1
|
Spano S, Maeda A, Lam J, Chaba A, Phongphithakchai A, Hikasa Y, Pattamin N, Kitisin N, See E, Mount P, Bellomo R. A pilot feasibility study of continuous cardiac output and blood pressure monitoring during intermittent hemodialysis in patients recovering from severe acute kidney injury. J Crit Care 2025; 88:155086. [PMID: 40228420 DOI: 10.1016/j.jcrc.2025.155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE To detect changes in cardiac output and blood pressure during intermittent hemodialysis (IHD) in patients recovering from severe acute kidney injury (AKI) after transition from continuous renal replacement therapy (CRRT). MATERIAL AND METHODS In this single-center pilot feasibility study, we applied continuous hemodynamic monitoring (ClearSight System™) before and during IHD sessions in patients recovering from severe AKI. We also measured relative blood volume (BV; CRIT-LINE®IV) and Net Ultrafiltration Rate (NUF). CI changes were categorized as follows: Increase (>5 %), Stable (-5 % to 5 %), Mild Decrease (-5 % to -15 %), Moderate Decrease (-15 % to -25 %), and Severe Decrease (<-25 %). RESULTS We enrolled 10 AKI patients. Overall, there were 119 episodes of severe and 286 episodes of moderate reductions in cardiac index (CI). The median time spent with severe and moderate intradialytic reductions in CI was 8.2 min [2.1-115.8] and 49.5 min [21.6-57.5], respectively. Severe CI reductions happened in nine patients out of 10, and in three patients, they lasted more than 2 h. During IHD, mean arterial pressure increased or remained stable in >78 % of measurements, regardless of changes in CI. Overall, CI decreased by -1.14 L/min/m2 during a moderate BV decrease (p < 0.001) and by -0.57 L/min/m2 when NUF rate was high (p < 0.001). CONCLUSIONS CI often, repeatedly, and markedly decreased during IHD. Such decreases were not detected by MAP monitoring and were extreme in some patients.
Collapse
Affiliation(s)
- Sofia Spano
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia; Department of Anesthesiology and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Joey Lam
- Department of Nephrology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | | | - Yukiko Hikasa
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nuttapol Pattamin
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nuanprae Kitisin
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Emily See
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia; Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Critical Care, School of Medicine, University of Melbourne, Parkville, Victoria, Australia; Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Peter Mount
- Department of Nephrology, Austin Hospital, Heidelberg, Victoria, Australia; Department of Medicine, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia; Department of Critical Care, School of Medicine, University of Melbourne, Parkville, Victoria, Australia; Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia; Data Analytics Research and Evaluation, Austin Hospital, Melbourne, Australia.
| |
Collapse
|
2
|
Huang L, Zhu L, Zhao Z, Jiang S. Hyperactive browning and hypermetabolism: potentially dangerous element in critical illness. Front Endocrinol (Lausanne) 2024; 15:1484524. [PMID: 39640882 PMCID: PMC11617193 DOI: 10.3389/fendo.2024.1484524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Brown/beige adipose tissue has attracted much attention in previous studies because it can improve metabolism and combat obesity through non-shivering thermogenesis. However, recent studies have also indicated that especially in critical illness, overactivated brown adipose tissue or extensive browning of white adipose tissue may bring damage to individuals mainly by exacerbating hypermetabolism. In this review, the phenomenon of fat browning in critical illness will be discussed, along with the potential harm, possible regulatory mechanism and corresponding clinical treatment options of the induction of fat browning. The current research on fat browning in critical illness will offer more comprehensive understanding of its biological characteristics, and inspire researchers to develop new complementary treatments for the hypermetabolic state that occurs in critically ill patients.
