.07.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022] Open
Abstract
Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC<0.4) in several regions analysed. In contrast, the end-tidal CO2 regressors resulted in "excellent" repeatability (ICC=0.82) in the average grey matter data, and resulted in acceptable repeatability in all smaller regions tested (ICC>0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice.
Collapse
Affiliation(s)
- Molly G Bright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK.
| | | |
Collapse
|
12
|
Assessing Cerebrovascular Reactivity in Carotid Steno-Occlusive Disease Using MRI BOLD and ASL Techniques. Radiol Res Pract 2012; 2012:268483. [PMID: 22919485 PMCID: PMC3388310 DOI: 10.1155/2012/268483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022] Open
Abstract
Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.
Collapse
|
13
|
SHIINO A, YAMAUCHI H, MORIKAWA S, INUBUSHI T. Mapping of Cerebral Metabolic Rate of Oxygen using DSC and BOLD MR Imaging: A Preliminary Study. Magn Reson Med Sci 2012; 11:109-15. [DOI: 10.2463/mrms.11.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
The effect of basal vasodilation on hypercapnic and hypocapnic reactivity measured using magnetic resonance imaging. J Cereb Blood Flow Metab 2011; 31:426-38. [PMID: 20959855 PMCID: PMC3049535 DOI: 10.1038/jcbfm.2010.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebrovascular reactivity to vasodilatory hypercapnic and vasoconstrictive hypocapnic challenges is known to be altered in several hemodynamic disorders, which is often attributable to changes in smooth muscle-mediated vascular compliance. Recently, attenuated reactivity to hypercapnia but enhanced reactivity to hypocapnia was observed in patients with chronic stroke. We hypothesize that the latter observation could be explained by a change in the basal vascular tone. In particular, reduced cerebral perfusion pressure, as is prevalent in these patients, may cause vasodilation through autoregulatory mechanisms, and this compensatory baseline condition may alter reactivity to vasoconstrictive hypocapnic challenges. To test this hypothesis, a predilated vascular condition was created in young, healthy subjects (n=11; age=23 to 36 years) using inhalation of 4% CO(2). Using blood oxygenation level-dependent functional magnetic resonance imaging at 3 T, breath holding and cued deep breathing respiratory challenges were administered to assess hypercapnia and hypocapnia reactivity, respectively. During the predilated condition, vasoconstrictive reactivity to hypocapnia was significantly (21.1%, P=0.016) enhanced throughout the gray matter, whereas there was no significant change (6.4%, P=0.459) in hypercapnic vasodilatory reactivity. This suggests that baseline vasodilation may explain the enhanced hypocapnia reactivity observed in some stroke patients, and that hypocapnia challenges may help identify the level of vascular compliance in patients with reduced cerebral perfusion pressure.
Collapse
|
15
|
Conklin J, Fierstra J, Crawley AP, Han JS, Poublanc J, Mandell DM, Silver FL, Tymianski M, Fisher JA, Mikulis DJ. Impaired cerebrovascular reactivity with steal phenomenon is associated with increased diffusion in white matter of patients with Moyamoya disease. Stroke 2010; 41:1610-6. [PMID: 20576954 DOI: 10.1161/strokeaha.110.579540] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Reduced cerebrovascular reactivity (CVR) with steal phenomenon is an independent predictor for stroke and may indicate tissue exposed to episodic low-grade ischemia. The apparent diffusion coefficient (ADC) calculated using diffusion-weighted MRI is effective in characterizing focal brain ischemia and subtle structural changes in normal-appearing white matter (WM). We hypothesized that regions of steal phenomenon are associated with increased ADC in normal-appearing WM of patients with Moyamoya disease. METHODS Twenty-two patients with unilateral CVR impairment secondary to Moyamoya disease and 12 healthy control subjects underwent diffusion-weighted MRI and functional MRI mapping of the cerebrovascular response to hypercapnia. Parametric maps of ADC and CVR were calculated, coregistered, and segmented using automated image processing methods. ADC of normal-appearing WM was compared between hemispheres, and between WM with negative CVR (ie, steal phenomenon) and WM with positive CVR. RESULTS In patients, ADC of normal-appearing WM was elevated in the hemisphere ipsilateral to the CVR impairment compared with the contralateral hemisphere (P<0.005) and in WM with negative CVR compared with WM with positive CVR (P<0.001). WM in regions of steal phenomenon within the affected hemisphere had higher ADC than homologous contralateral WM (P<0.005). In control subjects, negative CVR in WM was not associated with elevated ADC. CONCLUSIONS Regions of steal phenomenon are spatially correlated with elevated ADC in normal-appearing WM of patients with Moyamoya disease. This structural abnormality may reflect low-grade ischemic injury after exhaustion of the cerebrovascular reserve capacity.
