1
|
Li Z, Li P, Jiang Y, Zhu J, Zhu J, Xu Z, Liu L. Comparison of respiratory mechanics measurement between pressure-controlled ventilation and volume-controlled ventilation. World J Emerg Med 2025; 16:78-81. [PMID: 39906115 PMCID: PMC11788110 DOI: 10.5847/wjem.j.1920-8642.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/25/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
- Zhi’ang Li
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peifang Li
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yiling Jiang
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jianjun Zhu
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jianliang Zhu
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhiping Xu
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lijun Liu
- Department of Emergency and Intensive Care Medicine, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
2
|
O'Keeffe T, Donaldson RE. Mechanical ventilation in dogs and cats with tick paralysis. Front Vet Sci 2023; 10:1071191. [PMID: 37089405 PMCID: PMC10117792 DOI: 10.3389/fvets.2023.1071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Respiratory failure from tick paralysis (TP) is an important cause of mortality in cats and dogs in Australia, occurring from a combination of respiratory muscle paralysis, upper respiratory tract obstruction and pulmonary disease. Patients may require positive-pressure ventilation in management of any combination of hypoxemia, hypoventilation or respiratory fatigue, but may also require airway management due to laryngeal paralysis. No single ventilation strategy is recommended due to the heterogenous disease presentations. Lung protective ventilation should be used in patients with pulmonary disease. Due to local and systemic effects of TP, patients are at higher risk of complications such as aspiration pneumonia and corneal ulceration and may have additional intravenous fluid and nutritional considerations. Treatment with hyperimmune serum is associated with improved outcomes. Prognosis is considered good with documented survival to discharge (STD) of 52.6-77% for animals with TP ventilated with lung disease and 90.5% for animals without lung disease. Median reported duration of ventilation for TP ranges from 23 to 48 h (range 3 h-10 days). The severity of individual neuromuscular signs and the presence of associated conditions such as aspiration pneumonia and laryngeal paralysis may necessitate longer periods of mechanical ventilation. This review aims to summarize the current recommendations regarding indications, management and prognosis of cats and dogs undergoing MV for TP and to identify areas for future research.
Collapse
|
3
|
Ismaiel N, Whynot S, Geldenhuys L, Xu Z, Slutsky AS, Chappe V, Henzler D. Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a Rat Model of Ventilator-Associated Lung Injury. Front Physiol 2022; 13:814968. [PMID: 35530505 PMCID: PMC9068936 DOI: 10.3389/fphys.2022.814968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: Lung-protective mechanical ventilation is known to attenuate ventilator-associated lung injury (VALI), but often at the expense of hypoventilation and hypercapnia. It remains unclear whether the main mechanism by which VALI is attenuated is a product of limiting mechanical forces to the lung during ventilation, or a direct biological effect of hypercapnia. Methods: Acute lung injury (ALI) was induced in 60 anesthetized rats by the instillation of 1.25 M HCl into the lungs via tracheostomy. Ten rats each were randomly assigned to one of six experimental groups and ventilated for 4 h with: 1) Conventional HighVENormocapnia (high VT, high minute ventilation, normocapnia), 2) Conventional Normocapnia (high VT, normocapnia), 3) Protective Normocapnia (VT 8 ml/kg, high RR), 4) Conventional iCO2Hypercapnia (high VT, low RR, inhaled CO2), 5) Protective iCO2Hypercapnia (VT 8 ml/kg, high RR, added CO2), 6) Protective endogenous Hypercapnia (VT 8 ml/kg, low RR). Blood gasses, broncho-alveolar lavage fluid (BALF), and tissue specimens were collected and analyzed for histologic and biologic lung injury assessment. Results: Mild ALI was achieved in all groups characterized by a decreased mean PaO2/FiO2 ratio from 428 to 242 mmHg (p < 0.05), and an increased mean elastance from 2.46 to 4.32 cmH2O/L (p < 0.0001). There were no differences in gas exchange among groups. Wet-to-dry ratios and formation of hyaline membranes were significantly lower in low VT groups compared to conventional tidal volumes. Hypercapnia reduced diffuse alveolar damage and IL-6 levels in the BALF, which was also true when CO2 was added to conventional VT. In low VT groups, hypercapnia did not induce any further protective effect except increasing pulmonary IL-10 in the BALF. No differences in lung injury were observed when hypercapnia was induced by adding CO2 or decreasing minute ventilation, although permissive hypercapnia decreased the pH significantly and decreased liver histologic injury. Conclusion: Our findings suggest that low tidal volume ventilation likely attenuates VALI by limiting mechanical damage to the lung, while hypercapnia attenuates VALI by limiting pro-inflammatory and biochemical mechanisms of injury. When combined, both lung-protective ventilation and hypercapnia have the potential to exert an synergistic effect for the prevention of VALI.
Collapse
Affiliation(s)
- Nada Ismaiel
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Whynot
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Laurette Geldenhuys
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zhaolin Xu
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Dietrich Henzler
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Ferreira JMC, Huhle R, Müller S, Schnabel C, Mehner M, Koch T, Gama de Abreu M. Static Stretch Increases the Pro-Inflammatory Response of Rat Type 2 Alveolar Epithelial Cells to Dynamic Stretch. Front Physiol 2022; 13:838834. [PMID: 35480037 PMCID: PMC9035495 DOI: 10.3389/fphys.2022.838834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Mechanical ventilation (MV) inflicts stress on the lungs, initiating or increasing lung inflammation, so-called ventilator-induced lung injury (VILI). Besides overdistention, cyclic opening-and-closing of alveoli (atelectrauma) is recognized as a potential mechanism of VILI. The dynamic stretch may be reduced by positive end-expiratory pressure (PEEP), which in turn increases the static stretch. We investigated whether static stretch modulates the inflammatory response of rat type 2 alveolar epithelial cells (AECs) at different levels of dynamic stretch and hypothesized that static stretch increases pro-inflammatory response of AECs at given dynamic stretch. Methods: AECs, stimulated and not stimulated with lipopolysaccharide (LPS), were subjected to combinations of static (10, 20, and 30%) and dynamic stretch (15, 20, and 30%), for 1 and 4 h. Non-stretched AECs served as control. The gene expression and secreted protein levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2) were studied by real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The effects of static and dynamic stretch were assessed by two-factorial ANOVA with planned effects post-hoc comparison according to Šidák. Statistical significance was considered for p < 0.05. Results: In LPS-stimulated, but not in non-stimulated rat type 2 AECs, compared to non-stretched cells: 1) dynamic stretch increased the expression of amphiregulin (AREG) (p < 0.05), MCP-1 (p < 0.001), and MIP-2 (<0.05), respectively, as well as the protein secretion of IL-6 (p < 0.001) and MCP-1 (p < 0.05); 2) static stretch increased the gene expression of MCP-1 (p < 0.001) and MIP-2, but not AREG, and resulted in higher secretion of IL-6 (p < 0.001), but not MCP-1, while MIP-2 was not detectable in the medium. Conclusion: In rat type 2 AECs stimulated with LPS, static stretch increased the pro-inflammatory response to dynamic stretch, suggesting a potential pro-inflammatory effect of PEEP during mechanical ventilation at the cellular level.
