1
|
Ghafelehbashi R, Farshbafnadi M, Aghdam NS, Amiri S, Salehi M, Razi S. Nanoimmunoengineering strategies in cancer diagnosis and therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:78-90. [PMID: 36076122 DOI: 10.1007/s12094-022-02935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer immunotherapy strategies in combination with engineered nanosystems have yielded beneficial results in the treatment of cancer and their application is increasing day by day. The pivotal role of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, as a subsidiary discipline in the field of immunology, cannot be ignored. Today, rapid advances in nanomedicine are used as a platform for exploring new therapeutic applications and modern smart healthcare management strategies. The progress of nanomedicine in cancer treatment has confirmed the findings of immunotherapy in the medical research phase. This study concentrates on approaches connected to the efficacy of nanoimmunoengineering strategies for cancer immunotherapies and their applications. By assessing improved approaches, different aspects of the nanoimmunoengineering strategies for cancer therapies are discussed in this study.
Collapse
Affiliation(s)
- Robabehbeygom Ghafelehbashi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melina Farshbafnadi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
3
|
Feng Z, Yi X, Hajavi J. New and old adjuvants in allergen-specific immunotherapy: With a focus on nanoparticles. J Cell Physiol 2020; 236:863-876. [PMID: 32657468 DOI: 10.1002/jcp.29941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Allergic diseases have remarkably increased in recent years. Nowadays, efforts for curing and management of these disorders are an important concern worldwide. Allergen-specific immunotherapy (ASIT) has recently gained more attention as a means for the management of allergic diseases. Adjuvants or helper agents are materials applied for better stimulating and shifting of protective responses, and these belong to an extremely diverse collection of complexes. The main function of adjuvants includes acting as depot foundations, transferring vehicles, and immunostimulators. Immunostimulatory adjuvants have gained increasing attention for ASIT. In this regard, the present study provides a review of old and new adjuvants used in allergen immunotherapy.
Collapse
Affiliation(s)
- Zhongtao Feng
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, China
| | - Xin Yi
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, China
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020; 16:513-525. [PMID: 32343153 DOI: 10.1080/1744666x.2020.1762572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION For several years now, medicine has been benefiting from the contribution of nanoparticles (NPs) technology for both diagnosis and therapy. They can be used as adjuvants, being capable per se of immune-modulating activity, or as carriers for molecules to be transported to a specific target, eventually loaded with specific ligands favoring specific uptake. AREAS COVERED The review focuses on experimental use of NPs as adjuvants/carriers for allergen immunotherapy (AIT). Human clinical trials conducted so far are discussed. EXPERT OPINION Results of experimental studies and recent clinical trials support the use of NPs as carrier/adjuvant in AIT. Comparisons between NP-based and classical AIT are needed, to show the usefulness of the NP-based approach. However, there are still unsolved problems: the persistence of non-degradable NPs with possible toxicological consequences, and the formation of the protein corona around the NPs, which could alter their activity and fate. Virus-like particles seem the most promising NPs for allergy treatment, as for other vaccines. Over the next decade, NP-based AIT will be largely used to treat allergic disorders.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Leonardo Da Vinci, University , Chieti, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Claudia Petrarca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Alessia Gatta
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Gilda Scarano
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Anila Farinelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Loredana Della Valle
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Arianna Lumaca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Pietro Del Biondo
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Luca Di Giampaolo
- Department of Medical Oral and Biotechnological Sciences, G. d'Annunzio University , Chieti, Pescara, Italy
| |
Collapse
|
5
|
Shahgordi S, Sankian M, Yazdani Y, Mashayekhi K, Hasan Ayati S, Sadeghi M, Saeidi M, Hashemi M. Immune responses modulation by curcumin and allergen encapsulated into PLGA nanoparticles in mice model of rhinitis allergic through sublingual immunotherapy. Int Immunopharmacol 2020; 84:106525. [PMID: 32361190 DOI: 10.1016/j.intimp.2020.106525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was the combination of curcumin and ovalbumin in free form or encapsulated into PLGA NPs (polylactic co-glycolic acid nanoparticles) to enhance their sublingual immunotherapy (SLIT) efficiency in mouse model of rhinitis allergic. PLGA NPs containing curcumin (CUR), ovalbumin (OVA) or both were prepared by emulsion-solvent evaporation method and characterized. After sensitization of BALB/C mice with ovalbumin, SLIT with free or encapsulated formulations was carried out and immunological profiles were evaluated. SLIT treatment with all synthesized PLGA formulations lead to significantly decreased total IgE. The combination immunotherapy in the present of free form of curcumin or ovalbumin with encapsulated forms of the another substance (P.OVA-CUR 10 and P.CUR 5-OVA), showed the highest level of IFN-γ:IL-4 compared to other target groups. On the other hands, a significant increasment was observed in this ratio between these optimal groups and treated group with subcutaneous administration of OVA as the most commonly used method for immunotherapy. The study of nasal lavage fluid (NALF) showed significant decreased levels of total and eosinophil cell count in the traeted nano-formulation groups. The histopathological results of NAL were also like normal with no cellular infiltration and no inflammation in the optimal formulations. Therefore, using curcumin and nanoparticles with allergen can be considerd as potential immune modulatory agents.