Collapse
Affiliation(s)
- John Conklin
- Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goode SD, Krishan S, Alexakis C, Mahajan R, Auer DP. Precision of cerebrovascular reactivity assessment with use of different quantification methods for hypercapnia functional MR imaging. AJNR Am J Neuroradiol 2009; 30:972-7. [PMID: 19435945 DOI: 10.3174/ajnr.a1496] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Tools for noninvasive mapping of hemodynamic function including cerebrovascular reactivity are emerging and may become clinically useful to predict tissue at hemodynamic risk. One such technique assesses blood oxygen level-dependent (BOLD) MR imaging contrast in response to hypercapnia, but the reliability of its quantification is uncertain. The aim of this study was to prospectively investigate the intersubject and interhemispheric variability and short-term reproducibility of hypercapnia functional MR imaging (fMRI) in healthy volunteers and to assess the effects of different methods of quantification and normalization. MATERIALS AND METHODS Sixteen healthy volunteers, (7 women and 9 men) underwent hypercapnia fMRI with a clinical 1.5T scanner; 8 underwent scanning twice. We determined BOLD amplitude changes using a visually defined block design or automated regression to end-tidal (ET) carbon dioxide (CO2). Absolute percent signal intensity changes (PSC) were extracted for whole-brain, gray matter, and middle cerebral artery territory, and also normalized to ETCO2 change. Intersubject and intrasubject (between hemispheres and sessions) coefficients of variation (COV) were derived. We assessed the effects of different quantification methods on reproducibility indices using the t test and U tests. RESULTS The mean change in ETCO2 was 7.8 +/- 3.3 mm Hg. Averaged BOLD increases varied from 2.54% to 2.92%. Short-term reproducibility was good for absolute PSC (4.8% to 10%) but poor for normalized PSC (range, 24% to 27% COV). Intersubject reproducibility varied between 11% and 23% for absolute PSC and, again, was poorer for normalized data (32% to 39%). Interhemispheric reproducibility of absolute PSC was excellent ranging between 1.24 and 2.16% COV. CONCLUSIONS In conclusion, quantification of cerebrovascular reactivity with use of hypercapnia fMRI was found to have good between-session and very good interhemispheric reproducibility. The technique holds promise as a diagnostic tool, especially for sensitive detection of unilateral disease.
Collapse
Affiliation(s)
- S D Goode
- Department of Academic Radiology, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | |
Collapse
|
17
|
Bright MG, Bulte DP, Jezzard P, Duyn JH. Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI. Neuroimage 2009; 48:166-75. [PMID: 19450694 DOI: 10.1016/j.neuroimage.2009.05.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 05/07/2009] [Indexed: 11/16/2022] Open
Abstract
We offer a new method for characterizing the magnitude and dynamics of the vascular response to changes in arterial gas tensions using non-invasive blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) and paradigms appropriate for clinical settings. A novel respiratory task, "Cued Deep Breathing" (CDB), consisting of two consecutive cycles of cued breaths, has been developed to cause transient hypocapnia, and consequently a strong, short-lived BOLD signal decrease. Data from CDB hypocapnia paradigms and traditional breath-holding hypercapnia paradigms were analyzed on a voxel-wise basis to map regional heterogeneity in magnitude and timing parameters. The tasks caused comparable absolute BOLD percent signal changes (approximately 0.5-3.0% in gray matter) and both datasets suggested consistent regional heterogeneity in the response timing: parts of the basal ganglia, particularly the putamen, and bilateral areas of medial cortex reached their maximum signal change several seconds earlier than remaining cortical gray matter voxels. This phenomenon and a slightly delayed response in posterior cortical regions were present in group-maps of ten healthy subjects. An auxiliary experiment in different subjects measured end-tidal CO2 changes associated with the new CDB task and quantitatively compared the resulting reactivity maps with those acquired using a traditional hypercapnia challenge of 4% CO2 gas inspiration. The CDB task caused average end-tidal CO2 decreases between 6.0+/-1.1 and 10.5+/-2.6 mm Hg, with levels returning to baseline after approximately three breaths, giving evidence that the task indeed causes transient mild hypocapnia. Similarity between resulting reactivity maps suggest CDB offers an alternative method for mapping cerebrovascular reactivity.