Collapse
Affiliation(s)
- Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jorge M. C. Ferreira,
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Mirko Mehner
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
5
|
White LA, Maxey BS, Solitro GF, Takei H, Conrad SA, Alexander JS. Efficacy and safety testing of a COVID-19 era emergency ventilator in a healthy rabbit lung model. BMC Biomed Eng 2022; 4:2. [PMID: 35287761 PMCID: PMC8919917 DOI: 10.1186/s42490-022-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic revealed a substantial and unmet need for low-cost, easily accessible mechanical ventilation strategies for use in medical resource-challenged areas. Internationally, several groups developed non-conventional COVID-19 era emergency ventilator strategies as a stopgap measure when conventional ventilators were unavailable. Here, we compared our FALCON emergency ventilator in a rabbit model and compared its safety and functionality to conventional mechanical ventilation. METHODS New Zealand white rabbits (n = 5) received mechanical ventilation from both the FALCON and a conventional mechanical ventilator (Engström Carestation™) for 1 h each. Airflow and pressure, blood O2 saturation, end tidal CO2, and arterial blood gas measurements were measured. Additionally, gross and histological lung samples were compared to spontaneously breathing rabbits (n = 3) to assess signs of ventilator induced lung injury. RESULTS All rabbits were successfully ventilated with the FALCON. At identical ventilator settings, tidal volumes, pressures, and respiratory rates were similar between both ventilators, but the inspiratory to expiratory ratio was lower using the FALCON. End tidal CO2 was significantly higher on the FALCON, and arterial blood gas measurements demonstrated lower arterial partial pressure of O2 at 30 min and higher arterial partial pressure of CO2 at 30 and 60 min using the FALCON. However, when ventilated at higher respiratory rates, we observed a stepwise decrease in end tidal CO2. Poincaré plot analysis demonstrated small but significant increases in short-term and long-term variation of peak inspiratory pressure generation from the FALCON. Wet to dry lung weight and lung injury scoring between the mechanically ventilated and spontaneously breathing rabbits were similar. CONCLUSIONS Although conventional ventilators are always preferable outside of emergency use, the FALCON ventilator safely and effectively ventilated healthy rabbits without lung injury. Emergency ventilation using accessible and inexpensive strategies like the FALCON may be useful for communities with low access to medical resources and as a backup form of emergency ventilation.
Collapse
Affiliation(s)
- Luke A White
- Department of Molecular & Cellular Physiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103-3932, USA
| | - Benjamin S Maxey
- Department of Molecular & Cellular Physiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103-3932, USA
| | - Giovanni F Solitro
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Hidehiro Takei
- Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Steven A Conrad
- Department of Medicine, LSU Health Shreveport, Shreveport, LA, USA
- Department of Emergency Medicine, LSU Health Shreveport, Shreveport, LA, USA
- Department of Pediatrics, LSU Health Shreveport, Shreveport, LA, USA
| | - J Steven Alexander
- Department of Molecular & Cellular Physiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103-3932, USA.
- Department of Medicine, LSU Health Shreveport, Shreveport, LA, USA.
- Department of Neurology, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
6
|
Aziz JE, Dellavolpe J, Aziz S, Sterling R. An Extracorporeal Membrane Oxygenation First Strategy in COVID-19 Acute Respiratory Distress Syndrome. ASAIO J 2021; 67:1097-1099. [PMID: 34324444 PMCID: PMC8478083 DOI: 10.1097/mat.0000000000001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
COVID-19 can be associated with acute respiratory distress syndrome, which increases the likelihood of morbidity and mortality. Ventilator-induced lung injury is a known complication of mechanical ventilation (MV) and can further compound lung injury and recovery. Escalation to extracorporeal membrane oxygenation can be required in patients who deteriorate on MV. We report our experience with complete avoidance of MV using an ECMO First strategy deployed in an awake nonintubated COVID-19 patient with severe pneumonia.
Collapse
Affiliation(s)
- Jenna E. Aziz
- From the Candidate 2022, Howard University Medical School, Washington, District of Columbia
| | | | - Salim Aziz
- Division of Cardiac Surgery, George Washington University, Washington, District of Columbia
| | | |
Collapse
|
7
|
Smit MR, Beenen LF, Valk CM, de Boer MM, Scheerder MJ, Annema JT, Paulus F, Horn J, Vlaar AP, Kooij FO, Hollmann MW, Schultz MJ, Bos LD. Assessment of Lung Reaeration at 2 Levels of Positive End-expiratory Pressure in Patients With Early and Late COVID-19-related Acute Respiratory Distress Syndrome. J Thorac Imaging 2021; 36:286-293. [PMID: 34081643 PMCID: PMC8386391 DOI: 10.1097/rti.0000000000000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Patients with novel coronavirus disease (COVID-19) frequently develop acute respiratory distress syndrome (ARDS) and need invasive ventilation. The potential to reaerate consolidated lung tissue in COVID-19-related ARDS is heavily debated. This study assessed the potential to reaerate lung consolidations in patients with COVID-19-related ARDS under invasive ventilation. MATERIALS AND METHODS This was a retrospective analysis of patients with COVID-19-related ARDS who underwent chest computed tomography (CT) at low positive end-expiratory pressure (PEEP) and after a recruitment maneuver at high PEEP of 20 cm H2O. Lung reaeration, volume, and weight were calculated using both CT scans. CT scans were performed after intubation and start of ventilation (early CT), or after several days of intensive care unit admission (late CT). RESULTS Twenty-eight patients were analyzed. The median percentages of reaerated and nonaerated lung tissue were 19% [interquartile range, IQR: 10 to 33] and 11% [IQR: 4 to 15] for patients with early and late CT scans, respectively (P=0.049). End-expiratory lung volume showed a median increase of 663 mL [IQR: 483 to 865] and 574 mL [IQR: 292 to 670] after recruitment for patients with early and late CT scans, respectively (P=0.43). The median decrease in lung weight attributed to nonaerated lung tissue was 229 g [IQR: 165 to 376] and 171 g [IQR: 81 to 229] after recruitment for patients with early and late CT scans, respectively (P=0.16). CONCLUSIONS The majority of patients with COVID-19-related ARDS undergoing invasive ventilation had substantial reaeration of lung consolidations after recruitment and ventilation at high PEEP. Higher PEEP can be considered in patients with reaerated lung consolidations when accompanied by improvement in compliance and gas exchange.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fabian O. Kooij
- Anesthesiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | | | - Marcus J. Schultz
- Departments of Intensive Care
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Ghali A, Nashawi M, Johal J, Learned J, Al-Hamaydeh MT, Seifi A, Hafeez S. The Rothman Index Does Not Predict a Successful Extubation in the Neurosurgical Critical Care Unit. Cureus 2021; 13:e16339. [PMID: 34395122 PMCID: PMC8357080 DOI: 10.7759/cureus.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Background Identification of risk factors associated with successful extubation in neurosurgical critical care units (NSICUs) has been elusive due to the complex nature of neurocritical care injuries and patient factors. Traditional risk factors for extubation were shown to have poor predictive value in neurocritical care patients as compared to mixed ICU patients. The aim of this study was to determine if any risk factors, including the Rothman Index, could reliably predict successful extubation in a large sample size of neurocritical care patients. Methods We retrospectively analyzed 610 consecutively intubated patients in an NSICU while collecting variables of interest in airway management. Furthermore, Rothman Indices were collected immediately after intubations and extubations. A paired t-test of the immediate changes in Rothman Indices after airway manipulation was compared in patients who needed reintubation. In a smaller cohort of 88 patients, in whom complete data points existed for airway management, we performed a principal component analysis (PCA) to determine which risk factors were associated with extubation success when indexed with the magnitude of the Rothman Index. Results In 610 consecutively intubated patients, the mean pre-intubation Rothman Index average was 41.0 compared to the mean post-extubation Rothman Index was 35.4 (p<0.0001). Compared to those who were re-intubated, the Rothman Index did not correlate well with the prediction of extubation (p=0.355). Furthermore, an analysis of the PCA plot showed that a higher respiratory rate, longer length of stay, shorter length of intubation, and smaller cuff leak percentage were identified as risk factors associated with reintubation. Age and change in rapid shallow breathing index (RSBI) did not correlate with reintubation. Conclusion The Rothman Index does not predict extubation success in patients in an NSICU. Risk factors associated with reintubation were respiratory rate, length of stay, length of intubation, and cuff leak percentage. Reintubation rates in our single-center NSICU are on par with general critical care populations.
