1
|
Guo Q, Gan J, Wang EZ, Wei YM, Xu J, Xu Y, Zhang FF, Cui M, Jia MX, Kong MJ, Tang QY, Zhang Z. Electrophysiological characterization of human KCNT1 channel modulators and the therapeutic potential of hydroquinine and tipepidine in KCNT1 mutation-associated epilepsy mouse model. Acta Pharmacol Sin 2025; 46:1190-1204. [PMID: 39870847 PMCID: PMC12032293 DOI: 10.1038/s41401-024-01457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant. In addition, we confirmed the antitussive drug tipepidine was also a potent inhibitor of the hKCNT1B channel. Subsequently, we proved that these two drugs produced an excellent therapeutic effect on the epileptic model of KCNT1 Y777H mutant male mice; thus, both could be ready-to-use anti-epileptic drugs. On the other hand, we demonstrated that the activation of the KCNT1 channel by loxapine and clozapine was through interacting with pore domain residues to reverse the run-down of the KCNT1 channel. Taken together, our results provide new insights into the mechanism of the modulators in regulating the KCNT1 channel activity as well as important candidates for clinical tests in the treatment of KCNT1 mutant-associated epilepsy.
Collapse
Affiliation(s)
- Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - En-Ze Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ming Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Meng-Xing Jia
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Ming-Jian Kong
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Qian S, Liu H, Wei H, Liu J, Li X, Luo X. Toxic effects of prolonged propofol exposure on cardiac development in zebrafish larvae. BMC Anesthesiol 2025; 25:81. [PMID: 39966746 PMCID: PMC11834635 DOI: 10.1186/s12871-025-02942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Propofol, commonly used as an intravenous anesthetic during pregnancy, can easily penetrate the placental barrier, potentially affecting fetal heart development. This study aims to investigate propofol's impact on developing zebrafish heart structure and function, and identify potential drug targets. METHODS Zebrafish embryos were exposed to different concentrations of propofol (0.5, 1, and 5 mg/L) to observe changes in zebrafish larval heart structure and function (heart rate). In vitro cell experiments were conducted to assess the effects of propofol at different concentrations on cardiomyocyte viability and migration. Transcriptomic sequencing was utilized to identify and validate potential drug targets associated with propofol-induced cardiac toxicity. RESULTS The results demonstrate that propofol dose-dependently reduces the hatching and survival rates of zebrafish larvae, while increasing the rate of deformities. Transgenic green fluorescent zebrafish larvae exposed to propofol exhibit enlarged cardiac cavities, and HE staining reveals thinning of the myocardial wall. Additionally, propofol-treated zebrafish larvae show a decrease in heart rate. We also assess the impact of propofol on myocardial cell function, showing decreased cell viability, reduced migration function, and increased apoptosis. Finally, transcriptome sequencing analysis and differential gene co-expression network analysis identify agxt2 as a potential target of propofol-induced cardiac toxicity. CONCLUSION In conclusion, our study indicates that propofol alters the structure and function of the developing zebrafish heart, with the mitochondrial-related gene agxt2 possibly being a target of its pharmacological effects.
Collapse
Affiliation(s)
- Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanwei Wei
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaojun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang X, Wei KY, Huang D. Effect of Propofol in the Cardiovascular System and its Related Mechanism Research Progress. Niger J Clin Pract 2024; 27:938-944. [PMID: 39212428 DOI: 10.4103/njcp.njcp_292_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Propofol is the most widely used short-acting intravenous anesthetic in clinical practice. Existing studies have shown that propofol has many effects on the cardiovascular system in addition to its anesthetic effect. Propofol can antagonize a variety of tachyarrhythmias and reduce the risk of recurrence, regulate autonomic balance of the heart, modulate circulatory dynamics, thereby increasing blood perfusion to vital organs such as the kidney, intestine, and brain, and exert myocardial protection and cerebral protection during ischemia-reperfusion injury. In this paper, we review the potential mechanisms of these effects and provide and ideas for future research and novel drug development of propofol and its derivatives in cardiac electrophysiology and circulatory dynamics.
