1
|
Lee HJ, Sim JY, Song I, Nedeljkovic SS, Kim DK, Oh AY, Yoon SZ, Moon YJ, Park MH, Park I, Kim J, Lee SR, Cho S, Bahk JH. Reduction of postoperative pain and opioid consumption by VVZ-149, first-in-class analgesic molecule: A confirmatory phase 3 trial of laparoscopic colectomy. J Clin Anesth 2025; 101:111729. [PMID: 39705738 DOI: 10.1016/j.jclinane.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024]
Abstract
STUDY OBJECTIVE VVZ-149 is a small molecule that inhibits the glycine transporter type 2 and the serotonin receptor 5-hydroxytryptamine 2 A. In this Phase 3 study, we investigated the efficacy and safety of VVZ-149 as a single-use injectable analgesic for treating moderate to severe postoperative pain after laparoscopic colectomy. DESIGN Randomized, parallel group, double-blind, Phase 3 clinical trial (Trial no. NCT05764525). SETTING 5 tertiary referral centers in South Korea. PATIENTS 284 patients undergoing laparoscopic colectomy. INTERVENTIONS A continuous 10-h intravenous infusion of VVZ-149 (n = 141) or placebo (n = 143) administered after emergence from anesthesia. MEASUREMENTS Pain intensity was assessed using a numeric rating scale (NRS) from the start of infusion for 48 h. The primary efficacy measure was the Sum of Pain Intensity Difference (SPID) for the first 12 h after the start of drug infusion. Other efficacy measures included SPID at other time points, opioid consumption via on-demand patient-controlled analgesia (PCA) and rescue medication, and proportion of patients who did not require rescue opioids for 48 h post-dose. MAIN RESULTS Pain relief as measured by SPID was significantly improved by 35 % in the VVZ-149 group compared to the placebo group at 6 h (p = 0.0193) and 12 h (p = 0.0047) after the start of infusion. Significantly lower pain intensity scores were observed between 4-10 h in the VVZ-149 group compared to the placebo group (p = 0.0007), reaching mild pain (mean NRS <4) at 8 h. VVZ-149 alleviated pain during the first 12 h post-dose with 30.8 % less opioid consumption and 60.2 % fewer PCA requests when compared with placebo. A higher proportion of patients receiving VVZ-149 were rescue opioid-free during 2-6 h (p = 0.0026) and 6-12 h (p = 0.0024) compared with the placebo group. VVZ-149 administration in post-colectomy patients was generally safe and well tolerated. CONCLUSIONS When compared to placebo, VVZ-149 infusion demonstrated a significant reduction of pain within the first 12 h after surgery with a substantial decrease in opioid use. VVZ-149 rapidly lowers the pain intensity starting at as early as 4 h post-dose, allowing subjects to experience mild pain levels from 8 h through 48 h. Therefore, the analgesic effect of VVZ-149 was shown to effectively relieve pain and reduce opioid use for treating moderate to severe pain in the early postoperative care setting. REGISTRATION NUMBER Trial Number NCT05764525.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Sim
- Department of Anesthesiology and Pain Medicine, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Inkyung Song
- Department of Global Research and Development, Vivozon, Inc., Princeton, NJ, USA
| | - Srdjan S Nedeljkovic
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duk Kyung Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ah-Young Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Young-Jin Moon
- Department of Anesthesiology and Pain Medicine, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mi-Hye Park
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Insun Park
- Department of Anesthesiology and Pain Medicine, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jina Kim
- Department of Clinical Development, Vivozon, Inc., Seoul, Republic of Korea
| | - Sang Rim Lee
- Department of Clinical Development, Vivozon, Inc., Seoul, Republic of Korea
| | - Sunyoung Cho
- Department of Global Research and Development, Vivozon, Inc., Princeton, NJ, USA
| | - Jae-Hyon Bahk
- Department of Anesthesiology and Pain Medicine, Seoul National University, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Ding Z, Xu W, He L, Huang J, Zhang C, Guo Q, Zou W. Botulinum toxin type A counteracts neuropathic pain by countering the increase of GlyT2 expression in the spinal cord of CCI rats. Brain Res 2022; 1796:148095. [PMID: 36165874 DOI: 10.1016/j.brainres.2022.148095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022]
Abstract