Collapse
Affiliation(s)
- Abdullah Ghali
- Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Mouhamed Nashawi
- Internal Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Justin Johal
- Anesthesia and Critical Care, University of Washington, Seattle, USA
| | - Josh Learned
- Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Mohammed T Al-Hamaydeh
- Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Ali Seifi
- Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Shaheryar Hafeez
- Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, USA
| |
Collapse
|
9
|
Transpulmonary thermodilution in patients treated with veno-venous extracorporeal membrane oxygenation. Ann Intensive Care 2021; 11:101. [PMID: 34213674 PMCID: PMC8249841 DOI: 10.1186/s13613-021-00890-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We tested the effect of different blood flow levels in the extracorporeal circuit on the measurements of cardiac stroke volume (SV), global end-diastolic volume index (GEDVI) and extravascular lung water index derived from transpulmonary thermodilution (TPTD) in 20 patients with severe acute respiratory distress syndrome (ARDS) treated with veno-venous extracorporeal membrane oxygenation (ECMO). METHODS Comparative SV measurements with transesophageal echocardiography and TPTD were performed at least 5 times during the treatment of the patients. The data were interpreted with a Bland-Altman analysis corrected for repeated measurements. The interchangeability between both measurement modalities was calculated and the effects of extracorporeal blood flow on SV measurements with TPTD was analysed with a linear mixed effect model. GEDVI and EVLWI measurements were performed immediately before the termination of the ECMO therapy at a blood flow of 6 l/min, 4 l/min and 2 l/min and after the disconnection of the circuit in 7 patients. RESULTS 170 pairs of comparative SV measurements were analysed. Average difference between the two modalities (bias) was 0.28 ml with an upper level of agreement of 40 ml and a lower level of agreement of -39 ml within a 95% confidence interval and an overall interchangeability rate between TPTD and Echo of 64%. ECMO blood flow did not influence the mean bias between Echo and TPTD (0.03 ml per l/min of ECMO blood flow; p = 0.992; CI - 6.74 to 6.81). GEDVI measurement was not significantly influenced by the blood flow in the ECMO circuit, whereas EVLWI differed at a blood flow of 6 l/min compared to no ECMO flow (25.9 ± 10.1 vs. 11.0 ± 4.2 ml/kg, p = 0.0035). CONCLUSIONS Irrespectively of an established ECMO therapy, comparative SV measurements with Echo and TPTD are not interchangeable. Such caveats also apply to the interpretation of EVLWI, especially with a high blood flow in the extracorporeal circulation. In such situations, the clinician should rely on other methods of evaluation of the amount of lung oedema with the haemodynamic situation, vasopressor support and cumulative fluid balance in mind. TRIAL REGISTRATION German Clinical Trials Register (DRKS00021050). Registered 03/30/2020 https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017237.
Collapse
|
10
|
Nguyen TK, Mai DH, Le AN, Nguyen QH, Nguyen CT, Vu TA. A review of intraoperative lung-protective mechanical ventilation strategy. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2021. [DOI: 10.1016/j.tacc.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Zhu CH, Yu J, Wang BQ, Nie Y, Wang L, Shan SQ. Dexmedetomidine reduces ventilator-induced lung injury via ERK1/2 pathway activation. Mol Med Rep 2020; 22:5378-5384. [PMID: 33173983 PMCID: PMC7647005 DOI: 10.3892/mmr.2020.11612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) can contribute to ventilator-induced lung injury (VILI); dexmedetomidine (Dex) treatment attenuates MV-related pulmonary inflammation, but the mechanisms remain unclear. Therefore, the present study aimed to explore the protective effect and the possible molecular mechanisms of Dex in a VILI rodent model. Adult male Sprague-Dawley rats were randomly assigned to one of seven groups (n=24 rats/group). Rats were euthanized after 4 h of continuous MV, and pathological changes, lung wet/dry (W/D) weight ratio, the levels of inflammatory cytokines (IL-1β, TNF-α and IL-6) in the bronchoalveolar lavage fluid (BALF), and the expression levels of Bcl-2 homologous antagonist/killer (Bak), Bcl-2, pro-caspase-3, cleaved caspase-3 and the phosphorylation of ERK1/2 in the lung tissues were measured. Propidium iodide uptake and TUNEL staining were used to detect epithelial cell death. The Dex pretreatment group exhibited fewer pathological changes, lower W/D ratios and lower expression levels of inflammatory cytokines in BALF compared with the VILI group. Dex significantly attenuated the ratio of Bak/Bcl-2, cleaved caspase-3 expression levels and epithelial cell death, and increased the expression of phosphorylated ERK1/2. The protective effects of Dex could be partially reversed by PD98059, which is a mitogen-activated protein kinase (upstream of ERK1/2) inhibitor. Overall, dexmedetomidine was found to reduce the inflammatory response and epithelial cell death caused by VILI, via the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Chun-Hua Zhu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jian Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ben-Qing Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yu Nie
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Lei Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shi-Qiang Shan
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
12
|
Ren R, Ruan Z, Ding H, Du J, Yu W. Phosphoproteome profiling provides insight into the mechanisms of ventilator-induced lung injury. Exp Ther Med 2020; 19:3627-3633. [PMID: 32346427 PMCID: PMC7185165 DOI: 10.3892/etm.2020.8634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
The incidence of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common health problem in the clinic and is projected to increase in prevalence in the future. Mechanical ventilation is commonly used to provide respiratory support and has become indispensable in emergency and critical medicine. However, ventilator use can result in lung tissue damage, collectively termed ventilator-induced lung injury (VILI). In the present study, phosphoprotein profiling of blood and tissue samples from ventilated and non-ventilated mice was performed and key changes in protein levels and cell signaling during VILI were identified. Activation of the PI3K/AKT and mitogen activated protein kinase signaling pathways, in addition to changes in expression of cancer, inflammatory and cell-death related proteins were detected in response to mechanical ventilation. Focal adhesion-related protein levels and signaling pathways were also significantly altered in an injury model compared with control. VILI can affect patient mortality in ALI and ARDS cases, and no targeted treatment options currently exist. Identifying biomarkers and understanding the signaling pathways associated with VILI is critical for the development of future therapies.