Collapse
Affiliation(s)
- X Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-Ying Wei
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D Huang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kojima A, Fukushima Y, Matsuura H. Prediction of anesthetic torsadogenicity using a human ventricular cell model. J Anesth 2023; 37:806-810. [PMID: 37524993 DOI: 10.1007/s00540-023-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
This simulation study was designed to predict the torsadogenicity of sevoflurane and propofol in healthy control, as well as type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), using the O'Hara-Rudy dynamic model. LQT1 and LQT2 models were simulated by decreasing the conductances of slowly and rapidly activating delayed rectifier K+ currents (IKs and IKr, respectively) by 50%, respectively. Action potential duration at 50% repolarization level (APD50) and diastolic intracellular Ca2+ concentration were measured in epicardial cell during administration of sevoflurane (1 ~ 5%) and propofol (1 ~ 10 μM). Torsadogenicity can be predicted from the relationship between APD50 and diastolic intracellular Ca2+ concentration, which is classified by the decision boundary. Whereas the relationships in control and LQT1 models were distributed on nontorsadogenic side in the presence of sevoflurane at all tested concentrations, those in LQT2 models were shifted to torsadogenic side by concentrations of ≥ 2%. In all three models, propofol shifted the relationships in a direction away from the decision boundary on nontorsadogenic side. Our findings suggest that sevoflurane, but not propofol, exerts torsadogenicity in patients with reduced IKr, such as LQT2 patients. Caution should be paid to the occurrence of arrhythmia during sevoflurane anesthesia in patients with reduced IKr.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
5
|
Paramsothy J, Gutlapalli SD, Ganipineni VDP, Mulango I, Okorie IJ, Arrey Agbor DB, Delp C, Apple H, Kheyson B, Nfonoyim J, Isber N, Yalamanchili M. Propofol in ICU Settings: Understanding and Managing Anti-Arrhythmic, Pro-Arrhythmic Effects, and Propofol Infusion Syndrome. Cureus 2023; 15:e40456. [PMID: 37456460 PMCID: PMC10349530 DOI: 10.7759/cureus.40456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Propofol has revolutionized anesthesia and intensive care medicine owing to its favorable pharmacokinetic characteristics, fast onset, and short duration of action. This drug has been shown to be remarkably effective in numerous clinical scenarios. In addition, propofol has maintained an overwhelmingly favorable safety profile; however, it has been associated with both antiarrhythmic and proarrhythmic effects. This review concisely summarizes the dual arrhythmic cardiovascular effects of propofol and a rare but serious complication, propofol infusion syndrome (PRIS). We also discuss the need for careful patient evaluation, compliance with recommended infusion rates, and vigilant monitoring.
Collapse
Affiliation(s)
- Jananthan Paramsothy
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vijay Durga Pradeep Ganipineni
- Internal Medicine, Thomas Hospital Infirmary Health, Fairhope, USA
- General Medicine, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Center, Chennai, IND
- General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | - Isabelle Mulango
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Ikpechukwu J Okorie
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Divine Besong Arrey Agbor
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Crystal Delp
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Hanim Apple
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Borislav Kheyson
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Jay Nfonoyim
- Pulmonary and Critical Care, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Nidal Isber
- Electrophysiology, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Mallikarjuna Yalamanchili
- Anesthesiology, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| |
Collapse
|
6
|
Tajima K, Yamakawa K, Kuwabara Y, Miyazaki C, Sunaga H, Uezono S. Propofol anesthesia decreases the incidence of new-onset postoperative atrial fibrillation compared to desflurane in patients undergoing video-assisted thoracoscopic surgery: A retrospective single-center study. PLoS One 2023; 18:e0285120. [PMID: 37130135 PMCID: PMC10153745 DOI: 10.1371/journal.pone.0285120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) increases postoperative morbidity, mortality, and length of hospital stay. Propofol is reported to modulate atrial electrophysiology and the cardiac autonomic nervous system. Therefore, we retrospectively examined whether propofol suppresses POAF in patients undergoing video-assisted thoracoscopic surgery (VATS) compared to desflurane. METHODS We retrospectively recruited adult patients who underwent VATS during the period from January 2011 to May 2018 in an academic university hospital. Between continuous propofol and desflurane administration during anesthetic maintenance, we investigated the incidence of new-onset POAF (within 48 hours after surgery) before and after propensity score matching. RESULTS Of the 482 patients, 344 received propofol, and 138 received desflurane during anesthetic maintenance. The incidence of POAF in the propofol group was less than that in the desflurane group (4 [1.2%] vs. 8 patients [5.8%], odds ratio [OR]; 0.161, 95% confidence interval (CI), 0.040-0.653, p = 0.011) in the present study population. After adjustment for propensity score matching (n = 254, n = 127 each group), the incidence of POAF was still less in propofol group than desflurane group (1 [0.8%] vs. 8 patients [6.3%], OR; 0.068, 95% CI: 0.007-0.626, p = 0.018). CONCLUSIONS These retrospective data suggest propofol anesthesia significantly inhibits POAF compared to desflurane anesthesia in patients undergoing VATS. Further prospective studies are needed to elucidate the mechanism of propofol on the inhibition of POAF.