Botulinum toxin type A (BoNT/A) is a potent toxin, acts by cleaving synaptosome-associated-protein-25 (SNAP-25) to regulate the release of the neural transmitter and shows analgesic effect in neuropathic pain. However, the mechanisms of BoNT/A actions involved in nociceptions remain unclear. Glycine transporter 2 (GlyT2) is an isoform of glycine transporters, which plays an important role in the regulation of glycinergic neurotransmission. Inhibition of GlyTs could decrease pain sensation in neuropathic pain, the role of GlyT2 in the analgesic effect of BoNT/A has not been studied yet. In our present study, we demonstrated that the protein levels of GlyT2 and SNAP-25 were upregulated in the spinal cord after the development of chronic constriction injury (CCI)-induced neuropathic pain. Intraplantar application of BoNT/A (20 U/kg) attenuated mechanical allodynia induced by CCI and downregulated GlyT2 expression in the spinal cord. The application of BoNT/A s also decreased the expression of GlyT2 in pheochromocytoma (PC12) cells. Moreover, intrathecal application of lentivirus-mediated GlyT2 reversed the antinociceptive effect of BoNT/A in CCI rats. These findings indicate that GlyT2 contributes to the antinociceptive effect of BoNT/A and suggest a novel mechanism underlying BoNT/A's antinociception action.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, The First Hospital of Changsha, Changsha, Hunan 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Wilson BS, Peiser-Oliver J, Gillis A, Evans S, Alamein C, Mostyn SN, Shimmon S, Rawling T, Christie MJ, Vandenberg RJ, Mohammadi SA. Peripheral Administration of Selective Glycine Transporter-2 Inhibitor, Oleoyl- D-Lysine, Reverses Chronic Neuropathic Pain but Not Acute or Inflammatory Pain in Male Mice. J Pharmacol Exp Ther 2022; 382:246-255. [PMID: 35779948 DOI: 10.1124/jpet.122.001265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Aberrations in spinal glycinergic signaling are a feature of pain chronification. Normalizing these changes by inhibiting glycine transporter (GlyT)-2 is a promising treatment strategy. However, existing GlyT2 inhibitors (e.g., ORG25543) are limited by narrow therapeutic windows and severe dose-limiting side effects, such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterized in mouse models of acute (hot plate), inflammatory (complete Freund's adjuvant), and chronic neuropathic (chronic constriction injury) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod), and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete antiallodynia for chronic neuropathic pain, but no antiallodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. SIGNIFICANCE STATEMENT: Partially inhibiting glycine transporter (GlyT)-2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor ol-D-lys is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.
Collapse
Affiliation(s)
- Bruce S Wilson
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Julian Peiser-Oliver
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Alexander Gillis
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Sally Evans
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Claudia Alamein
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Shannon N Mostyn
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Susan Shimmon
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Tristan Rawling
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - MacDonald J Christie
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Robert J Vandenberg
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| | - Sarasa A Mohammadi
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia (B.S.W., J.P.-O., A.G., S.E., C.A., S.N.M, M.J.C., R.J.V., S.A.M.) and School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia (S.S., T.R.)
| |
Collapse
|
4
|
Peiser-Oliver JM, Evans S, Adams DJ, Christie MJ, Vandenberg RJ, Mohammadi SA. Glycinergic Modulation of Pain in Behavioral Animal Models. Front Pharmacol 2022; 13:860903. [PMID: 35694265 PMCID: PMC9174897 DOI: 10.3389/fphar.2022.860903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Animal models of human pain conditions allow for detailed interrogation of known and hypothesized mechanisms of pain physiology in awake, behaving organisms. The importance of the glycinergic system for pain modulation is well known; however, manipulation of this system to treat and alleviate pain has not yet reached the sophistication required for the clinic. Here, we review the current literature on what animal behavioral studies have allowed us to elucidate about glycinergic pain modulation, and the progress toward clinical treatments so far. First, we outline the animal pain models that have been used, such as nerve injury models for neuropathic pain, chemogenic pain models for acute and inflammatory pain, and other models that mimic painful human pathologies such as diabetic neuropathy. We then discuss the genetic approaches to animal models that have identified the crucial glycinergic machinery involved in neuropathic and inflammatory pain. Specifically, two glycine receptor (GlyR) subtypes, GlyRα1(β) and GlyRα3(β), and the two glycine transporters (GlyT), GlyT1 and GlyT2. Finally, we review the different pharmacological approaches to manipulating the glycinergic system for pain management in animal models, such as partial vs. full agonism, reversibility, and multi-target approaches. We discuss the benefits and pitfalls of using animal models in drug development broadly, as well as the progress of glycinergic treatments from preclinical to clinical trials.
