1
|
Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, Austbø ML, Lin X, Bergersen LH, Bjørås M, Rinholm JE. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife 2022; 11:76451. [PMID: 35942676 PMCID: PMC9363115 DOI: 10.7554/elife.76451] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.
Collapse
Affiliation(s)
- Lauritz Kennedy
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emilie R Glesaaen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Al-Jabri
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Niklas Meyer
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marie Landa Austbø
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johanne E Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Chang J, Lurie RH, Sharma A, Bashir M, Fung CM, Dettman RW, Dizon MLV. Intrauterine growth restriction followed by oxygen support uniquely interferes with genetic regulators of myelination. eNeuro 2021; 8:ENEURO.0263-20.2021. [PMID: 34099489 PMCID: PMC8266217 DOI: 10.1523/eneuro.0263-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Intrauterine growth restriction (IUGR) and oxygen exposure in isolation and combination adversely affect the developing brain, putting infants at risk for neurodevelopmental disability including cerebral palsy. Rodent models of IUGR and postnatal hyperoxia have demonstrated oligodendroglial injury with subsequent white matter injury (WMI) and motor dysfunction. Here we investigate transcriptomic dysregulation in IUGR with and without hyperoxia exposure to account for the abnormal brain structure and function previously documented. We performed RNA sequencing and analysis using a mouse model of IUGR and found that IUGR, hyperoxia, and the combination of IUGR with hyperoxia (IUGR/hyperoxia) produced distinct changes in gene expression. IUGR in isolation demonstrated the fewest differentially expressed genes compared to control. In contrast, we detected several gene alterations in IUGR/hyperoxia; genes involved in myelination were strikingly downregulated. We also identified changes to specific regulators including TCF7L2, BDNF, SOX2, and DGCR8, through Ingenuity Pathway Analysis, that may contribute to impaired myelination in IUGR/hyperoxia. Our findings show that IUGR with hyperoxia induces unique transcriptional changes in the developing brain. These indicate mechanisms for increased risk for WMI in IUGR infants exposed to oxygen and suggest potential therapeutic targets to improve motor outcomes.Significance StatementThis study demonstrates that perinatal exposures of IUGR and/or postnatal hyperoxia result in distinct transcriptomic changes in the developing brain. In particular, we found that genes involved in normal developmental myelination, myelin maintenance, and remyelination were most dysregulated when IUGR was combined with hyperoxia. Understanding how multiple risk factors lead to WMI is the first step in developing future therapeutic interventions. Additionally, because oxygen exposure is often unavoidable after birth, an understanding of gene perturbations in this setting will increase our awareness of the need for tight control of oxygen use to minimize future motor disability.
Collapse
Affiliation(s)
- Jill Chang
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| | - Robert H Lurie
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| | - Abhineet Sharma
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| | - Mirrah Bashir
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| | - Camille M Fung
- University of Utah, Department of Pediatrics, Salt Lake City, Utah, USA
| | - Robert W Dettman
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| | - Maria L V Dizon
- Children's Hospital of Chicago, Department of Pediatrics, Division of Neonatology, Chicago, Illinois, USA
| |
Collapse
|
3
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Abstract
Congenital spastic cerebral palsy (СР) is a large group of non-progressive disorders of the nervous system. The basis of the pathogenesis of these conditions is considered the impact of many factors. The clinical diversity of the disease and the syndromic principle of classification determine the existing uncertainties in the diagnosis of these diseases. The multifactorial nature of the underlying brain lesions is obvious and beyond doubt. The volume of information accumulated to date does not allow one to exclude the role and significance of the direct effect of acute asphyxiation in childbirth on a fetus normally formed during pregnancy, the role of infectious brain lesions, and disorders of neuronal migration. It is impossible to ignore the dependence of the clinical picture of the disease on what stage of ontogenesis the impact of the damaging agent occurs. As one of the pathogenetic factors, the genetic determinism of the phenotype of the clinical picture of a disease is fairly considered. This review focuses on the genetic aspects of the pathogenesis of this pathology. The information on monogenic mechanisms of inheritance is analyzed in detail. Such genetically determined mechanisms of pathogenesis as the inheritance of prerequisites for brain trauma in the perinatal period are considered separately. The new clinically significant variants of chromosomal mutations found in patients with CР are reviewed in detail, the evidence of the influence of genetic factors on the development of cerebral palsy in the absence of a pronounced monogenic cause of the disease, obtained through twin studies, is reviewed. Lit search of polymorphisms markers of predisposition to the development of cerebral palsy genes of the folate cycle, genes of glutamate receptors, the gene of apolipoprotein and of the gene for the transcription factor of oligodendrocytes (OLIG2) in Detail the role of epigenetic effects on the activity of genes coding for mitochondrial proteins.