Collapse
Affiliation(s)
- Molly G Bright
- Laboratory for Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
18
|
Schubert GA, Weinmann C, Seiz M, Gerigk L, Weiss C, Horn P, Thomé C. Cerebrovascular insufficiency as the criterion for revascularization procedures in selected patients: a correlation study of xenon contrast-enhanced CT and PWI. Neurosurg Rev 2008; 32:29-35; discussion 35-6. [PMID: 18791753 DOI: 10.1007/s10143-008-0159-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/18/2008] [Accepted: 06/29/2008] [Indexed: 12/29/2022]
Abstract
In order to identify patients who suffer from hemodynamic cerebral insufficiency and can benefit from cerebral revascularization procedures, xenon-CT scanning has been established to reliably measure the critical cerebrovascular reserve capacity. As a need for alternative quantification methods arises, this study aims to characterize the significance of both time-to-peak (TTP) and mean transit time (MTT) in perfusion-weighted imaging (PWI) in this particular subset of patients. Ten patients in routine preoperative work-up for cerebral revascularization were prospectively enrolled and underwent both XeCT scanning and PWI. Cerebrovascular reserve capacity (CVRC) was calculated for each region of interest (ROI, n = 504) after administration of a vasoactive stimulus. ROIs were anatomically matched with those of PWI after TTP and MTT were calculated. Highly significant negative correlation was found for TTP and CVRC for all ROIs (r = -0.3954, p < 0.0001; symptomatic ROIs: r = -0.4867, p < 0.0001). Correlation was weak for MTT and CVCR (r = -0.1287; p < 0.01). The optimum threshold for TTP to detect impaired cerebrovascular reactivity in our patient group was 4 s (specificity 90.8%, sensitivity 44.4%) for all ROIs (TTP > 4.4 s for symptomatic ROIs, specificity 88.4%, sensitivity 62.7%). An approximative equation to calculate the probability of pathological findings could be derived from the data. The positive predictive value (PPV) was 0.76 (symptomatic 0.78) with a negative predictive value (NPV) of 0.71 (symptomatic 0.78). While PWI currently is not able to replace XeCT in the direct quantification of CVRC, it may serve as a readily available follow-up tool. A TTP threshold of greater than 4 s allows to confirm a cerebrovascular compromise in a selected high-risk subgroup of patients.
Collapse
|
19
|
Mandell DM, Han JS, Poublanc J, Crawley AP, Kassner A, Fisher JA, Mikulis DJ. Selective reduction of blood flow to white matter during hypercapnia corresponds with leukoaraiosis. Stroke 2008; 39:1993-8. [PMID: 18451357 DOI: 10.1161/strokeaha.107.501692] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Age-related white matter disease (leukoaraiosis) clusters in bands in the centrum semiovale, about the occipital and frontal horns of the lateral ventricles, in the corpus callosum, and internal capsule. Cerebrovascular anatomy suggests that some of these locations represent border zones between arterial supply territories. We hypothesized that there are zones of reduced cerebrovascular reserve (susceptible to selective reductions in blood flow, ie, steal phenomenon) in the white matter of young, healthy subjects, the physiological correlate of these anatomically defined border zones. Furthermore, we hypothesized that these zones spatially correspond with the regions where the elderly develop leukoaraiosis. METHODS Twenty-eight healthy volunteers underwent functional MR mapping of the cerebrovascular response to hypercapnia. We studied 18 subjects by blood oxygen level-dependent MRI and 10 subjects by arterial spin labeling MRI. We controlled both end-tidal pCO(2) and pO(2). All functional data was registered in Montreal Neurological Institute space and generated composite blood oxygen level-dependent MR and arterial spin labeling MR maps of cerebrovascular reserve. We compared these maps with frequency maps of leukoaraiosis published previously. RESULTS Composite maps demonstrated significant (90% CI excluding the value zero) steal phenomenon in the white matter. This steal was induced by relatively small changes in end-tidal pCO(2). It occurred precisely in those locations where elderly patients develop leukoaraiosis. CONCLUSIONS This steal phenomenon likely represents the physiological correlate of the previously anatomically defined internal border zones. Spatial concordance with white matter changes in the elderly raises the possibility that this steal phenomenon may have a pathogenetic role.