Collapse
Affiliation(s)
| | - Sally Evans
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | | | | | - Sarasa A. Mohammadi
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sarasa A. Mohammadi,
| |
Collapse
|
5
|
Bupivacaine reduces GlyT1 expression by potentiating the p-AMPKα/BDNF signalling pathway in spinal astrocytes of rats. Sci Rep 2022; 12:1378. [PMID: 35082359 PMCID: PMC8792009 DOI: 10.1038/s41598-022-05478-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Bupivacaine, a local anaesthetic, is widely applied in the epidural or subarachnoid space to clinically manage acute and chronic pain. However, the underlying mechanisms are complex and unclear. Glycine transporter 1 (GlyT1) in the spinal cord plays a critical role in various pathologic pain conditions. Therefore, we sought to determine whether bupivacaine exerts its analgesic effect by regulating GlyT1 expression and to determine the underlying mechanisms of regulation. Primary astrocytes prepared from the spinal cord of rats were treated with bupivacaine. The protein levels of GlyT1, brain-derived neurotrophic factor (BDNF) and phosphorylated adenosine 5′-monophosphate (AMP)-activated protein kinase α (p-AMPKα) were measured by western blotting or immunofluorescence. In addition, 7,8-dihydroxyflavone (7,8-DHF, BDNF receptor agonist) and AMPK shRNA were applied to verify the relationship between the regulation of GlyT1 by bupivacaine and the p-AMPKα/BDNF signalling pathway. After treatment with bupivacaine, GlyT1 expression was diminished in a concentration-dependent manner, while the expression of BDNF and p-AMPK was increased. Moreover, 7,8-DHF decreased GlyT1 expression, and AMPK knockdown suppressed the upregulation of BDNF expression by bupivacaine. Finally, we concluded that bupivacaine reduced GlyT1 expression in spinal astrocytes by activating the p-AMPKα/BDNF signalling pathway. These results provide a new mechanism for the analgesic effect of intrathecal bupivacaine in the treatment of acute and chronic pain.
Collapse
|
6
|
Exploratory study of VVZ-149, a novel analgesic molecule, in the affective component of acute postoperative pain after laparoscopic colorectal surgery. J Clin Anesth 2021; 76:110576. [PMID: 34794108 DOI: 10.1016/j.jclinane.2021.110576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVE VVZ-149 is a small molecule that inhibits the glycine transporter type 2 and the serotonin receptor 5-hydroxytryptamine 2A. In the present study, we investigated the efficacy and safety of VVZ-149 as a single-use injectable analgesic for treating moderate to severe postoperative pain after colorectal surgery. DESIGN Randomized, parallel group, double-blind Phase 2 clinical trial (NCT02489526). SETTING 3 academic institutions in the United States. PATIENTS 60 patients undergoing laparoscopic colorectal surgery. INTERVENTIONS A continuous 8-h intravenous infusion of VVZ-149 Injections (n = 40) or placebo (n = 20) administered after emergence from anesthesia. MEASUREMENTS The outcome measures included pain intensity (PI), opioid consumption via patient-controlled analgesia (PCA), and rescue dosing provided "as needed". Early rescue dosing with opioids postoperatively was associated with preoperative negative affect (anxiety, depression, and pain catastrophizing), enabling it to be used as an indirect measure of the affective component of pain. Efficacy outcomes were compared between treatment groups based on preoperative negative affect and early rescue dosing of opioids. MAIN RESULTS Postoperative PI was non-significantly lower in patients receiving VVZ-149 compared to those receiving placebo. The VVZ-149 group had a 34.2% reduction in opioid consumption for 24 h post-dose, along with fewer PCA demands. Somnolence and headache was higher in the intervention group. For patients characterized by high levels of preoperative negative affect, the VVZ-149 group experienced a significant pain reduction and 40% less opioid use compared to the placebo group. CONCLUSIONS VVZ-149 resulted in a non-significant reduction of postoperative pain during the first 8 h after surgery. Post hoc analysis indicates that VVZ-149 may benefit patients with negative affect who otherwise have higher postoperative opioid use. REGISTRATION NUMBER: www.clinicaltrials.gov, ID: NCT02489526.