Collapse
|
5
|
Markus T, Ley D, Hansson SR, Wieloch T, Ruscher K. Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation. BMC Neurosci 2018. [PMID: 29523072 PMCID: PMC5845293 DOI: 10.1186/s12868-018-0415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. Results Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen–glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. Conclusions Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain. Electronic supplementary material The online version of this article (10.1186/s12868-018-0415-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tina Markus
- Department of Pediatrics, Lund University, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
6
|
Venkatraman A, Hardas S, Patel N, Singh Bajaj N, Arora G, Arora P. Galectin-3: an emerging biomarker in stroke and cerebrovascular diseases. Eur J Neurol 2017; 25:238-246. [PMID: 29053903 DOI: 10.1111/ene.13496] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The carbohydrate-binding molecule galectin-3 has garnered significant attention recently as a biomarker for various conditions ranging from cardiac disease to obesity. Although there have been several recent studies investigating its role in stroke and other cerebrovascular diseases, awareness of this emerging biomarker in the wider neurology community is limited. We performed a systematic search in PubMed, Embase, Scopus, CINAHL, Clinicaltrials.gov and the Cochrane library in November and December 2016 for articles related to galectin-3 and cerebrovascular disease. We included both human and pre-clinical studies in order to provide a comprehensive view of the state of the literature on this topic. The majority of the relevant literature focuses on stroke, cerebral ischemia and atherosclerosis, but some recent attention has also been devoted to intracranial and subarachnoid hemorrhage. Higher blood levels of galectin-3 correlate with worse outcomes in atherosclerotic disease as well as in intracranial and subarachnoid hemorrhage in human studies. However, experimental evidence supporting the role of galectin-3 in these phenotypes is not as robust. It is likely that the role of galectin-3 in the inflammatory cascade within the central nervous system following injury is responsible for many of its effects, but its varied physiological functions and multiple sites of expression mean that it may have different effects depending on the nature of the disease condition and the time since injury. In summary, experimental and human research raises the possibility that galectin-3, which is closely linked to the inflammatory cascade, could be of value as a prognostic marker and therapeutic target in cerebrovascular disease.
Collapse
Affiliation(s)
- A Venkatraman
- Department of Neurology, Massachusetts General Hospital/Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - S Hardas
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - N Patel
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - N Singh Bajaj
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - G Arora
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - P Arora
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
7
|
Baburamani AA, Sobotka KS, Vontell R, Mallard C, Supramaniam VG, Thornton C, Hagberg H. Effect of Trp53 gene deficiency on brain injury after neonatal hypoxia-ischemia. Oncotarget 2017; 8:12081-12092. [PMID: 28076846 PMCID: PMC5355327 DOI: 10.18632/oncotarget.14518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-ischemia (HI) can result in permanent life-long injuries such as motor and cognitive deficits. In response to cellular stressors such as hypoxia, tumor suppressor protein p53 is activated, potently initiating apoptosis and promoting Bax-dependent mitochondrial outer membrane permeabilization. The aim of this study was to investigate the effect of Trp53 genetic inhibition on injury development in the immature brain following HI. HI (50 min or 60 min) was induced at postnatal day 9 (PND9) in Trp53 heterozygote (het) and wild type (WT) mice. Utilizing Cre-LoxP technology, CaMK2α-Cre mice were bred with Trp53-Lox mice, resulting in knockdown of Trp53 in CaMK2α neurons. HI was induced at PND12 (50 min) and PND28 (40 min). Extent of brain injury was assessed 7 days following HI. Following 50 min HI at PND9, Trp53 het mice showed protection in the posterior hippocampus and thalamus. No difference was seen between WT or Trp53 het mice following a severe, 60 min HI. Cre-Lox mice that were subjected to HI at PND12 showed no difference in injury, however we determined that neuronal specific CaMK2α-Cre recombinase activity was strongly expressed by PND28. Concomitantly, Trp53 was reduced at 6 weeks of age in KO-Lox Trp53 mice. Cre-Lox mice subjected to HI at PND28 showed no significant difference in brain injury. These data suggest that p53 has a limited contribution to the development of injury in the immature/juvenile brain following HI. Further studies are required to determine the effect of p53 on downstream targets.