Collapse
Affiliation(s)
- Daniel M Mandell
- Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Mandell DM, Han JS, Poublanc J, Crawley AP, Stainsby JA, Fisher JA, Mikulis DJ. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in Patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 2008; 39:2021-8. [PMID: 18451352 DOI: 10.1161/strokeaha.107.506709] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Blood oxygen level-dependent MRI (BOLD MRI) of hypercapnia-induced changes in cerebral blood flow is an emerging technique for mapping cerebrovascular reactivity (CVR). BOLD MRI signal reflects cerebral blood flow, but also depends on cerebral blood volume, cerebral metabolic rate, arterial oxygenation, and hematocrit. The purpose of this study was to determine whether, in patients with stenoocclusive disease, the BOLD MRI signal response to hypercapnia is directly related to changes in cerebral blood flow. METHODS Thirty-eight patients with stenoocclusive disease underwent mapping of CVR by both BOLD MRI and arterial spin labeling MRI. The latter technique was used as a reference standard for measurement of cerebral blood flow changes. RESULTS Hemispheric CVR measured by BOLD MRI was significantly correlated with that measured by arterial spin labeling MRI for both gray matter (R=0.83, P<0.0001) and white matter (R=0.80, P<0.0001). Diagnostic accuracy (area under receiver operating characteristic curve) for BOLD MRI discrimination between normal and abnormal hemispheric CVR was 0.90 (95% CI=0.81 to 0.98; P<0.001) for gray matter and 0.82 (95% CI=0.70 to 0.94; P<0.001) for white matter. Regions of paradoxical CVR on BOLD MRI had a moderate predictive value (14 of 19 hemispheres) for spatially corresponding paradoxical CVR on arterial spin labeling MRI. Complete absence of paradoxical CVR on BOLD MRI had a high predictive value (31 of 31 hemispheres) for corresponding nonparadoxical CVR on arterial spin labeling MRI. CONCLUSIONS Arterial spin labeling MRI confirms that, even in patients with stenoocclusive disease, the BOLD MRI signal response to hypercapnia predominantly reflects changes in cerebral blood flow.
Collapse
Affiliation(s)
- Daniel M Mandell
- Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Ma J, Mehrkens JH, Holtmannspoetter M, Linke R, Schmid-Elsaesser R, Steiger HJ, Brueckmann H, Bruening R. Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion: comparison with 99mTc-ECD SPECT. Neuroradiology 2007; 49:317-26. [PMID: 17200864 DOI: 10.1007/s00234-006-0193-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 11/14/2006] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Impaired cerebral vascular reserve (CVR) in patients with symptomatic internal carotid artery (ICA) occlusion is regarded as a possible indication for performing extra-/intracranial (EC/IC) bypass surgery. As perfusion MR imaging (MRI) can demonstrate cerebral haemodynamics at capillary level, our hypothesis was that perfusion MRI could be used in these patients for the evaluation of CVR following acetazolamide challenge in a similar way to single photon emission CT (SPECT) and might provide additional information. METHODS Enrolled in the study were 12 patients (mean age 61.3 years; 11 male, 1 female) with symptomatic unilateral ICA occlusion proven by angiography. Both perfusion MRI and 99m-technetium-ethyl-cysteinate dimer ((99m)Tc-ECD) SPECT were performed before and after injection of acetazolamide (Diamox ,1000 mg i.v.). CVR parameters including regional cerebral blood flow (rCBF) and volume (rCBV), and mean transit times (MTT) were measured by perfusion MRI. RESULTS The patients with impaired CVR proven by SPECT (n = 9) had a negative mean rCBF increment (-46.52%), negative rCBV increment (-13.5%) and delayed MTT (mean +2.98 s), respectively, on the occluded side (Student's t-test all P < 0.05). The patients with sufficient CVR (n = 3) had a mean rCBF increment of 1.2%, a decrement of rCBV of 10.46%, and a mean MTT shortening of 0.27 s following the acetazolamide injection. CONCLUSIONS Perfusion MRI before and after acetazolamide administration compares favourably with (99m)Tc-ECD SPECT for the detection of impaired CVR. The impact that perfusion MRI studies (before and after acetazolamide administration) might have on the treatment decision in patients with ICA occlusion has yet to be determined by a prospective study.