Collapse
Affiliation(s)
- Lu Huang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Department of Plastic and Reconstructive Surgery, Taizhou Enze Hospital, Taizhou, China
| | - Zhenxiong Zhao
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shenglu Jiang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
3
|
Miao H, Tang X, Cui Y, Shi J, Xiong X, Wang C, Zhang Y. Obeticholic Acid Inhibit Mitochondria Dysfunction Via Regulating ERK1/2-DRP Pathway to Exert Protective Effect on Lipopolysaccharide-Induced Myocardial Injury. Adv Biol (Weinh) 2024; 8:e2300576. [PMID: 38728002 DOI: 10.1002/adbi.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Indexed: 07/13/2024]
Abstract
Farnesoid X receptor (FXR) plays critical regulatory roles in cardiovascular physiology/pathology. However, the role of FXR agonist obeticholic acid (OCA) in sepsis-associated myocardial injury and underlying mechanisms remain unclear. C57BL/6J mice are treated with OCA before lipopolysaccharide (LPS) administration. The histopathology of the heart and assessment of FXR expression and mitochondria function are performed. To explore the underlying mechanisms, H9c2 cells, and primary cardiomyocytes are pre-treated with OCA before LPS treatment, and extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 is used. LPS-induced myocardial injury in mice is significantly improved by OCA pretreatment. Mechanistically, OCA pretreatment decreased reactive oxygen species (ROS) levels and blocked the loss of mitochondrial membrane potential (ΔΨm) in cardiomyocytes. The expression of glutathione peroxidase 1 (GPX1), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF-2) increased in the case of OCA pretreatment. In addition, OCA improved mitochondria respiratory chain with increasing Complex I expression and decreasing cytochrome C (Cyt-C) diffusion. Moreover, OCA pretreatment inhibited LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway. FXR agonist OCA inhibits LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway to protect mice against LPS-induced myocardial injury.
Collapse
Affiliation(s)
- Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| |
Collapse
|
4
|
Davids R, Robinson G, Van Tonder C, Robinson J, Ahmed N, Domingo A. Jehovah's Witness Needing Critical Care: A Narrative Review on the Expanding Arsenal. Crit Care Res Pract 2024; 2024:1913237. [PMID: 38813134 PMCID: PMC11136542 DOI: 10.1155/2024/1913237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 04/13/2024] [Indexed: 05/31/2024] Open
Abstract
Present day Jehovah's Witness (JW) religion accounts for 8.5 million followers. A tenant feature of the JW faith is religious objection to transfusions of blood and blood products. Interpatient variability, as it pertains to blood and blood products may occur; hence, a confidential interview will determine which products individual may consent to (Marsh and Bevan, 2002). This belief and practice place great restrictions on treating medical professionals in scenarios of life-threatening anaemia and active haemorrhage. The review to follow explores the physiological and pathophysiological consequences of severe anaemia. Non-blood transfusion practices are explored, many of which are potentially lifesaving. Particular attention is drawn to the evolving science involving artificial oxygen carriers and their use in emergency situations. A greater safety profile ensures its future use amongst religious objectors to be greatly beneficial. Intravenous iron supplementation has enjoyed a lively debate within the critical care community. A review of recent systematic and meta-analysis supports its use in the ICU; however, more investigation is needed into the complementary use of hepcidin.