Collapse
Affiliation(s)
- Ana A Baburamani
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kristina S Sobotka
- Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Regina Vontell
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Veena G Supramaniam
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
8
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
9
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
10
|
Sun X, Crawford R, Liu C, Luo T, Hu B. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis 2015; 82:123-131. [PMID: 26070787 DOI: 10.1016/j.nbd.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular stress response after hypoxia-Ischemia (HI) may be substantially different between immature and mature brains. To study this phenomenon, postnatal day 7 (P7) and P26 rats were subjected to HI followed by different periods of recovery. Nuclear accumulation of heat-shock transcription factor-1 (HSF1) and expression of molecular chaperone proteins and mRNAs were analyzed by in situ hybridization, Western blotting and confocal microscopy. Nuclear accumulation of HSF1 protein and induction of hsp70 mRNA occurred dramatically in P26 neurons, but minimally in P7 neurons and moderately in microglial cells after HI. Consistently, the level of HSF1 was significantly higher in P26 brain samples, compared with that in P7 brain. Translation of hsp70 mRNA into proteins in P26 mature neurons was seen at 4h and peaked at 24h, when some neurons had already died after HI. Induction of ER glucose-regulated protein-78 (grp78) and mitochondrial hsp60 mRNAs and proteins was moderate and occurred also only in P26 mature brain after HI. These results suggest that the cellular stress response after HI is development-dependent, being pronounced in mature but virtually negligible in neonatal neurons. Therefore, the effectiveness of therapeutic strategies targeting the stress pathway against HI may be significantly different between immature and mature brains. The delayed induction of molecular chaperones in mature brain may be somewhat late for protecting HI neurons from acute HI injury.
Collapse
Affiliation(s)
- Xin Sun
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA; Department of Neurology, The First Teaching Hospital, Jilin University, China
| | - Robert Crawford
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Chunli Liu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Tianfei Luo
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Bingren Hu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA.
| |
Collapse
|
11
|
Bonestroo HJC, Nijboer CH, van Velthoven CTJ, van Bel F, Heijnen CJ. The neonatal brain is not protected by osteopontin peptide treatment after hypoxia-ischemia. Dev Neurosci 2015; 37:142-52. [PMID: 25765537 DOI: 10.1159/000369093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy due to perinatal hypoxia-ischemia (HI) is a severe condition, and current treatment options are limited. Expression of endogenous osteopontin (OPN), a multifunction glycoprotein, is strongly upregulated in the brain after neonatal HI. Intracerebrally administered OPN has been shown to be neuroprotective following experimental neonatal HI and adult stroke. In the present study, we determined whether intranasal, intraperitoneal or intracerebral treatment with a smaller TAT-OPN peptide is neuroprotective in neonatal mice with HI brain damage. The TAT-OPN peptide exerts bioactivity as it was as potent as full-length OPN in inducing cell adhesion in an in vitro adhesion assay. Intranasal administration of TAT-OPN peptide immediately after HI (T0) or in a repetitive treatment schedule of T0, 3 h, day (D) 1, 2 and 3 after HI did not protect cerebral gray or white matter after HI. Intraperitoneal TAT-OPN treatment at T0 or in two extended treatment schedules (D5, 7, 9, 11, 13, 15 after HI or T0, D1, 3, 5, 7, 9, 11, 13 and 15 after HI) did not result in neuroprotection either. Moreover, no functional improvement (cylinder rearing test and adhesive removal task) was observed following TAT-OPN treatment in any of the intraperitoneal treatment schedules. We validated that the TAT-OPN peptide reached the brain after intranasal or intraperitoneal administration by using an HIV-TAT staining. Finally, also intracerebral administration of the TAT-OPN peptide 1 h after HI did not reduce cerebral damage. Our data show that administration of the TAT-OPN peptide did not exert neuroprotective effects on neonatal HI-induced brain injury or sensorimotor behavioral deficits.