Collapse
Affiliation(s)
- J Ma
- Department of Neuroradiology, Klinikum Grosshadern, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Marshall RS, Krakauer JW, Matejovsky T, Zarahn E, Barnes A, Lazar RM, Hirsch J. Hemodynamic impairment as a stimulus for functional brain reorganization. J Cereb Blood Flow Metab 2006; 26:1256-62. [PMID: 16421509 DOI: 10.1038/sj.jcbfm.9600274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used functional magnetic resonance imaging to investigate whether hemispheral hemodynamic impairment can play an independent role in the functional reorganization of motor-related activity in the brain. Fourteen patients with large vessel occlusion but no infarct performed a simple motor task with the hand contralateral to the occluded vessel. Statistical parametric maps of regional activity were generated to compare the distribution of motor-related activity among patients with that of control subjects. Patients were classified into normal or abnormal cerebral hemodynamics on the basis of intracerebral vasomotor reactivity using transcranial Doppler and carbon dioxide inhalation. Controls and patients with normal vasomotor reactivity showed typical motor activity in contralateral motor areas. When the 9 patients with abnormal vasomotor reactivity were compared with the 14 control subjects in a single analysis, unique motor activation was identified in ipsilateral motor regions in the nonhypoperfused hemisphere. In a confirmatory analysis, blood oxygen level-dependent (BOLD) signal intensity was averaged in prespecified motor regions of interest. A significant group by hemisphere interaction was identified, driven by higher ipsilateral and lower contralateral hemisphere BOLD signal in patients with abnormal vasomotor reactivity compared with controls (F=12.40, P=0.002). The average ipsilateral motor region signal intensity was also significantly higher in the subgroup of patients with abnormal vasoreactivity and no TIA compared with controls (P=0.04). Our results suggest that hemodynamic impairment in one hemisphere, even in the absence of any focal lesion or any symptoms can be associated with a functional reorganization to the opposite hemisphere.
Collapse
Affiliation(s)
- Randolph S Marshall
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ledermann HP, Schulte AC, Heidecker HG, Aschwanden M, Jäger KA, Scheffler K, Steinbrich W, Bilecen D. Blood Oxygenation Level–Dependent Magnetic Resonance Imaging of the Skeletal Muscle in Patients With Peripheral Arterial Occlusive Disease. Circulation 2006; 113:2929-35. [PMID: 16785340 DOI: 10.1161/circulationaha.105.605717] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Blood oxygenation level–dependent (BOLD) magnetic resonance imaging (MRI) has been used to measure T2* changes in skeletal muscle tissue of healthy volunteers. The BOLD effect is assumed to primarily reflect changes in blood oxygenation at the tissue level. We compared the calf muscle BOLD response of patients with peripheral arterial occlusive disease (PAOD) to that of an age-matched non-PAOD group during postischemic reactive hyperemia.
Methods and Results—
PAOD patients (n=17) with symptoms of intermittent calf claudication and an age-matched non-PAOD group (n=11) underwent T2*-weighted single-shot multiecho planar imaging on a whole-body magnetic resonance scanner at 1.5 T. Muscle BOLD MRI of the calf was performed during reactive hyperemia provoked by a cuff-compression paradigm. T2* maps were generated with an automated fitting procedure. Maximal T2* change (ΔT2*
max
) and time to peak to reach ΔT2*
max
for gastrocnemius, soleus, tibial anterior, and peroneal muscle were evaluated. Compared with the non-PAOD group, patients revealed significantly lower ΔT2*
max
-values, with a mean of 7.3±5.3% versus 13.1±5.6% (
P
<0.001), and significantly delayed time-to-peak values, with a mean of 109.3±79.3 versus 32.2±13.3 seconds (
P
<0.001).
Conclusions—
T2* time courses of the muscle BOLD MRI signal during postocclusive reactive hyperemia revealed statistically significant differences in the key parameters (ΔT2*
max
; time to peak) in PAOD patients compared with age-matched non-PAOD controls.
Collapse
Affiliation(s)
- Hans-Peter Ledermann
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Roc AC, Wang J, Ances BM, Liebeskind DS, Kasner SE, Detre JA. Altered hemodynamics and regional cerebral blood flow in patients with hemodynamically significant stenoses. Stroke 2005; 37:382-7. [PMID: 16373653 DOI: 10.1161/01.str.0000198807.31299.43] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Blood oxygen level-dependent (BOLD) contrast largely depends on changes in cerebral blood flow (CBF). Because cerebrovascular disease may result in altered CBF, we assessed the temporal dynamics and magnitude of the BOLD response in patients with major arterial stenoses. METHODS Seven patients with hemodynamically significant stenoses affecting the anterior circulation (primarily left internal carotid and middle cerebral arteries) were compared with 7 neurologically healthy subjects. Continuous arterial spin-labeled perfusion MRI was used to measure resting CBF globally and within various vascular distributions. The BOLD response was acquired during a visually guided bilateral handball squeeze task while motor performance was recorded by a pressure transducer. RESULTS Baseline CBF was reduced in bilateral middle cerebral artery and left anterior cerebral artery territories in patients. A prolonged BOLD hemodynamic response was observed in patients in bilateral primary motor cortices but not visual cortex. Patients also exhibited a larger early negative BOLD response, or "initial dip," in left primary motor cortex. There were no differences in motor performance between groups, suggesting behavioral differences were not primarily responsible for the characteristics of the BOLD response. CONCLUSIONS An initial deoxygenation followed by a delayed hyperemic BOLD response was observed in patients, although resting flow values were not within an ischemic range. A simple visuomotor BOLD activation paradigm can reflect alterations in the hemodynamic response in patients with hemodynamically significant stenoses.