Collapse
|
7
|
Frouni I, Belliveau S, Maddaford S, Nuara SG, Gourdon JC, Huot P. Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Eur J Pharmacol 2021; 910:174452. [PMID: 34480885 DOI: 10.1016/j.ejphar.2021.174452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Dyskinesia and psychosis are complications encountered in advanced Parkinson's disease (PD) following long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA). Disturbances in the glutamatergic system have been associated with both dyskinesia and psychosis, making glutamatergic modulation a potential therapeutic approach for these. Treatments thus far have sought to dampen glutamatergic transmission, for example through blockade of N-methyl-D-aspartate (NMDA) receptors or modulation of metabotropic glutamate receptors 5. In contrast, activation of the glycine-binding site on NMDA receptors is required for their physiological response. Here, we investigated whether indirectly enhancing glutamatergic transmission through inhibition of glycine re-uptake would be efficacious in diminishing both dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset. Six marmosets were rendered parkinsonian by MPTP injection. Following repeated administration of L-DOPA to induce dyskinesia and PLBs, they underwent acute challenges of the glycine transporter 1 (GlyT1) inhibitor ALX-5407 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA, after which the severity of dyskinesia, PLBs and parkinsonian disability was evaluated. In combination with L-DOPA, ALX-5407 0.1 and 1 mg/kg significantly reduced the severity of dyskinesia, by 51% and 41% (both P < 0.001), when compared to vehicle. ALX-5407 0.01, 0.1 and 1 mg/kg also decreased the severity of global PLBs, by 25%, 51% and 38% (all P < 0.001), when compared to vehicle. The benefits on dyskinesia and PLBs were achieved without compromising the therapeutic effect of L-DOPA on parkinsonism. Our results suggest that GlyT1 inhibition may be a novel strategy to attenuate dyskinesia and PLBs in PD, without interfering with L-DOPA anti-parkinsonian action.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
8
|
Ackermann TM, Höfner G, Wanner KT. Screening for New Inhibitors of Glycine Transporter 1 and 2 by Means of MS Binding Assays. ChemMedChem 2021; 16:3094-3104. [PMID: 34174033 PMCID: PMC8518836 DOI: 10.1002/cmdc.202100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/10/2022]
Abstract
A straightforward screening of a compound library comprising 2439 substances for the identification of new inhibitors for the neurotransmitter transporters GlyT1 and GlyT2 is described. Screening and full-scale competition experiments were performed using recently developed GlyT1 and GlyT2 MS Binding Assays. That way for both targets, GlyT1 and GlyT2, ligands were identified, which exhibited affinities (pKi values) in the low micromolar to sub-micromolar range. The majority of these binders exhibit new chemical scaffolds in the class of GlyT1 and GlyT2 inhibitors, which could be of interest for the development of new ligands with improved affinities for the target proteins. Additionally, compounds with excellent fluorescent properties were found for GlyT2, which renders them promising compounds for future fluorescence-based techniques. All in all, this study demonstrates that MS Binding Assays represent a powerful technology platform also well suited for the screening of compound libraries in a highly reliable and effective manner.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
9
|
Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021; 11:biom11060864. [PMID: 34200954 PMCID: PMC8230656 DOI: 10.3390/biom11060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.
Collapse
|
10
|
García-Magro N, Martin YB, Negredo P, Zafra F, Avendaño C. Microglia and Inhibitory Circuitry in the Medullary Dorsal Horn: Laminar and Time-Dependent Changes in a Trigeminal Model of Neuropathic Pain. Int J Mol Sci 2021; 22:4564. [PMID: 33925417 PMCID: PMC8123867 DOI: 10.3390/ijms22094564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of 'patches' of higher expression, interspersed within a less immunoreactive 'matrix', which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
- Ph.D. Programme in Neuroscience, Doctoral School, Autónoma University of Madrid, 28049 Madrid, Spain
| | - Yasmina B. Martin
- Departamento de Anatomía, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| |
Collapse
|
11
|
Çankal D, Akkol EK, Kılınç Y, İlhan M, Capasso R. An Effective Phytoconstituent Aconitine: A Realistic Approach for the Treatment of Trigeminal Neuralgia. Mediators Inflamm 2021; 2021:6676063. [PMID: 33935591 PMCID: PMC8062177 DOI: 10.1155/2021/6676063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 11/28/2022] Open
Abstract
Trigeminal neuralgia pain remains a challenge to treat. Natural compounds may be promising options for relieving pain. This study was aimed at investigating the effects of aconitine in a rat model of trigeminal neuralgia pain. Infraorbital nerve chronic constriction injury was performed in adult Wistar Albino rats. After the neuropathic pain developed, the rats were assigned to one of the treatment groups: carbamazepine 40 or 80 mg/kg; aconitine 0.25, 0.50, or 0.75 mg/kg; or saline injection (control group). Behavioral testing with von Frey filaments and the rotarod test were carried out before the surgical procedure and on the 24th to 29th postoperative days. Following the completion of tests, ipsilateral and contralateral spinal cords were harvested for Western blot analyses to assess NR-1 protein expression. ANOVA followed by Mann-Whitney U test was performed for the statistical analyses. P values of <0.05 were considered significant. Aconitine significantly reduced mechanical sensitivity in a dose-dependent manner. A significant reduction in motor coordination was noted for the higher doses of aconitine which was similar with the 40 and 80 mg/kg doses of carbamazepine. NR-1 expression was reduced in the ipsilateral spinal cord, whereas no significant difference was noted between the groups in the expression of NR-1 in the contralateral spinal cord. Aconitine had a significant pain relieving effect, which was similar to carbamazepine, in a dose-dependent manner. Aconitine may be an alternative pharmacological agent for the control of trigeminal neuralgia pain.