Collapse
Affiliation(s)
- Hilde J C Bonestroo
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res 2015; 286:152-65. [PMID: 25746450 DOI: 10.1016/j.bbr.2015.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
There is no satisfactory therapeutic intervention for neonatal hypoxic-ischemic (HI) encephalopathy. Progesterone is known to be effective in treating traumatic brain injury in adult animals but its effects in neonatal brains have not been reported. Brain injuries were induced by a unilateral common carotid artery ligation plus hypoxia exposure. Progesterone was administered immediately after hypoxia and daily for 5 days at 8 mg/kg, followed by a tapered dose for two days. At six weeks post-injury, lesion size and inflammatory factors were evaluated. Progesterone-treated, HI-injured male animals, but not females, showed significant long-term tissue protection compared to vehicle, suggesting an important sex difference in neuroprotection. Progesterone-treated, HI-injured male rats had fewer activated microglia in the cortex and hippocampus compared to controls. The rats were tested for neurological reflexes, motor asymmetry, and cognitive performance at multiple time points. The injured animals exhibited few detectable motor deficits, suggesting a high level of age- and injury-related neuroplasticity. There were substantial sex differences on several behavioral tests, indicating that immature males and females should be analyzed separately. Progesterone-treated animals showed modest beneficial effects in both sexes compared to vehicle-treated injured animals. Sham animals given progesterone did not behave differently from vehicle-treated sham animals on any measures.
Collapse
Affiliation(s)
- Bethany L Peterson
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Soonmi Won
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Shahaduzzaman MD, Mehta V, Golden JE, Rowe DD, Green S, Tadinada R, Foran EA, Sanberg PR, Pennypacker KR, Willing AE. Human umbilical cord blood cells induce neuroprotective change in gene expression profile in neurons after ischemia through activation of Akt pathway. Cell Transplant 2015; 24:721-35. [PMID: 25413246 DOI: 10.3727/096368914x685311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.
Collapse
Affiliation(s)
- M D Shahaduzzaman
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Järlestedt K, Rousset CI, Ståhlberg A, Sourkova H, Atkins AL, Thornton C, Barnum SR, Wetsel RA, Dragunow M, Pekny M, Mallard C, Hagberg H, Pekna M. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic‐ischemic brain injury. FASEB J 2013; 27:3797-804. [DOI: 10.1096/fj.13-230011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Anders Ståhlberg
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hana Sourkova
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alison L. Atkins
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Scott R. Barnum
- Department of MicrobiologyUniversity of AlabamaBirminghamAlabamaUSA
| | - Rick A. Wetsel
- Research Center for Immunology and Autoimmune DiseasesInstitute of Molecular Medicine for the Prevention of Human DiseasesUniversity of Texas‐HoustonHoustonTexasUSA
| | - Mike Dragunow
- Department of PharmacologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- The National Research Centre for Growth and DevelopmentFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Milos Pekny
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Obstetrics and GynecologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for the Developing BrainKing's CollegeLondonUK
| | - Marcela Pekna
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
15
|
Girard S, Sébire H, Brochu ME, Briota S, Sarret P, Sébire G. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012; 26:1331-9. [PMID: 22982341 PMCID: PMC5023428 DOI: 10.1016/j.bbi.2012.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023] Open
Abstract
New therapeutic strategies are needed to protect neonates, especially premature newborns, against brain injury and associated neurobehavioral deficits. The role of pro-inflammatory cytokines, especially IL-1β, in the pathophysiological pathway leading to neonatal brain damage is increasingly recognized and represents an attractive therapeutic target. We investigated the therapeutic potential of postnatal systemic administration of the interleukin (IL)-1 receptor antagonist (IL-1Ra) in an animal model of perinatal brain injury using the insults most common to human neonates, i.e. prenatal exposure to inflammation and/or postnatal hypoxia-ischaemia (HI). We found that postnatal administration of IL-1Ra preserved motor function and exploratory behavior after either prenatal exposure to inflammatory agent lipopolysaccharide (LPS) or postnatal HI insult. The deleterious effect of combined prenatal LPS and postnatal HI on brain development was also alleviated by administration of IL-1Ra, as seen by the protected neural stem cell population, prevention of myelin loss in the internal capsule, decreased gliosis, and decreased neurobehavioral impairment. This study showed the distinct pattern of functional deficits induced by prenatal inflammation as compared to postnatal HI and the therapeutic potential of IL-1Ra administration against neonatal brain injury. Furthermore, our results highlight the potential for postnatal treatment of prenatal inflammatory stressors.