Collapse
Affiliation(s)
- Sanaz Shahgordi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Kazem Mashayekhi
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hasan Ayati
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
7
|
Liu Y, Yao L, Cao W, Liu Y, Zhai W, Wu Y, Wang B, Gou S, Qin Y, Qi Y, Chen Z, Gao Y. Dendritic Cell Targeting Peptide-Based Nanovaccines for Enhanced Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2019; 2:1241-1254. [DOI: 10.1021/acsabm.8b00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yating Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lintong Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenpeng Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Binglin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Gou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaping Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy 2017; 72:1461-1474. [PMID: 28474379 DOI: 10.1111/all.13199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/28/2022]
Abstract
The number of patients suffering from allergic asthma and rhinoconjunctivitis has increased dramatically within the last decades. Allergen-specific immunotherapy (AIT) is the only available cause-oriented therapy so far. AIT reduces symptoms, but has also a disease-modifying effect. Disadvantages are a long-lasting procedure, and in a few cases potential systemic adverse reactions. Encapsulation of allergens or DNA vaccines into nanostructures may provide advantages compared to the conventional AIT with noncapsulated allergen extracts: The protein/DNA molecule can be protected from degradation, higher local concentrations and targeted delivery to the site of action appear possible, and most importantly, recognition of encapsulated allergen by the immune system, especially by IgE antibodies, is prevented. AIT with nanoparticles (NPs) may offer a safer and potentially more efficient way of treatment for allergic diseases. In this review, we summarize the use of biodegradable NPs consisting of synthetic or natural polymers, liposomes, and virus-like particles as well as nonbiodegradable NPs like dendrimers, and carbon- or metal-based NPs for AIT. More or less successful applications of these NPs in prophylactic as well as therapeutic vaccination approaches in rodents or other animals as well as first human clinical trials are discussed in detail.
Collapse
Affiliation(s)
- H. Pohlit
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
- Graduate School of Excellence Materials Science in Mainz; Johannes Gutenberg-University Mainz; Mainz Germany
| | - I. Bellinghausen
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - H. Frey
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
| | - J. Saloga
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| |
Collapse
|
9
|
Ghinnagow R, Cruz LJ, Macho-Fernandez E, Faveeuw C, Trottein F. Enhancement of Adjuvant Functions of Natural Killer T Cells Using Nanovector Delivery Systems: Application in Anticancer Immune Therapy. Front Immunol 2017; 8:879. [PMID: 28798749 PMCID: PMC5529346 DOI: 10.3389/fimmu.2017.00879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Type I natural killer T (NKT) cells have gained considerable interest in anticancer immune therapy over the last decade. This “innate-like” T lymphocyte subset has the unique ability to recognize foreign and self-derived glycolipid antigens in association with the CD1d molecule expressed by antigen-presenting cells. An important property of these cells is to bridge innate and acquired immune responses. The adjuvant function of NKT cells might be exploited in the clinics. In this review, we discuss the approaches currently being used to target NKT cells for cancer therapy. In particular, we highlight ongoing strategies utilizing NKT cell-based nanovaccines to optimize immune therapy.