Collapse
Affiliation(s)
- Dilek Çankal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, 06490 Ankara, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Yeliz Kılınç
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, 06490 Ankara, Turkey
| | - Mert İlhan
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, 65080 Van, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici Naples, Italy
| |
Collapse
|
12
|
Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci 2021; 22:ijms22052479. [PMID: 33804568 PMCID: PMC7957511 DOI: 10.3390/ijms22052479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.
Collapse
|
13
|
Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem 2021; 16:199-215. [PMID: 32734692 PMCID: PMC7821181 DOI: 10.1002/cmdc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10-3 s-1 , an on-rate of 1.01×106 M-1 s-1 , and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Lars Allmendinger
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
14
|
Marques BL, Oliveira-Lima OC, Carvalho GA, de Almeida Chiarelli R, Ribeiro RI, Parreira RC, da Madeira Freitas EM, Resende RR, Klempin F, Ulrich H, Gomez RS, Pinto MCX. Neurobiology of glycine transporters: From molecules to behavior. Neurosci Biobehav Rev 2020; 118:97-110. [PMID: 32712279 DOI: 10.1016/j.neubiorev.2020.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
Glycine transporters (GlyTs) are Na+/Cl--dependent neurotransmitter transporters, responsible for l-glycine uptake into the central nervous system. GlyTs are members of the solute carrier family 6 (SLC6) and comprise glycine transporter type 1 (SLC6A9; GlyT1) and glycine transporter type 2 (SLC6A5; Glyt2). GlyT1 and GlyT2 are expressed on both astrocytes and neurons, but their expression pattern in brain tissue is foremost related to neurotransmission. GlyT2 is markedly expressed in brainstem, spinal cord and cerebellum, where it is responsible for glycine uptake into glycinergic and GABAergic terminals. GlyT1 is abundant in neocortex, thalamus and hippocampus, where it is expressed in astrocytes, and involved in glutamatergic neurotransmission. Consequently, inhibition of GlyT1 transporters can modulate glutamatergic neurotransmission through NMDA receptors, suggesting an alternative therapeutic strategy. In this review, we focus on recent progress in the understanding of GlyTs role in brain function and in various diseases, such as epilepsy, hyperekplexia, neuropathic pain, drug addiction, schizophrenia and stroke, as well as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bruno Lemes Marques
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Onésia Cristina Oliveira-Lima
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Gustavo Almeida Carvalho
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Raphaela de Almeida Chiarelli
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Raul Izidoro Ribeiro
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Cambraia Parreira
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Elis Marra da Madeira Freitas
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rodrigo Ribeiro Resende
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
16
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
17
|
Walters RO, Arias E, Diaz A, Burgos ES, Guan F, Tiano S, Mao K, Green CL, Qiu Y, Shah H, Wang D, Hudgins AD, Tabrizian T, Tosti V, Shechter D, Fontana L, Kurland IJ, Barzilai N, Cuervo AM, Promislow DEL, Huffman DM. Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 2018; 25:663-676.e6. [PMID: 30332646 PMCID: PMC6280974 DOI: 10.1016/j.celrep.2018.09.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
A hallmark of aging is a decline in metabolic homeostasis, which is attenuated by dietary restriction (DR). However, the interaction of aging and DR with the metabolome is not well understood. We report that DR is a stronger modulator of the rat metabolome than age in plasma and tissues. A comparative metabolomic screen in rodents and humans identified circulating sarcosine as being similarly reduced with aging and increased by DR, while sarcosine is also elevated in long-lived Ames dwarf mice. Pathway analysis in aged sarcosine-replete rats identify this biogenic amine as an integral node in the metabolome network. Finally, we show that sarcosine can activate autophagy in cultured cells and enhances autophagic flux in vivo, suggesting a potential role in autophagy induction by DR. Thus, these data identify circulating sarcosine as a biomarker of aging and DR in mammalians and may contribute to age-related alterations in the metabolome and in proteostasis.