Collapse
Affiliation(s)
- Rongrong Ren
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China.,Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Zhengshang Ruan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Haoshu Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Junming Du
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Weifeng Yu
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
13
|
Zhang W, Dai H, Lin F, Zhao C, Wang X, Zhang S, Ge W, Pei S, Pan L. Ly-6C high inflammatory-monocyte recruitment is regulated by p38 MAPK/MCP-1 activation and promotes ventilator-induced lung injury. Int Immunopharmacol 2019; 78:106015. [PMID: 31780369 DOI: 10.1016/j.intimp.2019.106015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Lymphocyte antigen 6Chigh (Ly-6Chigh) inflammatory monocytes, as novel mononuclear cells in the innate immune system, participate in infectious diseases. In this study, we investigated the potential role of these monocytes in ventilator-induced lung injury (VILI) and the possible mechanism involved in their migration to lung tissue. Our results showed that mechanical ventilation with high tidal volume (HTV) increased the accumulation of Ly-6Chigh inflammatory monocytes in lung tissues and that blocking C‑C chemokine receptor 2 (CCR2) could significantly reduce Ly-6Chigh inflammatory-monocyte migration and attenuate the degree of inflammation of lung tissues. In addition, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) activity could decrease the secretion of monocyte chemoattractant protein 1 (MCP-1), which in turn decreased the migration of Ly-6Chigh inflammatory monocytes into lung tissue. We also demonstrated that high ventilation caused Ly-6Chigh inflammatory monocytes in the bone marrow to migrate into and aggregate in the lungs, creating inflammation, and that the mechanism was quite different from that of infectious diseases. Ly-6Chigh inflammatory monocytes might play a pro-inflammatory role in VILI, and blocking their infiltration into lung tissue might become a new target for the treatment of this injury.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Chen Zhao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Xiaoxia Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - SuiSui Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China.
| |
Collapse
|
14
|
Applying Positive End-Expiratory Pressure During Mechanical Ventilation Causes Pulmonary Redox Imbalance and Inflammation in Rats. Shock 2019; 50:572-578. [PMID: 29194341 DOI: 10.1097/shk.0000000000001072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mechanical ventilation (MV) may induce or aggravate lung injury through the production of cytokines, inflammatory infiltration of neutrophils, and changes in the permeability of the alveolar-capillary barrier. The use of positive end-expiratory pressure (PEEP) helps improve gas exchanges avoiding alveolar collapse at the end of expiration. The present study aimed to analyze inflammatory response and redox imbalance in lungs of rats submitted to MV with and without PEEP. METHODS Eighteen Wistar rats were divided into three groups: control (CG), PEEP group (PG), and zero PEEP (ZEEP) group (ZG). PG and ZG were submitted to MV for 60 min with or without PEEP, respectively. Subsequently, the animals were euthanized, and blood, bronchoalveolar lavage fluid, and lungs were collected for analyses. RESULTS The number of neutrophils was higher in PG compared with CG. Leucocyte and neutrophil influx in bronchoalveolar lavage fluid was higher in PG compared with CG. PG showed an increase in alveolar area compared with the other groups. There were increases in the levels of chemokines, CCL3 and CCL5, in PG compared with CG. There were increases in oxidation of lipids and proteins in PG compared with other groups. There were increases in the activity of superoxide dismutase and catalase in PG compared with CG and ZG. However, there was a decrease in the ratio of glutathione to glutathione disulfide in PG compared with other groups. CONCLUSIONS MV with PEEP caused redox imbalance and inflammation in lungs of healthy rats.
Collapse
|
15
|
Park BH, Shin MH, Douglas IS, Chung KS, Song JH, Kim SY, Kim EY, Jung JY, Kang YA, Chang J, Kim YS, Park MS. Erythropoietin-Producing Hepatoma Receptor Tyrosine Kinase A2 Modulation Associates with Protective Effect of Prone Position in Ventilator-induced Lung Injury. Am J Respir Cell Mol Biol 2019; 58:519-529. [PMID: 29216437 DOI: 10.1165/rcmb.2017-0143oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The erythropoietin-producing hepatoma (Eph) receptor tyrosine kinase A2 (EphA2) and its ligand, ephrinA1, play a pivotal role in inflammation and tissue injury by modulating the epithelial and endothelial barrier integrity. Therefore, EphA2 receptor may be a potential therapeutic target for modulating ventilator-induced lung injury (VILI). To support this hypothesis, here, we analyzed EphA2/ephrinA1 signaling in the process of VILI and determined the role of EphA2/ephrinA1 signaling in the protective mechanism of prone positioning in a VILI model. Wild-type mice were ventilated with high (24 ml/kg; positive end-expiratory pressure, 0 cm; 5 h) tidal volume in a supine or prone position. Anti-EphA2 receptor antibody or IgG was administered to the supine position group. Injury was assessed by analyzing the BAL fluid, lung injury scoring, and transmission electron microscopy. Lung lysates were evaluated using cytokine/chemokine ELISA and Western blotting of EphA2, ephrinA1, PI3Kγ, Akt, NF-κB, and P70S6 kinase. EphA2/ephrinA1 expression was higher in the supine high tidal volume group than in the control group, but it did not increase upon prone positioning or anti-EphA2 receptor antibody treatment. EphA2 antagonism reduced the extent of VILI and downregulated the expression of PI3Kγ, Akt, NF-κB, and P70S6 kinase. These findings demonstrate that EphA2/ephrinA1 signaling is involved in the molecular mechanism of VILI and that modulation of EphA2/ehprinA1 signaling by prone position or EphA2 antagonism may be associated with the lung-protective effect. Our data provide evidence for EphA2/ehprinA1 as a promising therapeutic target for modulating VILI.
Collapse
Affiliation(s)
- Byung Hoon Park
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeonggi Provincial Medical Center Paju Hospital, Paju City, Gyeonggi-Do, Republic of Korea
| | - Mi Hwa Shin
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Ivor S Douglas
- 3 Division of Pulmonary Sciences and Critical Care Medicine, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado
| | - Kyung Soo Chung
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Joo Han Song
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Song Yee Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Eun Young Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Ji Ye Jung
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Young Ae Kang
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Joon Chang
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Young Sam Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Moo Suk Park
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
16
|
Krebs J, Pelosi P, Rocco PRM, Hagmann M, Luecke T. Positive end-expiratory pressure titrated according to respiratory system mechanics or to ARDSNetwork table did not guarantee positive end-expiratory transpulmonary pressure in acute respiratory distress syndrome. J Crit Care 2018; 48:433-442. [PMID: 30336419 DOI: 10.1016/j.jcrc.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Pulmonary recruitment and positive end-expiratory pressure (PEEP) titrated according to minimal static elastance of the respiratory system (PEEPEstat,RS) compared to PEEP set according to the ARDSNetwork table (PEEPARDSNetwork) as a strategy to prevent ventilator-associated lung injury (VALI) in patients with acute respiratory distress syndrome (ARDS) increases mortality. Alternatively, avoiding negative end-expiratory transpulmonary pressure has been discussed as superior PEEP titration strategy. Therefore, we tested whether PEEPEstat,RS or PEEPARDSNetwork prevent negative end-expiratory transpulmonary pressure in ARDS patients. MATERIAL AND METHODS Thirteen patients with moderate to severe ARDS were studied at PEEPARDSNetwork versus PEEPEstat,RS. Patients were then grouped post hoc according to the end-expiratory transpulmonary pressure (positive or negative). RESULTS 7 out of 13 patients showed negative end-expiratory transpulmonary pressures (Ptp-) with both strategies (PEEPARDSNetwork: - 5.4 ± 3.5 vs. 2.2 ± 3.7 cm H2O, p = .005; PEEPEstat,RS: - 3.6 ± 1.5 vs. 3.5 ± 3.3 cm H2O, p < .001). Ptp- was associated with higher intra-abdominal pressure and lower end-expiratory lung volume with both PEEP strategies. CONCLUSIONS In patients with moderate-to-severe ARDS, PEEP titrated according to the minimal static elastance of the respiratory system or according to the ARDSNetwork table did not prevent negative end-expiratory transpulmonary pressure.