Collapse
Affiliation(s)
- Reem Ghinnagow
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elodie Macho-Fernandez
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
10
|
Zhang C, Shi G, Zhang J, Song H, Niu J, Shi S, Huang P, Wang Y, Wang W, Li C, Kong D. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J Control Release 2017; 256:170-181. [PMID: 28414151 DOI: 10.1016/j.jconrel.2017.04.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023]
Abstract
The purpose of the present study was to identify an "easy-to-adopt" strategy to enhance immune responses using functionalized alginate (ALG) nanoparticles (MAN-ALG/ALG=OVA NPs), which were prepared by CaCl2 cross-linking of two different types of ALG. The mannose (MAN) modified ALG (MAN-ALG) was used for dendritic cell targeting. The other component, composed of ovalbumin (OVA), a model antigen, is conjugated to ALG (ALG=OVA) via pH sensitive Schiff base bond. Grafting of alginate was demonstrated by FT-IR and 1H NMR, while the morphological structure, particle size, Zeta potential of MAN-ALG/ALG=OVA NPs were measured using TEM and DLS. The OVA releasing behavior of MAN-ALG/ALG=OVA NPs was determined as a function of pH. Antigen uptake was examined by flow cytometry and confocal laser scanning microscopy in vitro using mouse bone marrow dendritic cells (BMDCs). The results showed that MAN-ALG/ALG=OVA NPs facilitated antigen uptake of BMDCs and cytosolic release of the antigen. Significant up-regulation of cytokine secretion and expression levels of the surface co-stimulatory molecules were also observed in MAN-ALG/ALG=OVA NPs-treated BMDCs, compared to free OVA. In vivo bio-distribution study using Cy7 (a near-infrared fluorescence dye) labeled MAN-ALG/ALG=OVA NPs showed efficient in vivo trafficking of the nanoparticles from the injection site to the draining lymph nodes. Moreover, MAN-ALG/ALG=OVA NPs were found to enhance cross-presentation of OVA to B3Z T cell hybridoma in vitro. Subcutaneous administration of MAN-ALG/ALG=OVA NPs also induced major cytotoxic T lymphocytes (CTL) response and inhibition of E.G7 tumor growth in C57BL/6 mice. In summary, we report here that the MAN-ALG/ALG=OVA NPs have the potential as a potent nanovaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Gaona Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Ju Zhang
- Basic Nursing T&R Section, School of Nursing, Qingdao University, Qingdao, Shandong Province 26000, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Jinfeng Niu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 300353, China
| | - Shengbin Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yanming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 300353, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Abstract
This review focuses on summarizing the existing work about nanomaterial-based cancer immunotherapy in detail.
Collapse
Affiliation(s)
- Lijia Luo
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Rui Shu
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- Key Laboratory of Marine Materials and Related Technology
- CAS & Ningbo Institute of Materials Technology and Engineering
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| |
Collapse
|
12
|
Wang L, Zhang DZ, Wang YX. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(lactic acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers. Pharm Res 2016; 34:453-461. [PMID: 28004315 DOI: 10.1007/s11095-016-2077-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE In this study, tocopherol based polymeric micelles were successfully prepared to enhance the anticancer effect of fisetin (FIS) in breast cancer cells. METHODS The drug-loaded carrier was characterized in terms of physicochemical and in vivo parameters. RESULTS Compared to FIS, FIS-TPN showed higher cellular uptake in MCF-7 breast cancer cells as revealed by CLSM and flow cytometry. The cytotoxicity assay results clearly showed that the free FIS and FIS-TPN exhibited a typical dose-dependent toxic effect in MCF-7 breast cancer cells. Especially, enhanced cytotoxic effect of FIS was observed when loaded in a nanocarrier. Free FIS induced a ~11% apoptosis whereas FIS-TPN induced a significantly greater apoptosis of ~20% by the end of 24 h. At 48 h, similar trend continued and free FIS showed ~30% of apoptosis whereas ~42% cell apoptosis was observed in FIS-TPN treated group. Notably, migration of cancer cell was significantly inhibited when treated with FIS-TPN formulations. The FIS-TPN significantly reduced to tumor burden and H&E staining showed the lowest tumor volume and higher cell apoptosis. CONCLUSIONS All the findings suggest that the fisetin-loaded TPGS-PLA polymeric micelles serve as a potential candidate and promising alternative for the effective treatment of breast cancers.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, People's Republic of China
| | - De-Zhong Zhang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, People's Republic of China
| | - Yu-Xia Wang
- Department of Pathophysiology, Xinxiang Medical University, No. 602, Jinsui Avenue, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
13
|
Abstract
One key approach to increase the efficacy and the safety of immunotherapy is the use of adjuvants. However, many of the adjuvants currently in use can cause adverse events, raising concerns regarding their clinical use, and are geared toward productive immune responses but not necessarily tolerogenic responses. Thus, novel adjuvants for immunotherapy are needed and are being developed. Essential is their potential to boost appropriate tolerogenic adaptive immune responses to allergens while limiting side effects. This review provides an overview of adjuvants currently in clinical use or under development and discusses their therapeutic effect in enhancing allergen-induced tolerance.