Collapse
Affiliation(s)
- Ryan O Walters
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Esperanza Arias
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fangxia Guan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simoni Tiano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yungping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hardik Shah
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam D Hudgins
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tahmineh Tabrizian
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Valeria Tosti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; Central Clinical School, The University of Sydney, NSW 2006, Australia; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Sciences, Brescia University Medical School, Brescia, Italy
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein-Mount Sinai Diabetes Research Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Biology, University of Washington, Seattle, WA, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Zafra F, Ibáñez I, Bartolomé-Martín D, Piniella D, Arribas-Blázquez M, Giménez C. Glycine Transporters and Its Coupling with NMDA Receptors. ADVANCES IN NEUROBIOLOGY 2018; 16:55-83. [PMID: 28828606 DOI: 10.1007/978-3-319-55769-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2. While GlyT2 and Asc-1 are neuronal proteins, GlyT1 and SNAT5 are mainly astrocytic, although neuronal forms of GlyT1 also exist. GlyT1 has attracted considerable interest from the medical community and the pharmaceutical industry since compelling evidence indicates a clear association with the functioning of NMDARs, whose activity is decreased in various psychiatric illnesses. By controlling extracellular glycine, transporter inhibitors might potentiate the activity of NMDARs without activating excitotoxic processes. Physiologically, GlyT1 is a central actor in the cross talk between glutamatergic, glycinergic, dopaminergic, and probably other neurotransmitter systems. Many of these relationships begin to be unraveled by studies performed in recent years using genetic and pharmacological models. These studies are also clarifying the interactions between glycine, glycine transporters, and other co-agonists of the glycine site of NMDARs like D-serine. These findings are also relevant to understand the pathophysiology of devastating diseases like schizophrenia, depression, anxiety, epilepsy, stroke, and chronic pain.
Collapse
Affiliation(s)
- Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Kamizato K, Marsala S, Navarro M, Kakinohana M, Platoshyn O, Yoshizumi T, Lukacova N, Wancewicz E, Powers B, Mazur C, Marsala M. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation. Exp Neurol 2018; 305:66-75. [PMID: 29608917 DOI: 10.1016/j.expneurol.2018.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 03/22/2018] [Indexed: 01/14/2023]
Abstract
The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity.
Collapse
Affiliation(s)
- Kota Kamizato
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology, University of the Ryukyus, 207 Uehara Nishihara-cho, Okinawa, Japan
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Manabu Kakinohana
- Department of Anesthesiology, University of the Ryukyus, 207 Uehara Nishihara-cho, Okinawa, Japan
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Nadezda Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 6, Kosice -04001, Slovak Republic
| | | | | | - Curt Mazur
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 6, Kosice -04001, Slovak Republic.
| |
Collapse
|
20
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
21
|
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY, USA
| |
Collapse
|
22
|
Armbruster A, Neumann E, Kötter V, Hermanns H, Werdehausen R, Eulenburg V. The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain. Front Mol Neurosci 2018; 10:438. [PMID: 29375301 PMCID: PMC5767717 DOI: 10.3389/fnmol.2017.00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition. Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC. Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid. Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anja Armbruster
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elena Neumann
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Valentin Kötter
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Academic Medical Center, Amsterdam, Netherlands
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
Cioffi CL. Modulation of Glycine-Mediated Spinal Neurotransmission for the Treatment of Chronic Pain. J Med Chem 2017; 61:2652-2679. [PMID: 28876062 DOI: 10.1021/acs.jmedchem.7b00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pain constitutes a significant and expanding worldwide health crisis. Currently available analgesics poorly serve individuals suffering from chronic pain, and new therapeutic agents that are more effective, safer, and devoid of abuse liabilities are desperately needed. Among the myriad of cellular and molecular processes contributing to chronic pain, spinal disinhibition of pain signaling to higher cortical centers plays a critical role. Accumulating evidence shows that glycinergic inhibitory neurotransmission in the spinal cord dorsal horn gates nociceptive signaling, is essential in maintaining physiological pain sensitivity, and is diminished in pathological pain states. Thus, it is hypothesized that agents capable of enhancing glycinergic tone within the dorsal horn could obtund nociceptor signaling to the brain and serve as analgesics for persistent pain. This Perspective highlights the potential that pharmacotherapies capable of increasing inhibitory spinal glycinergic neurotransmission hold in providing new and transformative analgesic therapies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences , Albany College of Pharmacy and Health Sciences , 106 New Scotland Avenue , Albany , New York 12208 United States
| |
Collapse
|
24
|