Collapse
Affiliation(s)
- Joerg Krebs
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165 Mannheim, Germany.
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, Ospedale Policlinico San Martino - IRCCS per l'Oncologia, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Michael Hagmann
- Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165 Mannheim, Germany.
| | - Thomas Luecke
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165 Mannheim, Germany.
| |
Collapse
|
17
|
Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:72. [PMID: 29558993 PMCID: PMC5861643 DOI: 10.1186/s13054-018-1991-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, IRCCS for Oncology, University of Genoa, Genoa, Italy.
| | - Patricia Rieken Macedo Rocco
- Federal University of Rio de Janeiro, Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Rio de Janeiro, Brazil
| | - Marcelo Gama de Abreu
- Technische Universität Dresden, Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
18
|
Protective Ventilation in general anesthesia. Anything new? ACTA ACUST UNITED AC 2017; 65:218-224. [PMID: 29102404 DOI: 10.1016/j.redar.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
19
|
Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 196:822-833. [PMID: 28306327 DOI: 10.1164/rccm.201612-2495ci] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, although lifesaving, is associated with new iatrogenic injury. Current best practice involves the use of small Vt, low plateau and driving pressures, and high levels of positive end-expiratory pressure. Collectively, these interventions are termed "lung-protective ventilation." Recent investigations suggest that individualized measurements of pulmonary mechanical variables rather than population-based ventilation prescriptions may be used to set the ventilator with the potential to improve outcomes beyond those achieved with standard lung protective ventilation. This review outlines the measurement and application of clinically applicable pulmonary mechanical concepts, such as plateau pressures, driving pressure, transpulmonary pressures, stress index, and measurement of strain. In addition, the concept of the "baby lung" and the utility of dynamic in addition to static measures of pulmonary mechanical variables are discussed.
Collapse
Affiliation(s)
- William R Henderson
- 1 Division of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Chen
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,3 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Marcelo B P Amato
- 4 Cardio-Pulmonary Department, Pulmonary Division, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil
| | - Laurent J Brochard
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,3 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| |
Collapse
|
20
|
Roth CJ, Yoshihara L, Wall WA. A simplified parametrised model for lung microstructures capable of mimicking realistic geometrical and mechanical properties. Comput Biol Med 2017; 89:104-114. [PMID: 28800439 DOI: 10.1016/j.compbiomed.2017.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
The respiratory zone of mammalian lungs contains several millions of so-called alveoli. The geometrical and mechanical properties of this microstructure are crucial for respiration and influence the macroscopic behaviour of the entire organ in health and disease. Hence, if computational models are sought to gain more insight into lung behaviour, predict lung states in certain scenarios or suggest better treatment options in early stages of respiratory dysfunction, an adequate representation of this microstructure is essential. However, investigating the real alveolar architecture requires complex medical-imaging methods and would be computationally extremely expensive. Even worse, there is currently no way of obtaining the real patient-specific microstructure in vivo. Hence, we present a fast and easy to compute parametrised model of lung microstructures based on tetrakaidecahedra which can represent both geometrical and mechanical properties of the parenchyma. We show that gas transport pathways and stress and strain distributions are comparable to real alveolar microstructures and even capable of capturing variations present in biology. The created parametrised lung microstructure models can be utilized in finite element simulations to study, e.g., alveolar flow phenomena, particle deposition, or alveolar stresses and strains during mechanical ventilation. Due to the simpler geometry of the parametrised microgeometries compared to imaging-based microstructures, remarkable savings in CPU time can be achieved. We show that our model requires a minimum of 10% of the computational time for computing the same strain state in structural mechanics simulations compared to imaging-based alveolar microstructures.
Collapse
Affiliation(s)
- Christian J Roth
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany
| | - Lena Yoshihara
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany.
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany
| |
Collapse
|
21
|
Santos CL, Santos RS, Moraes L, Samary CS, Felix NS, Silva JD, Morales MM, Huhle R, Abreu MG, Schanaider A, Silva PL, Pelosi P, Rocco PRM. Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension. PLoS One 2017; 12:e0178207. [PMID: 28542443 PMCID: PMC5444773 DOI: 10.1371/journal.pone.0178207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Intra-abdominal hypertension (IAH) may co-occur with the acute respiratory distress syndrome (ARDS), with significant impact on morbidity and mortality. Lung-protective controlled mechanical ventilation with low tidal volume and positive end-expiratory pressure (PEEP) has been recommended in ARDS. However, mechanical ventilation with spontaneous breathing activity may be beneficial to lung function and reduce lung damage in mild ARDS. We hypothesized that preserving spontaneous breathing activity during pressure support ventilation (PSV) would improve respiratory function and minimize ventilator-induced lung injury (VILI) compared to pressure-controlled ventilation (PCV) in mild extrapulmonary acute lung injury (ALI) with IAH. Thirty Wistar rats (334±55g) received Escherichia coli lipopolysaccharide intraperitoneally (1000μg) to induce mild extrapulmonary ALI. After 24h, animals were anesthetized and randomized to receive PCV or PSV. They were then further randomized into subgroups without or with IAH (15 mmHg) and ventilated with PCV or PSV (PEEP = 5cmH2O, driving pressure adjusted to achieve tidal volume = 6mL/kg) for 1h. Six of the 30 rats were used for molecular biology analysis and were not mechanically ventilated. The main outcome was the effect of PCV versus PSV on mRNA expression of interleukin (IL)-6 in lung tissue. Regardless of whether IAH was present, PSV resulted in lower mean airway pressure (with no differences in peak airway or peak and mean transpulmonary pressures) and less mRNA expression of biomarkers associated with lung inflammation (IL-6) and fibrogenesis (type III procollagen) than PCV. In the presence of IAH, PSV improved oxygenation; decreased alveolar collapse, interstitial edema, and diffuse alveolar damage; and increased expression of surfactant protein B as compared to PCV. In this experimental model of mild extrapulmonary ALI associated with IAH, PSV compared to PCV improved lung function and morphology and reduced type 2 epithelial cell damage.
Collapse
Affiliation(s)
- Cintia L. Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Laboratory of Experimental Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raquel S. Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Cynthia S. Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Nathane S. Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G2-048, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetschertsrasse 74, Dresden, Germany
| | - Marcelo G. Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetschertsrasse 74, Dresden, Germany
| | - Alberto Schanaider
- Laboratory of Experimental Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Paolo Pelosi
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Largo Rosanna Benzi 8, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Doorduin J, Nollet JL, Roesthuis LH, van Hees HWH, Brochard LJ, Sinderby CA, van der Hoeven JG, Heunks LMA. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am J Respir Crit Care Med 2017; 195:1033-1042. [DOI: 10.1164/rccm.201605-1016oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | - Laurent J. Brochard
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | - Christer A. Sinderby
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Ventilation spontanée au cours du syndrome de détresse respiratoire aiguë. MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Abstract
OBJECTIVE Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN Controlled animal study. SETTING University research laboratory. SUBJECTS Adult anesthetized pigs. INTERVENTIONS Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.