Collapse
|
14
|
Pohlit H, Frey H, Saloga J. Could allergen-specific immunotherapy benefit from the use of nanocarriers? Nanomedicine (Lond) 2016; 11:1329-31. [PMID: 27221075 DOI: 10.2217/nnm-2016-0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hannah Pohlit
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.,Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
15
|
Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:891-908. [PMID: 27038329 DOI: 10.1002/wnan.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Treatment of cancer has come a long way from the initial 'radical surgeries' to the multimodality treatments. For the major part of the last century, cancer was considered as a monocellular disorder, and treatment strategies were designed according to that hypothesis. However, the mortality rate from cancer continued to be high and a comprehensive treatment remained elusive. Recent progress in research has demonstrated that tumors are a complex network of neoplastic and non-neoplastic cells. The non-neoplastic cells, which are collectively called stroma, assist in tumor survival and progression. It has been shown that disrupting the tumor-stromal balance leads to significant effects on the tumor survival, and effective treatment can be achieved by targeting one or more of the stromal components. In this review, we summarize the roles of various stromal components in promoting tumor progression, and discuss innovative nanoparticle-mediated drug targeting strategies for stromal depletion and the subsequent effects on the tumors. Perspectives and the future directions are also provided. WIREs Nanomed Nanobiotechnol 2016, 8:891-908. doi: 10.1002/wnan.1406 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, India.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1708] [Impact Index Per Article: 189.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Sitia L, Ferrari R, Violatto MB, Talamini L, Dragoni L, Colombo C, Colombo L, Lupi M, Ubezio P, D’Incalci M, Morbidelli M, Salmona M, Moscatelli D, Bigini P. Fate of PLA and PCL-Based Polymeric Nanocarriers in Cellular and Animal Models of Triple-Negative Breast Cancer. Biomacromolecules 2016; 17:744-55. [DOI: 10.1021/acs.biomac.5b01422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leopoldo Sitia
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Raffaele Ferrari
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martina B. Violatto
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Laura Talamini
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Luca Dragoni
- Dipartimento
di Chimica Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milano, Italia
| | - Claudio Colombo
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Laura Colombo
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Monica Lupi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Paolo Ubezio
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Maurizio D’Incalci
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Massimo Morbidelli
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Davide Moscatelli
- Dipartimento
di Chimica Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milano, Italia
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| |
Collapse
|
18
|
Meraz IM, Savage DJ, Segura-Ibarra V, Li J, Rhudy J, Gu J, Serda RE. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm 2014; 11:3484-91. [PMID: 25179345 PMCID: PMC4186679 DOI: 10.1021/mp5002697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80(+) macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Park YM, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, Kang TH, Han HD. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 2013; 13:177-83. [PMID: 24198742 PMCID: PMC3817298 DOI: 10.4110/in.2013.13.5.177] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022] Open
Abstract
Development of nano-sized carriers including nanoparticles, nanoemulsions or liposomes holds great potential for advanced delivery systems for cancer immunotherapy, as such nanostructures can be used to more effectively manipulate or deliver immunologically active components to specific target sites. Successful development of nanotechnology based platform in the field of immunotherapy will allow the application of vaccines, adjuvants and immunomodulatory drugs that improve clinical outcomes for immunological diseases. Here, we review current nanoparticle-based platforms in the efficacious delivery of vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Seung Jun Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Seob Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Moon Hee Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Gil Sun Cha
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - In Duk Jung
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|