Collapse
Affiliation(s)
- Anne C Roc
- Center for Functional Neuroimaging, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Seghier ML, Lazeyras F, Pegna AJ, Annoni J, Zimine I, Mayer E, Michel CM, Khateb A. Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp 2004; 23:140-55. [PMID: 15449358 PMCID: PMC6871802 DOI: 10.1002/hbm.20053] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Assessing inter-individual variability of functional activations is of practical importance in the use of functional magnetic resonance imaging (fMRI) in a clinical context. In this fMRI study we addressed this issue in 30 right-handed, healthy subjects using rhyme detection (phonologic) and semantic categorization tasks. Significant activations, found mainly in the left hemisphere, concerned the inferior frontal gyrus, the superior/middle temporal gyri, the prefrontal cortex, the inferior parietal lobe, the superior parietal lobule/superior occipital gyrus, the pre-central gyrus, and the supplementary motor area. Intensity/spatial analysis comparing activations in both tasks revealed an increased involvement of frontal regions in the semantic task and of temporo-parietal regions in the phonologic task. The frequency of activation analyzed in nine regional subdivisions revealed a high inter-subject variability but showed that the most frequently activated regions were the inferior frontal gyrus and the prefrontal cortex. Laterality indices, strongly lateralizing in both tasks, were slightly higher in the semantic (0.76 +/- 0.19) than the phonologic task (0.66 +/- 0.27). Frontal dominance indices (a measure of frontal vs. posterior left hemisphere dominance) indicated more robust frontal activations in the semantic than the phonologic task. Our study allowed the characterization of the most frequently involved foci in two language tasks and showed that the combination of these tasks constitutes a suitable tool for determining language lateralization and for mapping major language areas.
Collapse
Affiliation(s)
- Mohamed L. Seghier
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
- Plurifaculty Program of Cognitive Neuroscience, University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Alan J. Pegna
- Neuropsychology Unit, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
- Functional Brain Mapping Laboratory, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Jean‐Marie Annoni
- Neuropsychology Unit, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Ivan Zimine
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Eugène Mayer
- Neuropsychology Unit, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Christoph M. Michel
- Functional Brain Mapping Laboratory, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Asaid Khateb
- Neuropsychology Unit, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
- Functional Brain Mapping Laboratory, Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
26
|
Matsumoto KI, English S, Yoo J, Yamada KI, Devasahayam N, Cook JA, Mitchell JB, Subramanian S, Krishna MC. Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn Reson Med 2004; 52:885-92. [PMID: 15389949 DOI: 10.1002/mrm.20222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The paramagnetic spin probe Oxo63 is used in oximetric imaging studies based on electron paramagnetic resonance (EPR) methods by monitoring the oxygen-dependent linewidth while minimizing the contributions from self-broadening seen at high probe concentrations. Therefore, it is necessary to determine a suitable dose of Oxo63 for EPR-based oxygen mapping where the self-broadening effects are minimized while signal intensity adequate for imaging can be realized. A constant tissue concentration of spin probe would be useful to image a subject and assess changes in pO2 over time; accumulation or elimination of the compound in specific anatomical regions could translate to and be mistaken for changes in local pO2, especially in OMRI-based oximetry. The in vivo pharmacokinetics of the spin probe, Oxo63, after bolus and/or continuous intravenous infusion was investigated in mice using a novel approach with X-band EPR spectroscopy. The results show that the half-life in blood was 17-21 min and the clearance by excretion was 0.033-0.040 min(-1). Continuous infusion following a bolus injection of the probe was found to be effective to obtain stable plasma concentration as well as image intensity to permit reliable pO2 estimates.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|