Collapse
|
25
|
Filho RR, Serpa Neto A. One more brick in the wall of protective ventilation in surgical patients. ANNALS OF TRANSLATIONAL MEDICINE 2016; 3:339. [PMID: 26734648 DOI: 10.3978/j.issn.2305-5839.2015.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
On June 14, 2015, Ladha and colleagues published an article in the BMJ entitled "Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study", which investigated the effects of intraoperative protective ventilation on major postoperative respiratory complications. This study used data of over 69,265 patients in order to investigate patients over the age of 18 who underwent a non-cardiac surgical procedure between January 2007 and August 2014 and required general anesthesia with endotracheal intubation. The investigators found that intraoperative protective ventilation was associated with a decreased risk of postoperative respiratory complications. This study raises important questions about the ventilatory management of surgical patients.
Collapse
Affiliation(s)
- Roberto Rabello Filho
- 1 Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil ; 2 Program of Post-Graduation, Research and Innovation, Faculdade de Medicina do ABC, São Paulo, Brazil ; 3 Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ary Serpa Neto
- 1 Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil ; 2 Program of Post-Graduation, Research and Innovation, Faculdade de Medicina do ABC, São Paulo, Brazil ; 3 Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 2015; 123:692-713. [PMID: 26120769 DOI: 10.1097/aln.0000000000000754] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.
Collapse
|
27
|
Critical assessment of the evidence. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2015. [DOI: 10.1016/j.rcae.2015.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
|
29
|
Modulation of stress versus time product during mechanical ventilation influences inflammation as well as alveolar epithelial and endothelial response in rats. Anesthesiology 2015; 122:106-16. [PMID: 25141026 DOI: 10.1097/aln.0000000000000415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Mechanical ventilation can lead to lung biotrauma when mechanical stress exceeds safety thresholds. The authors investigated whether the duration of mechanical stress, that is, the impact of a stress versus time product (STP), influences biotrauma. The authors hypothesized that higher STP levels are associated with increased inflammation and with alveolar epithelial and endothelial cell injury. METHODS In 46 rats, Escherichia coli lipopolysaccharide (acute lung inflammation) or saline (control) was administered intratracheally. Both groups were protectively ventilated with inspiratory-to-expiratory ratios 1:2, 1:1, or 2:1 (n = 12 each), corresponding to low, middle, and high STP levels (STPlow, STPmid, and STPhigh, respectively). The remaining 10 animals were not mechanically ventilated. RESULTS In animals with mild acute lung inflammation, but not in controls: (1) messenger RNA expression of interleukin-6 was higher in STPhigh (28.1 ± 13.6; mean ± SD) and STPlow (28.9 ± 16.0) versus STPmid (7.4 ± 7.5) (P < 0.05); (2) expression of the receptor for advanced glycation end-products was increased in STPhigh (3.6 ± 1.6) versus STPlow (2.3 ± 1.1) (P < 0.05); (3) alveolar edema was decreased in STPmid (0 [0 to 0]; median, Q1 to Q3) compared with STPhigh (0.8 [0.6 to 1]) (P < 0.05); and (4) expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 were higher in STPlow (3.0 ± 1.8) versus STPhigh (1.2 ± 0.5) and STPmid (1.4 ± 0.7) (P < 0.05), respectively. CONCLUSIONS In the mild acute lung inflammation model used herein, mechanical ventilation with inspiratory-to-expiratory of 1:1 (STPmid) minimized lung damage, whereas STPhigh increased the gene expression of biological markers associated with inflammation and alveolar epithelial cell injury and STPlow increased markers of endothelial cell damage.
Collapse
|
30
|
Critical assessment of the evidence☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2015. [DOI: 10.1097/01819236-201543020-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Collange O, Charles AL, Lavaux T, Noll E, Bouitbir J, Zoll J, Chakfé N, Mertes M, Geny B. Compartmentalization of Inflammatory Response Following Gut Ischemia Reperfusion. Eur J Vasc Endovasc Surg 2015; 49:60-5. [DOI: 10.1016/j.ejvs.2014.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/11/2014] [Indexed: 11/27/2022]
|
32
|
Sutherasan Y, D'Antini D, Pelosi P. Advances in ventilator-associated lung injury: prevention is the target. Expert Rev Respir Med 2014; 8:233-48. [PMID: 24601663 DOI: 10.1586/17476348.2014.890519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanical ventilation (MV) is the main supportive treatment in respiratory failure due to different etiologies. However, MV might aggravate ventilator-associated lung injury (VALI). Four main mechanisms leading to VALI are: 1) increased stress and strain, induced by high tidal volume (VT); 2) increased shear stress, i.e. opening and closing, of previously atelectatic alveolar units; 3) distribution of perfusion and 4) biotrauma. In severe acute respiratory distress syndrome patients, low VT, higher levels of positive end expiratory pressure, long duration prone position and neuromuscular blockade within the first 48 hours are associated to a better outcome. VALI can also occur by using high VT in previously non injured lungs. We believe that prevention is the target to minimize injurious effects of MV. This review aims to describe pathophysiology of VALI, the possible prevention and treatment as well as monitoring MV to minimize VALI.
Collapse
Affiliation(s)
- Yuda Sutherasan
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, IRCCS San Martino - IST, Genoa, Italy
| | | | | |
Collapse
|
33
|
Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury. Similarity and differences between children and adults. Am J Respir Crit Care Med 2014; 190:258-65. [PMID: 25003705 DOI: 10.1164/rccm.201401-0168cp] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well established that mechanical ventilation can injure the lung, producing an entity known as ventilator-induced lung injury (VILI). There are various forms of VILI, including volutrauma (i.e., injury caused by overdistending the lung), atelectrauma (injury due to repeated opening/closing of lung units), and biotrauma (release of mediators that can induce lung injury or aggravate pre-existing injury, potentially leading to multiple organ failure). Experimental data in the pediatric context are in accord with the importance of VILI, and appear to show age-related susceptibility to VILI, although a conclusive link between use of large Vts and mortality has not been demonstrated in this population. The relevance of VILI in the pediatric intensive care unit population is thus unclear. Given the physiological and biological differences in the respiratory systems of infants, children, and adults, it is difficult to directly extrapolate clinical practice from adults to children. This Critical Care Perspective analyzes the relevance of VILI to the pediatric population, and addresses why pediatric patients might be less susceptible than adults to VILI.
Collapse
Affiliation(s)
- Martin C J Kneyber
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology 2014; 121:189-98. [PMID: 24732023 DOI: 10.1097/aln.0000000000000264] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation-or more specifically, that ventilator-induced lung injury-may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress-induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.