Collapse
Affiliation(s)
- Ryan Davids
- Department of Anaesthesiology and Critical Care, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Gareth Robinson
- Department of Anaesthesiology and Critical Care, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Charmé Van Tonder
- Department of Anaesthesiology and Critical Care, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Jordan Robinson
- Department of Anaesthesiology and Critical Care, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Nadiyah Ahmed
- Department of Critical Care, University of Free State, Bloemfontein, South Africa
| | - Abdurragmaan Domingo
- Department of Anaesthesiology and Perioperative Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
5
|
Xu Y, Bu G. Identification of two novel ferroptosis-associated targets in sepsis-induced cardiac injury: Hmox1 and Slc7a11. Front Cardiovasc Med 2023; 10:1185924. [PMID: 37424906 PMCID: PMC10326630 DOI: 10.3389/fcvm.2023.1185924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Sepsis-induced cardiac injury is a severe complication of sepsis and has a high mortality. Recent research has implicated ferroptosis as a contributing factor to myocardial cell death. This study is aimed at finding novel ferroptosis-associated targets in sepsis-induced cardiac injury. Methods and results In our study, a total of two Gene expression omnibus datasets (GSE185754 and GSE171546) were obtained for bioinformatics analysis. GSEA enrichment analysis demonstrated that ferroptosis pathway Z-score rapidly increased in the first 24 h and decreased gradually in the following 24-72 h. Fuzzy analysis was then used to obtain distinct clusters of temporal patterns and find genes in cluster 4 that exhibited the same trend with ferroptosis progression during the time points. After intersecting the differentially expressed genes, genes in cluster 4, and ferroptosis-related genes, three ferroptosis-associated targets were finally selected: Ptgs2, Hmox1, and Slc7a11. While Ptgs2 has been previously reported to be involved in the regulation of septic cardiomyopathy, this study is the first to demonstrate that downregulation of Hmox1 and Slc7a11 can alleviate ferroptosis in sepsis-induced cardiac injury. Conclusion This study reports Hmox1 and Slc7a11 as ferroptosis-associated targets in sepsis-induced cardiac injury, and both of them may become key therapeutic and diagnostic targets for this complication in the future.
Collapse
Affiliation(s)
- Yushun Xu
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gang Bu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Erdem S, Das A, Ismail R, Makki H, Hakim A. UTI-Associated Septic Cardiomyopathy: Saving the Heart in the Nick of Time. Cureus 2022; 14:e29957. [PMID: 36381704 PMCID: PMC9635810 DOI: 10.7759/cureus.29957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
A patient with gram-negative sepsis developed acute global biventricular dysfunction with reduced left ventricular ejection fraction. A diagnosis of sepsis-induced cardiomyopathy (SICM) was made following the complete resolution of cardiac dysfunction. This case highlights the importance of the early diagnosis of SICM and treatment of the underlying cause.
Collapse
|
7
|
Lin H, Wang W, Lee M, Meng Q, Ren H. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Front Pharmacol 2020; 11:210. [PMID: 32194424 PMCID: PMC7062914 DOI: 10.3389/fphar.2020.00210] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a complication that is sepsis-associated cardiovascular failure. In the last few decades, there is progress in diagnosis and treatment despite the lack of consistent diagnostic criteria. According to current studies, several hypotheses about pathogenic mechanisms have been revealed to elucidate the pathophysiological characteristics of SCM. The objective of this manuscript is to review literature from the past 5 years to provide an overview of current knowledge on pathogenesis, diagnosis and treatment in SCM.
Collapse
Affiliation(s)
- Huan Lin
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenting Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
8
|
Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichtenauer M, Jung C. MicroRNAs in Inflammatory Heart Diseases and Sepsis-Induced Cardiac Dysfunction: A Potential Scope for the Future? Cells 2019; 8:cells8111352. [PMID: 31671621 PMCID: PMC6912436 DOI: 10.3390/cells8111352] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are small, single-stranded RNA sequences that regulate gene expression on a post-transcriptional level. In the last few decades, various trials have investigated the diagnostic and therapeutic potential of miRNAs in several disease entities. Here, we provide a review of the available evidence on miRNAs in inflammatory heart diseases (myocarditis, endocarditis, and pericarditis) and sepsis-induced cardiac dysfunction. Methods: Systematic database research using the PubMed and Medline databases was conducted between July and September 2019 using predefined search terms. The whole review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: In total, 131 studies were screened, 96 abstracts were read, and 69 studies were included in the review. Discussion: In the future, circulating miRNAs could serve as biomarkers for diagnosis and disease monitoring in the context of inflammatory heart diseases and sepsis-induced cardiac dysfunction. Considering the promising results of different animal models, certain miRNAs could also emerge as novel therapeutic approaches in this setting.
Collapse
Affiliation(s)
- Moritz Mirna
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Vera Paar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Albert Topf
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Miriam Eber
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Uta C Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
9
|
Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 2019; 217:8-15. [DOI: 10.1016/j.lfs.2018.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
|