Collapse
Affiliation(s)
- Sylvie Girard
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hugues Sébire
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Elsa Brochu
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sinziana Briota
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Physiologie et Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Sébire
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Hundahl CA, Luuk H, Ilmjärv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A. Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 2011; 6:e28160. [PMID: 22164238 PMCID: PMC3229544 DOI: 10.1371/journal.pone.0028160] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. PRINCIPAL FINDINGS Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. SIGNIFICANCE According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| | - Hendrik Luuk
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- * E-mail: (CAH); (HL); (AHS)
| | - Sten Ilmjärv
- Department of Physiology, University of Tartu, Tartu, Estonia
- Quretec Ltd, Tartu, Estonia
| | - Birgitte Falktoft
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Vikesaa
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| |
Collapse
|
17
|
van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun 2011; 25:1342-8. [PMID: 21473911 DOI: 10.1016/j.bbi.2011.03.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cell (MSC) treatment is an effective strategy to reduce brain damage after neonatal hypoxia-ischemia (HI) in mice. We recently showed that a single injection with MSC at either 3 or 10 days after HI (MSC-3 or MSC-10) increases neurogenesis. In case of two injections (MSC-3+10), the second MSC application does not increase neurogenesis, but promotes corticospinal tract remodeling. Here we investigated GFP(+)-MSC engraftment level in the brain using quantitative-PCR analysis. We show for the first time that in the neonatal ischemic brain survival of transplanted MSC is very limited. At 3 days after injection ∼22% of transplanted MSC were still detectable and 18 days after the last administration barely ∼1%. These findings indicate that engraftment of MSC is not likely the underlying mechanism of the efficient regenerative process. Therefore, we tested the hypothesis that the effects of MSC-treatment on regenerative processes are related to specific changes in the gene expression of growth factors and cytokines in the damaged area of the brain using PCR-array analysis. We compared the effect of one (MSC-10) or two (MSC-3+10) injections of 10(5) MSC on gene expression in the brain. Our data show that MSC-10 induced expression of genes regulating proliferation/survival. In response to MSC-3+10-treatment a pattern functionally categorized as growth stimulating genes was increased. Collectively, our data indicate that specific regulation of the endogenous growth factor milieu rather than replacement of damaged tissue by exogenous MSC mediates regeneration of the damaged neonatal brain by MSC-treatment.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
18
|
Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics 2010; 11:119-37. [PMID: 20922447 DOI: 10.1007/s10142-010-0195-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/06/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023]
Abstract
Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.
Collapse
|
19
|
Israelsson C, Wang Y, Kylberg A, Pick CG, Hoffer BJ, Ebendal T. Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J Neurotrauma 2010; 26:1307-14. [PMID: 19317611 DOI: 10.1089/neu.2008.0676] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis. At three days post-injury, the results showed unilateral injury responses, both in neocortex and hippocampus, with the main effect seen on the side of the skull hit by the dropping weight. Upregulated transcripts encoded products characterizing reactive astrocytes, phagocytes, microglia, and immune-reactive cells. Markers for oligodendrocytes and T-cells were not altered. Notably, strong differences in the responses among individual mice were seen (e.g., for the Gfap transcript expressed by reactive astrocytes and the chemokine Ccl3 transcript expressed by activated microglial cells). In conclusion, mild TBI chiefly activates transcripts leading to tissue signaling, inflammatory processes, and chemokine signaling, as in focal brain injury, suggesting putative targets for drug development.
Collapse
Affiliation(s)
- Charlotte Israelsson
- Developmental Neuroscience, Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Gene network analysis to determine the effects of antioxidant treatment in a rat model of neonatal hypoxic-ischemic encephalopathy. J Mol Neurosci 2010; 42:154-61. [PMID: 20191329 DOI: 10.1007/s12031-010-9337-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy can lead to severe brain damage, and is a common cause of neurological handicaps in adulthood. HI can be resolved by the administration of an antioxidant such as 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186). In the present study, we performed comprehensive gene expression and gene network analyses using a DNA microarray to elucidate the molecular events responsible for the selective vulnerability of neurons in neonatal HI brain insult and to examine the underlying mechanisms of the effect of MCI-186 on the pathophysiological events in this condition. We used the modified Levine method (Rice model), which has been widely used as an animal model of this condition. A large difference in gene expression was observed between the Rice model and the control group. Up- and downregulated genes after the HI brain insult were mainly related to immune responses and cell death, and neuronal activity, respectively. The effect of MCI-186 administration on gene expression was much less than and contrary to that of the HI brain insult, reflecting the protective effect of MCI-186 in HI brain insult.