Collapse
|
35
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
36
|
Hirsch J, Chalkley RJ, Bentley T, Burlingame AL, Frank JA. Double impact of cigarette smoke and mechanical ventilation on the alveolar epithelial type II cell. Crit Care 2014; 18:R50. [PMID: 24666941 PMCID: PMC4056080 DOI: 10.1186/cc13795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/28/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Ventilator-induced lung injury (VILI) impacts clinical outcomes in acute respiratory distress syndrome (ARDS), which is characterized by neutrophil-mediated inflammation and loss of alveolar barrier function. Recent epidemiological studies suggest that smoking may be a risk factor for the development of ARDS. Because alveolar type II cells are central to maintaining the alveolar epithelial barrier during oxidative stress, mediated in part by neutrophilic inflammation and mechanical ventilation, we hypothesized that exposure to cigarette smoke and mechanical strain have interactive effects leading to the activation of and damage to alveolar type II cells. METHODS To determine if cigarette smoke increases susceptibility to VILI in vivo, a clinically relevant rat model was established. Rats were exposed to three research cigarettes per day for two weeks. After this period, some rats were mechanically ventilated for 4 hours. Bronchoalveolar lavage (BAL) and differential cell count was done and alveolar type II cells were isolated. Proteomic analysis was performed on the isolated alveolar type II cells to discover alterations in cellular pathways at the protein level that might contribute to injury. Effects on levels of proteins in pathways associated with innate immunity, oxidative stress and apoptosis were evaluated in alveolar type II cell lysates by enzyme-linked immunosorbent assay. Statistical comparisons were performed by t-tests, and the results were corrected for multiple comparisons using the false discovery rate. RESULTS Tobacco smoke exposure increased airspace neutrophil influx in response to mechanical ventilation. The combined exposure to cigarette smoke and mechanical ventilation significantly increased BAL neutrophil count and protein content. Neutrophils were significantly higher after smoke exposure and ventilation than after ventilation alone. DNA fragments were significantly elevated in alveolar type II cells. Smoke exposure did not significantly alter other protein-level markers of cell activation, including Toll-like receptor 4; caspases 3, 8 and 9; and heat shock protein 70. CONCLUSIONS Cigarette smoke exposure may impact ventilator-associated alveolar epithelial injury by augmenting neutrophil influx. We found that cigarette smoke had less effect on other pathways previously associated with VILI, including innate immunity, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jan Hirsch
- Anesthesia and Perioperative Care, University of California, San Francisco VA Medical Center, San Francisco, CA, USA
- Anesthesia Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Robert J Chalkley
- Anesthesia and Perioperative Care, University of California, San Francisco VA Medical Center, San Francisco, CA, USA
- Anesthesia Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Trevor Bentley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - James A Frank
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
37
|
Chen C, Zhang Z, Li Z, Zhang F, Peng M, Chen Y, Wang Y. Losartan attenuates microvascular permeability in mechanical ventilator-induced lung injury in diabetic mice. Mol Biol Rep 2014; 41:809-14. [PMID: 24420847 DOI: 10.1007/s11033-013-2920-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/18/2013] [Indexed: 12/15/2022]
Abstract
Mechanical ventilation can cause direct injury to the lungs, a type of injury known as ventilator-induced lung injury (VILI). VILI is associated with up-regulates angiotensinogen and AT1 receptor expression of in the lung. This work explored effects of losartan on VILI in diabetic mice. Ninty-six C57Bl/6 mice were randomly divided into six groups, control group (C group), diabetes group (D group), diabetes mechanical ventilation group (DV group), losartan control group (L + C group), losartan treatment group in diabetic mice (L + D group) and losartan treatment group in mechanical ventilation diabetic mice (L + DV group). Lung W/D, myeloperoxidase (MPO) activity, microvascular permeability, blood-gas analysis, Ang II concentrations and AT-1R protein expression were measured. Compared with D group, DV group increased Ang II concentrations, AT-1R protein expression, W/D ratio, MPO activity, and microvascular permeability. PaO2 were significantly lower in the DV group than D group or control group. Compared with DV group, L + DV group attenuates ventilator-induced lung injury in diabetic mice and prevented the increase Ang II concentrations, AT-1R protein expression and microvascular permeability caused by ventilation in diabetic mice. This study provides in vivo evidence that losartan attenuates microvascular permeability via down-regulates Ang II and AT-1R expression in mechanical ventilator-induced lung injury in diabetic mice.
Collapse
Affiliation(s)
- Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Donghu Road, Wuhan, 430071, Hubei, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen C, Zhang Z, Chen K, Zhang F, Peng M, Wang Y. Dexmedetomidine regulates inflammatory molecules contributing to ventilator-induced lung injury in dogs. J Surg Res 2013; 187:211-8. [PMID: 24209806 DOI: 10.1016/j.jss.2013.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dexmedetomidine reduced mortality and inhibited the inflammatory response during endotoxemia in rats. The aim of this study was to clarify the effect of dexmedetomidine-regulating inflammation on a noninfectious, ventilator-induced lung injury (VILI) in dogs. METHODS Thirty healthy Beagles weighing between 8 and 12 kg were randomly divided into five groups: control group (group C, n = 6), mechanical ventilation (group MV, n = 6), and three different doses of dexmedetomidine group (group DEX1-3, n = 6). VILI was induced by high-tidal volume ventilation (tidal volume 20 mL/kg; respiratory rate 15 breaths/min; FiO2 0.5). Group DEX received intravenous Dex 20 min before endotracheal intubation (0.5, 1.0, and 2.0 μg/kg Dex was infused within 20 min and then a maintenance dose of 0.5, 1.0, and 2.0 μg/kg/h Dex was infused intravenously). Arterial blood samples were obtained from femoral artery at base state, MV1h, MV2h, and MV4h for blood gas analysis. After being mechanically ventilated for 4 h, dogs were killed and the levels of pulmonary inflammatory response and polymorphonuclear neutrophils (PMNs) count in bronchoalveolar lavage fluid were evaluated. RESULTS Histologic findings of the MV, DEX1, DEX2, and DEX3 groups revealed severe, moderate, mild, and normal to minimal inflammation, respectively. Myeloperoxidase level, PMNs/alveoli ratio, nuclear factor-κB messenger RNA (mRNA), tumor necrosis factor-alpha mRNA, and inducible nitric oxide synthase mRNA expression in lung tissues of the DEX2 and DEX3 were significantly lower than those of the MV group. Partial pressures of oxygen was decreased significantly at MV4h as compared with the baseline. There was no statistical significance in partial pressures of oxygen between MV and DEX2 group as well as between group MV and group DEX3. CONCLUSIONS Dexmedetomidine could mitigate pulmonary inflammatory response induced by VILI in dogs.
Collapse
Affiliation(s)
- Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Fan Zhang
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
39
|
Saddy F, Moraes L, Santos CL, Oliveira GP, Cruz FF, Morales MM, Capelozzi VL, de Abreu MG, Garcia CSNB, Pelosi P, Rocco PRM. Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R228. [PMID: 24103805 PMCID: PMC4057608 DOI: 10.1186/cc13051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/28/2013] [Indexed: 01/01/2023]
Abstract
Introduction Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI. Methods This was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (Vt) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (Phigh = 10 cmH2O and Plow = 5 cmH2O). Inspiratory time was kept constant (Thigh = 0.3 s). Results BIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALIp, alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALIexp, alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50. Conclusions In mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.