Oyama M, Kuraoka S, Watanabe S, Iwai T, Tanabe M. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice. J Pharmacol Sci 2017; 133:162-167. [PMID: 28302446 DOI: 10.1016/j.jphs.2017.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/22/2022] Open
Abstract
To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs) were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS) was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Seiya Kuraoka
- Pain & Neuroscience Laboratories, Daiichi Sankyo Co. Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
25
|
Nedeljkovic SS, Correll DJ, Bao X, Zamor N, Zeballos JL, Zhang Y, Young MJ, Ledley J, Sorace J, Eng K, Hamsher CP, Maniam R, Chin JW, Tsui B, Cho S, Lee DH. Randomised, double-blind, parallel group, placebo-controlled study to evaluate the analgesic efficacy and safety of VVZ-149 injections for postoperative pain following laparoscopic colorectal surgery. BMJ Open 2017; 7:e011035. [PMID: 28213593 PMCID: PMC5318554 DOI: 10.1136/bmjopen-2016-011035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/02/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In spite of advances in understanding and technology, postoperative pain remains poorly treated for a significant number of patients. In colorectal surgery, the need for developing novel analgesics is especially important. Patients after bowel surgery are assessed for rapid return of bowel function and opioids worsen ileus, nausea and constipation. We describe a prospective, double-blind, parallel group, placebo-controlled randomised controlled trial testing the hypothesis that a novel analgesic drug, VVZ -149, is safe and effective in improving pain compared with providing opioid analgesia alone among adults undergoing laparoscopic colorectal surgery. METHODS AND ANALYSIS Based on sample size calculations for primary outcome, we plan to enrol 120 participants. Adult patients without significant medical comorbidities or ongoing opioid use and who are undergoing laparoscopic colorectal surgery will be enrolled. Participants are randomly assigned to receive either VVZ-149 with intravenous (IV) hydromorphone patient-controlled analgesia (PCA) or the control intervention (IV PCA alone) in the postoperative period. The primary outcome is the Sum of Pain Intensity Difference over 8 hours (SPID-8 postdose). Participants receive VVZ-149 for 8 hours postoperatively to the primary study end point, after which they continue to be assessed for up to 24 hours. We measure opioid consumption, record pain intensity and pain relief, and evaluate the number of rescue doses and requests for opioid. To assess safety, we record sedation, nausea and vomiting, respiratory depression, laboratory tests and ECG readings after study drug administration. We evaluate for possible confounders of analgesic response, such as anxiety, depression and catastrophising behaviours. The study will also collect blood sample data and evaluate for pharmacokinetic and pharmacodynamic relationships. ETHICS AND DISSEMINATION Ethical approval of the study protocol has been obtained from Institutional Review Boards at the participating institutions. Trial results will be disseminated through scientific conference presentations and by publication in scientific journals. TRIAL REGISTRATION NUMBER NCT02489526; pre-results.
Collapse
Affiliation(s)
- Srdjan S Nedeljkovic
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Darin J Correll
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaodong Bao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natacha Zamor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jose L Zeballos
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark J Young
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Johanna Ledley
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica Sorace
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kristen Eng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carlyle P Hamsher
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rajivan Maniam
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan W Chin
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Becky Tsui
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Doo H Lee
- Vivozon, Inc. Seoul, Seoul, South Korea
| |
Collapse
|
26
|
Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies. Neuronal Signal 2016; 1:NS20160009. [PMID: 32714574 PMCID: PMC7377260 DOI: 10.1042/ns20160009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.
Collapse
|
27
|
Cioffi CL, Liu S, Wolf MA, Guzzo PR, Sadalapure K, Parthasarathy V, Loong DTJ, Maeng JH, Carulli E, Fang X, Karunakaran K, Matta L, Choo SH, Panduga S, Buckle RN, Davis RN, Sakwa SA, Gupta P, Sargent BJ, Moore NA, Luche MM, Carr GJ, Khmelnitsky YL, Ismail J, Chung M, Bai M, Leong WY, Sachdev N, Swaminathan S, Mhyre AJ. Synthesis and Biological Evaluation of N-((1-(4-(Sulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide Inhibitors of Glycine Transporter-1. J Med Chem 2016; 59:8473-94. [PMID: 27559615 DOI: 10.1021/acs.jmedchem.6b00914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously disclosed the discovery of rationally designed N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1 (GlyT-1), represented by analogues 10 and 11. We describe herein further structure-activity relationship exploration of this series via an optimization strategy that primarily focused on the sulfonamide and benzamide appendages of the scaffold. These efforts led to the identification of advanced leads possessing a desirable balance of excellent in vitro GlyT-1 potency and selectivity, favorable ADME and in vitro pharmacological profiles, and suitable pharmacokinetic and safety characteristics. Representative analogue (+)-67 exhibited robust in vivo activity in the cerebral spinal fluid glycine biomarker model in both rodents and nonhuman primates. Furthermore, rodent microdialysis experiments also demonstrated that oral administration of (+)-67 significantly elevated extracellular glycine levels within the medial prefrontal cortex (mPFC).