Collapse
|
21
|
Vexler ZS, Yenari MA. Does inflammation after stroke affect the developing brain differently than adult brain? Dev Neurosci 2009; 31:378-93. [PMID: 19672067 DOI: 10.1159/000232556] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/03/2009] [Indexed: 12/13/2022] Open
Abstract
The immature brain is prone to hypoxic-ischemic encephalopathy and stroke. The incidence of arterial stroke in newborns is similar to that in the elderly. However, the pathogenesis of ischemic brain injury is profoundly affected by age at the time of the insult. Necrosis is a dominant type of neuronal cell death in adult brain, whereas widespread neuronal apoptosis is unique for the early postnatal synaptogenesis period. The inflammatory response, in conjunction with excitotoxic and oxidative responses, is the major contributor to ischemic injury in both the immature and adult brain, but there are several areas where these responses diverge. We discuss the contribution of various inflammatory mechanisms to injury and repair after cerebral ischemia in the context of CNS immaturity. In particular, we discuss the role of lower expression of selectins, a more limited leukocyte transmigration, undeveloped complement pathways, a more rapid microglial activation, differences in cytokine and chemokine interplay, and a different threshold to oxidative stress in the immature brain. We also discuss differences in activation of intracellular pathways, especially nuclear factor kappaB and mitogen-activated protein kinases. Finally, we discuss emerging data on both the supportive and adverse roles of inflammation in plasticity and repair after stroke.
Collapse
Affiliation(s)
- Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, CA 94143-0663, USA.
| | | |
Collapse
|
22
|
Delayed P2X4R expression after hypoxia-ischemia is associated with microglia in the immature rat brain. J Neuroimmunol 2009; 212:35-43. [PMID: 19447505 DOI: 10.1016/j.jneuroim.2009.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 01/04/2023]
Abstract
In a preterm hypoxia-ischemia model in the post-natal day 3 rat, we characterized how the expression of purine ionotropic P2X(4) receptors change in the brain post-insult. After hypoxia-ischemia, P2X(4) receptor expression increased significantly and was associated with a late increase in ionised calcium binding adapter molecule-1 protein expression indicative of microglia cell activation. Minocycline, a potent inhibitor of microglia, attenuated the hypoxia-ischemia-induced increase in P2X(4) receptor expression. We postulate that P2X(4) receptor-positive microglia may represent a population of secondary injury-induced activated microglia. Future studies will determine whether this population contributes to the progression of injury in the immature brain.
Collapse
|
23
|
McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol 2008; 35:777-92, vii. [PMID: 19026340 PMCID: PMC2901530 DOI: 10.1016/j.clp.2008.07.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intraventricular hemorrhage (IVH) occurs in 20% to 25% of very low birthweight preterm neonates and may be associated with significant sequelae. Infants who have IVH are at risk for posthemorrhagic hydrocephalus and periventricular leukomalacia; as many as 75% of those who have parenchymal involvement of hemorrhage suffer significant neurodevelopmental disability. Because of the prevalence of IVH and the medical and societal impact of this disease, many postnatal pharmacologic prevention strategies have been explored. Randomized clinical prevention trials should provide long-term neurodevelopmental follow-up to assess the impact of preterm birth, injury, and pharmacologic intervention on the developing brain.
Collapse
Affiliation(s)
| | - Laura R. Ment
- Departments of Pediatrics and Neurology, and Associate Dean for Admissions, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Huerta-Yepez S, Baay-Guzman GJ, Garcia-Zepeda R, Hernandez-Pando R, Vega MI, Gonzalez-Bonilla C, Bonavida B. 2-Methoxyestradiol (2-ME) reduces the airway inflammation and remodeling in an experimental mouse model. Clin Immunol 2008; 129:313-324. [PMID: 18793875 DOI: 10.1016/j.clim.2008.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/08/2008] [Accepted: 07/12/2008] [Indexed: 12/13/2022]
Abstract
Patients with asthma experience airway structural changes, termed airway remodeling, in response to persistent inflammation. 2-Methoxyestradiol (2-ME) is an anti-angiogenic agent and downregulates hypoxia-inducible factor 1 (HIF-1) and inhibits HIF-1alpha-induced transcriptional activation of vascular endothelial growth factor (VEGF) expression. We hypothesized that 2-ME may interfere with the development of the clinical manifestations of asthma. We used a chronic murine model of allergic airway inflammation with subepithelial fibrosis in BALB/c mice. Mice were sensitized with ovalbumin (OVA) that was administered intraperitoneally at days 0-5 and challenged intratracheally (IT) with OVA on days 12-22. The mice received 2-ME IT at days 24, 26 and 28 and sacrificed at day 32. The sensitized/challenged mice developed an extensive cell inflammatory response of the airways. 2-ME administration significantly reduced the cellular infiltrate in the perivascular and peribronchial lung tissues, reduced goblet mucous production, reduced airway fibrosis and thickness of smooth muscle and blood vessels, and reduced eosinophil infiltration. Mice treated with 2-ME had a significant decrease of HIF-1 and VEGF expression in the perivascular, peribronchial, and interstitium of lung tissues. Collagen IV expression was also significantly reduced in 2-ME treated mice compared to untreated mice. The 2-ME treatment was associated with a significant decrease of OVA-specific IgE antibodies. These findings provide the first indication that IT administration of 2-ME is effective in preventing and reversing antigen-induced airway remodeling in the OVA allergen inflammatory murine model. The potential role of 2-ME in patients is discussed.