Collapse
|
40
|
Bambi S. Managing Ventilated Patients in Emergency Departments. J Emerg Nurs 2013; 39:324-5. [DOI: 10.1016/j.jen.2013.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
41
|
Abstract
PURPOSE OF REVIEW This review will analyze the risk factors of acute lung injury (ALI) in patients undergoing thoracic surgery. Evidence for the occurrence of lung injury following mechanical ventilation and one-lung ventilation (OLV) and the strategies to avoid it will also be discussed. RECENT FINDINGS Post-thoracotomy ALI has become one of the leading causes of operative death. The pathogenesis of ALI implicates a multiple-hit sequence of various triggering factors (e.g. preoperative conditions, surgery-induced inflammation, ventilator-induced injury, fluid overload, and transfusion). Conventional ventilation during OLV is performed with high tidal volumes equal to those being used in two-lung ventilation, high FiO(2), and without positive end-expiratory pressure. This practice was originally recommended to improve oxygenation and decrease shunt fraction during OLV. However, a number of recent studies using experimental models or human patients have shown low tidal volumes to be associated with a decrease in inflammatory mediators and a reduction in pulmonary postoperative complications. However, the application of such protective strategies could be harmful if not still properly used. SUMMARY The goal of ventilation is to minimize lung trauma by avoiding overdistension and repetitive alveolar collapse, while providing adequate oxygenation. Protective ventilation is not simply synonymous of low tidal volume ventilation, but it also involves positive end-expiratory pressure, lower FiO(2), recruitment maneuvers, and lower ventilatory pressures.
Collapse
|
42
|
HÖSTMAN S, ENGSTRÖM J, HEDENSTIERNA G, LARSSON A. Intensive buffering can keep pH above 7.2 for over 4 h during apnea: an experimental porcine study. Acta Anaesthesiol Scand 2013; 57:63-70. [PMID: 23167283 DOI: 10.1111/aas.12012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ventilation with low tidal volumes reduces mortality in acute respiratory distress syndrome. A further reduction of tidal volumes might be beneficial, and it is known that apneic oxygenation (no tidal volumes) with arteriovenous CO(2) removal can keep acid-base balance and oxygenation normal for at least 7 h in an acute lung injury model. We hypothesized that adequate buffering might be another approach and tested whether tris-hydroxymethyl aminomethane (THAM) alone could keep pH at a physiological level during apneic oxygenation for 4 h. METHODS Six pigs were anesthetized, muscle relaxed, and normoventilated. The lungs were recruited, and apneic oxygenation as well as administration of THAM, 20 mmol/kg/h, was initiated. The experiment ended after 270 min, except one that was studied for 6 h. RESULTS Two animals died before the end of the experiment. Arterial pH and arterial carbon dioxide tension (PaCO(2) ) changed from 7.5 (7.5, 7.5) to 7.3 (7.2, 7.3) kPa, P < 0.001 at 270 min, and from 4.5 (4.3, 4.7) to 25 (22, 28) kPa, P < 0.001, respectively. Base excess increased from 5 (3, 6) to 54 (51, 57) mM, P < 0.001. Cardiac output and arterial pressure were well maintained. The pig, which was studied for 6 h, had pH 7.27 and PaCO(2) 27 kPa at that time. CONCLUSION With intensive buffering using THAM, pH can be kept in a physiologically acceptable range for 4 h during apnea.
Collapse
Affiliation(s)
- S. HÖSTMAN
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| | - J. ENGSTRÖM
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| | - G. HEDENSTIERNA
- Department of Medical Sciences, Clinical Physiology; Uppsala University; Uppsala; Sweden
| | - A. LARSSON
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| |
Collapse
|
43
|
BRINK M, HAGBERG L, LARSSON A, GEDEBORG R. Respiratory support during the influenza A (H1N1) pandemic flu in Sweden. Acta Anaesthesiol Scand 2012; 56:976-86. [PMID: 22724889 DOI: 10.1111/j.1399-6576.2012.02727.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Acute respiratory insufficiency characterised critically ill patients during the influenza A (H1N1) pandemic 2009-2010. Detailed understanding of disease progression and outcome in relation to different respiratory support strategies is important. METHODS Data collected between August 2009 and February 2010 for a national intensive care unit influenza registry were combined with cases identified by the Swedish Institute for Infectious Disease Control. RESULTS Clinical data was available for 95% (126/136) of the critically ill cases of influenza. Median age was 44 years, and major co-morbidities were present in 41%. Respiratory support strategies were studied among the 110 adult patients. Supplementary oxygen was sufficient in 15% (16), non-invasive ventilation (NIV) only was used in 20% (22), while transition from NIV to invasive ventilation (IV) was seen in 41% (45). IV was initiated directly in 24% (26). Patients initially treated with NIV had a higher arterial partial pressure of oxygen/fraction of oxygen in inspired gas ratio compared with those primarily treated with IV. Major baseline characteristics and 28-day mortality were similar, but 90-day mortality was higher in patients initially treated with NIV 17/67 (25%) as compared with patients primarily treated with IV 3/26 (12%), relative risk 1.2 (95% confidence interval 0.3-4.0). CONCLUSIONS Critical illness because of 2009 influenza A (H1N1) in Sweden was dominated by hypoxic respiratory failure. The majority of patients in need of respiratory support were initially treated with NIV. In spite of less severe initial hypoxemia, initiation of ventilatory support with NIV was not associated with improved outcome.
Collapse
Affiliation(s)
- M. BRINK
- Institute of Biomedicine; The Sahlgrenska Academy, Gothenburg University; Gothenburg; Sweden
| | - L. HAGBERG
- Institute of Biomedicine; The Sahlgrenska Academy, Gothenburg University; Gothenburg; Sweden
| | - A. LARSSON
- Department of Surgical Sciences; Anaesthesiology and Intensive Care, Uppsala University; Uppsala; Sweden
| | | |
Collapse
|
44
|
Fletcher DJ, Boller M, Brainard BM, Haskins SC, Hopper K, McMichael MA, Rozanski EA, Rush JE, Smarick SD. RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 7: Clinical guidelines. J Vet Emerg Crit Care (San Antonio) 2012; 22 Suppl 1:S102-31. [PMID: 22676281 DOI: 10.1111/j.1476-4431.2012.00757.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To present a series of evidence-based, consensus guidelines for veterinary CPR in dogs and cats. DESIGN Standardized, systematic evaluation of the literature, categorization of relevant articles according to level of evidence and quality, and development of consensus on conclusions for application of the concepts to clinical practice. Questions in five domains were examined: Preparedness and Prevention, Basic Life Support, Advanced Life Support, Monitoring, and Post-Cardiac Arrest Care. Standardized worksheet templates were used for each question, and the results reviewed by the domain members, by the RECOVER committee, and opened for comments by veterinary professionals for 4 weeks. Clinical guidelines were devised from these findings and again reviewed and commented on by the different entities within RECOVER as well as by veterinary professionals. SETTING Academia, referral practice and general practice. RESULTS A total of 74 worksheets were prepared to evaluate questions across the five domains. A series of 101 individual clinical guidelines were generated. In addition, a CPR algorithm, resuscitation drug-dosing scheme, and postcardiac arrest care algorithm were developed. CONCLUSIONS Although many knowledge gaps were identified, specific clinical guidelines for small animal veterinary CPR were generated from this evidence-based process. Future work is needed to objectively evaluate the effects of these new clinical guidelines on CPR outcome, and to address the knowledge gaps identified through this process.
Collapse
Affiliation(s)
- Daniel J Fletcher
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|