Collapse
Affiliation(s)
- Christopher L Cioffi
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Shuang Liu
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Mark A Wolf
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Peter R Guzzo
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Kashinath Sadalapure
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Visweswaran Parthasarathy
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - David T J Loong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Jun-Ho Maeng
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Edmund Carulli
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Xiao Fang
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Kalesh Karunakaran
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Lakshman Matta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Sok Hui Choo
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Shailijia Panduga
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Ronald N Buckle
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Randall N Davis
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Samuel A Sakwa
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Priya Gupta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Bruce J Sargent
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Nicholas A Moore
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Michele M Luche
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Grant J Carr
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Yuri L Khmelnitsky
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Jiffry Ismail
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Mark Chung
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Mei Bai
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Wei Yee Leong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Nidhi Sachdev
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Srividya Swaminathan
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Andrew J Mhyre
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| |
Collapse
|
28
|
The lidocaine metabolite N-ethylglycine has antinociceptive effects in experimental inflammatory and neuropathic pain. Pain 2016; 156:1647-1659. [PMID: 25932687 PMCID: PMC4617288 DOI: 10.1097/j.pain.0000000000000206] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is Available in the Text. The lidocaine metabolite N-ethylglycine specifically reduces GlyT1-dependent glycine uptake and has antinociceptive effects in experimental inflammatory and neuropathic pain, while no adverse effects are observed. Glycine transporter 1 (GlyT1) plays a crucial role in regulating extracellular glycine concentrations and might thereby constitute a new drug target for the modulation of glycinergic inhibition in pain signaling. Consistent with this view, inhibition of GlyT1 has been found to induce antinociceptive effects in various animal pain models. We have shown previously that the lidocaine metabolite N-ethylglycine (EG) reduces GlyT1-dependent glycine uptake by functioning as an artificial substrate for this transporter. Here, we show that EG is specific for GlyT1 and that in rodent models of inflammatory and neuropathic pain, systemic treatment with EG results in an efficient amelioration of hyperalgesia and allodynia without affecting acute pain. There was no effect on motor coordination or the development of inflammatory edema. No adverse neurological effects were observed after repeated high-dose application of EG. EG concentrations both in blood and spinal fluid correlated with an increase of glycine concentration in spinal fluid. The time courses of the EG and glycine concentrations corresponded well with the antinociceptive effect. Additionally, we found that EG reduced the increase in neuronal firing of wide-dynamic-range neurons caused by inflammatory pain induction. These findings suggest that systemically applied lidocaine exerts antihyperalgesic effects through its metabolite EG in vivo, by enhancing spinal inhibition of pain processing through GlyT1 modulation and subsequent increase of glycine concentrations at glycinergic inhibitory synapses. EG and other substrates of GlyT1, therefore, may be a useful therapeutic agent in chronic pain states involving spinal disinhibition.
Collapse
|
29
|
Schlösser L, Barthel F, Brandenburger T, Neumann E, Bauer I, Eulenburg V, Werdehausen R, Hermanns H. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion--Possible implications for neuropathic pain. Neurosci Lett 2015; 600:213-9. [PMID: 26101830 DOI: 10.1016/j.neulet.2015.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022]
Abstract
Glycinergic inhibitory neurotransmission plays a pivotal role in the development of neuropathic pain. The glycine concentration in the synaptic cleft is controlled by the glycine transporters GlyT1 and GlyT2. GlyT1 is expressed throughout the central nervous system, while GlyT2 is exclusively located in glycinergic neurons. Aim of the present study was to investigate whether GlyTs are also expressed in the peripheral sensory nervous system and whether their expression is modulated in experimental neuropathic pain. Neuropathic pain was induced in male Wistar rats by Chronic Constriction Injury (CCI) and verified by assessment of mechanical allodynia (von Frey method). Expression patterns of GlyTs and the glycine binding subunit NR1 of the N-methyl-d-aspartate (NMDA) receptor in the spinal cord and dorsal root ganglia (DRG) were analyzed by Western blot analysis, PCR and immunohistochemistry. While both GlyT1 and GlyT2 were detected in the spinal cord, only GlyT1, but not GlyT2, was detected in DRG. Immunofluorescence revealed a strictly neuronal localization of GlyT1 and a co-localization of GlyT1 and NR1 in DRG. Compared to sham procedure, spinal cord and DRG expression of GlyT1 was not altered and NR1 was unchanged in DRG 12 days after CCI. GlyT1, but not GlyT2, is expressed in the peripheral sensory nervous system. The co-expression of GlyT1 and NMDA receptors in DRG suggests that GlyT1 regulates glycine concentration at the glycine binding site of the NMDA receptor. Differential regulation of GlyT1 expression in the spinal cord or DRG, however, does not seem to be associated with the development of neuropathic pain.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Franziska Barthel
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena Neumann
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|