Collapse
Affiliation(s)
- S Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
25
|
Profiling of chicken adipose tissue gene expression by genome array. BMC Genomics 2007; 8:193. [PMID: 17594506 PMCID: PMC1914355 DOI: 10.1186/1471-2164-8-193] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 06/27/2007] [Indexed: 12/02/2022] Open
Abstract
Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP), thyroid hormone-responsive protein (Spot14), lipoprotein lipase(LPL), insulin-like growth factor binding protein 7(IGFBP7) and major histocompatibility complex (MHC), were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1), apolipoprotein B(ApoB) and insulin-like growth factor 2(IGF2), were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of obesity in chickens.
Collapse
|
26
|
Stenzel-Poore MP, Stevens SL, King JS, Simon RP. Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 2007; 38:680-5. [PMID: 17261715 DOI: 10.1161/01.str.0000251444.56487.4c] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemic tolerance in the brain, in which sub-threshold insults increase resistance to subsequent injurious ischemia, is a powerful adaptive defense that involves an endogenous program of neuroprotection. Emerging evidence from genomic studies suggests diverse stimuli that trigger preconditioning achieve neuroprotection through a common process which depends on a fundamental reprogramming of the response to injury. Such reprogramming of the genomic response to injury leads to the induction of novel neuroprotective pathways not ordinarily found in the setting of ischemia. Genomic studies also indicate that the nature of the preconditioning stimulus (eg, brief ischemia or endotoxin [lipopolysaccharide]) dictates the phenotype of neuroprotection, a phenotype that parallels protective adaptations also found in certain physiological conditions where the preconditioning stimulus exists at levels that can induce injury. The idea that preconditioning leads to a fundamental reprogramming event that confers neuroprotection is a novel and important concept in the field of ischemic tolerance. Moreover, the view that distinct preconditioning stimuli confer neuroprotection via effectors that differ according to the nature of the preconditioning stimulus offers promise that multiple, nonoverlapping pathways may be discovered as novel neuroprotective therapies.
Collapse
Affiliation(s)
- Mary P Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in acute and sub-chronic stages of experimental stroke in both the adult and neonate. It will review the role of specific cell types and interactions among blood cells, endothelium, glia, microglia, the extracellular matrix and neurons - cumulatively called "neurovascular unit" - in stroke induction and evolution. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites, as well as the modifying role of age on these mechanisms, will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
|
28
|
Scher MS. Neonatal seizure classification: a fetal perspective concerning childhood epilepsy. Epilepsy Res 2006; 70 Suppl 1:S41-57. [PMID: 16889942 DOI: 10.1016/j.eplepsyres.2005.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/20/2022]
Abstract
Neonatal seizures are markers for time-specific etiologies during antepartum, intrapartum and neonatal time periods. Seizures with or without encephalopathic signs can represent a continuum of maternal, placental, fetal and neonatal risk factors and disease states. A multi-dimensional classification scheme for neonatal seizures is suggested that will help strategize specific therapeutic interventions to optimize neurologic outcome and anticipate later neurological morbidities including epilepsy risk. This scheme combines "epileptic" and "non-epileptic" seizure descriptions which capture time-specific and brain region-specific mechanisms for seizures. Synchronized video electroencephalographic monitoring provides the most accurate start and endpoints for cortically generated seizures. However, subcortical sites of injury may also initiate abnormal clinical signs with or without the subsequent expression of electrographic seizures. Co-registration of digital neuroimaging techniques such as magnetic resonance imaging with computational electroencephalographic datasets will provide more precise structure-function correlates for neonatal seizures that address both cortical and subcortical sites of injury. Finally, more precise definitions of neonatal status epilepticus need to be established because of the long-term harmful effects on brain development by prolonged seizures expressed as epilepsy and cognitive-behavioral deficits. With this expanded classification scheme for neonatal seizures, novel pharmacologic and surgical strategies can be designed for disease-specific rescue, repair, and regeneration strategies of damaged brain tissue that occur during fetal and neonatal periods, and are later expressed during infancy and childhood. Clinical neuroscientists must strive to develop a classification scheme that bridges bench to bedside concepts of developmental neural plasticity research, recognizing both negative and positive consequences of brain remodeling and repair of the child and adolescent brain. Developmental neural plasticity also extends into adulthood when brain remodeling mechanisms further contribute to epileptogenesis and continues to impair quality of life.
Collapse
Affiliation(s)
- Mark S Scher
- Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals of Cleveland, CWRU School of Medicine, 11100 Euclid Avenue, M/S 6090, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Eklind S, Hagberg H, Wang X, Sävman K, Leverin AL, Hedtjärn M, Mallard C. Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 2006; 60:161-8. [PMID: 16864697 DOI: 10.1203/01.pdr.0000228323.32445.7d] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To improve the understanding of the molecular mechanisms whereby lipopolysaccharide (LPS) affects the immature brain, global gene expression following LPS exposure was investigated in neonatal rats. Brains (n = 5/time point) were sampled 2, 6, and 72 h after LPS and compared with age-matched controls. The mRNA from each brain was analyzed separately on Affymextrix GeneChip Rat Expression Set 230. The number of genes regulated after LPS were 847 at 2 h, 1564 at 6 h, and 1546 genes at 72 h. Gene ontology analysis demonstrated that, at both 2 and 6 h after LPS, genes associated with protein metabolism, response to external stimuli and stress (immune and inflammatory response, chemotaxis) and cell death were overrepresented. At 72 h, the most strongly regulated genes belonged to secretion of neurotransmitters, transport, synaptic transmission, cell migration, and neurogenesis. Several pathways associated with cell death/survival were identified (caspase-tumor necrosis factor alpha [TNF-alpha]-, p53-, and Akt/phosphatidylinositol-3-kinase (PI3 K)-dependent mechanisms). Caspase-3 activity increased and phosphorylation of Akt decreased 8 h after peripheral LPS exposure. These results show a complex cerebral response to peripheral LPS exposure. In addition to the inflammatory response, a significant number of cell death-associated genes were identified, which may contribute to increased vulnerability of the immature brain to hypoxia-ischemia (HI) following LPS exposure.
Collapse
Affiliation(s)
- Saskia Eklind
- Department of Obstetrics and Gynecology, Institute for the Health of Women and Children, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Ryan JC, Morey JS, Ramsdell JS, Van Dolah FM. Acute phase gene expression in mice exposed to the marine neurotoxin domoic acid. Neuroscience 2005; 136:1121-32. [PMID: 16216424 DOI: 10.1016/j.neuroscience.2005.08.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/11/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022]
Abstract
Domoic acid is a rigid analog of the neurotransmitter glutamate and a potent agonist of kainate subtype glutamate receptors. Persistent activation of these receptor subtypes results in rapid excitotoxicity, calcium dependent cell death and neuronal lesions in areas of the brain where kainate pathways are concentrated. To better understand responses to domoic acid induced excitotoxicity, microarrays were used to profile gene expression in mouse brain following domoic acid exposure. Adult female mice were subjected intraperitoneally to domoic acid at the lethal dose 50, killed and dissected at 30, 60 and 240 min post-injection. Total brain RNA from treated mice was compared with time-matched controls on Agilent 22K feature microarrays. Real-time PCR was performed on selected genes. For the 30, 60 and 240 min time points, 3.96%, 3.94% and 4.36% of the genes interrogated were differentially expressed (P-value < or = 0.01), respectively. Rigorous filtering of the data resulted in a set of 56 genes used for trending analysis and K-medians and agglomerative clustering. The earliest genes induced consisted primarily of early response gene families (Jun, Fos, Ier, Egr, growth arrest and DNA damage 45) and the inflammatory response element cyclooxygenase 2. Some later responding genes involved glucocorticoid responses (Gilz, Sgk), cold inducible proteins (Cirbp, Rbm3), Map kinases (Map3k6) and NF-kappaB inhibition. Real-time PCR in male mice from an additional study confirmed the expression of several of these genes across gender. The transcriptional profile induced by domoic acid shared similarity with expression profiles of brain ischemia and other excitotoxins, suggesting a common transcriptional response.
Collapse
Affiliation(s)
- J C Ryan
- Marine Biotoxins Program, NOAA/National Ocean Service Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA.
| | | | | | | |
Collapse
|