Collapse
Affiliation(s)
- Karin Tajima
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Yamakawa
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kuwabara
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Chika Miyazaki
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Sunaga
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoichi Uezono
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Kast B, Balmer C, Gass M, Berger F, Constance R. Inducibility of atrioventricular nodal reentrant tachycardia and ectopic atrial tachycardia in children under general anesthesia. Pacing Clin Electrophysiol 2022; 45:1009-1014. [PMID: 35841602 DOI: 10.1111/pace.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND In children, invasive electrophysiological studies (EPS) and radiofrequency catheter ablations (RFA) of supraventricular tachycardia (SVT) are often performed under general anesthesia. Atrioventricular nodal reentrant tachycardia (AVNRT) and ectopic atrial tachycardia (EAT) must be inducible during EPS as reliable diagnosis and subsequent therapy are not possible in sinus rhythm. This study aims to assess the problem of noninducible AVNRT and EAT under general anesthesia. METHODS AND RESULTS Anesthesia protocols of 166 patients undergoing EPS were retrospectively analyzed. 122 AVNRT patients were compared to 22 whose tachycardia was not inducible but probably due to an AVNRT mechanism. Another 16 patients with inducible EAT were compared to 6 whose EAT appeared on surface ECG but not during EPS. Demographic characteristics were similar among all groups. Inducibility did not differ (p = 0.42) between AVNRT patients with inhalational anesthesia (sevoflurane and/or nitrous oxide) and patients with intravenous anesthesia (propofol with/without remifentanil). The EAT group exhibited lower inducibility under intravenous anesthesia (64%) than under inhalational (88%), however without significance (p = 0.35). CONCLUSION Tachycardia induction succeeds with similar frequency under both inhalational and intravenous general anesthesia in children with AVNRT. In children with EAT, inhalational anesthesia is associated with a trend towards better inducibility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Brigitte Kast
- Division of Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christian Balmer
- Division of Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias Gass
- Division of Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Lake Constance Heart Center, Constance, Germany
| | - Florian Berger
- Division of Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rippel Constance
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Division of Anaesthesiology, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Oda R, Shou J, Zhong W, Ozeki Y, Yasui M, Nuriya M. Direct visualization of general anesthetic propofol on neurons by stimulated Raman scattering microscopy. iScience 2022; 25:103936. [PMID: 35252821 PMCID: PMC8894261 DOI: 10.1016/j.isci.2022.103936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
The consensus for the precise mechanism of action of general anesthetics is through allosteric interactions with GABA receptors in neurons. However, it has been speculated that these anesthetics may also interact with the plasma membrane on some level. Owing to the small size of anesthetics, direct visualization of these interactions is difficult to achieve. We demonstrate the ability to directly visualize a deuterated analog of propofol in living cells using stimulated Raman scattering (SRS) microscopy. Our findings support the theory that propofol is highly concentrated and interacts primarily through non-specific binding to the plasma membrane of neurons. Additionally, we show that SRS microscopy can be used to monitor the dynamics of propofol binding using real-time, live-cell imaging. The strategy used to visualize propofol can be applied to other small molecule drugs that have been previously invisible to traditional imaging techniques Multi-modal SRS developed for real-time biological imaging of small molecule substances Propofol primarily concentrates at the cell membrane of neurons Anesthesia dynamics can be monitored in real-time with SRS
Collapse
Affiliation(s)
- Robert Oda
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Corresponding author
| | - Jingwen Shou
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Wenying Zhong
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author
| |
Collapse
|
9
|
Qin W, Li YH, Tong J, Wu J, Zhao D, Li HJ, Xing L, He CX, Zhou X, Li PQ, Meng G, Wu SP, Cao HL. Rational Design and Synthesis of 3-Morpholine Linked Aromatic-Imino-1H-Indoles as Novel Kv1.5 Channel Inhibitors Sharing Vasodilation Effects. Front Mol Biosci 2022; 8:805594. [PMID: 35141279 PMCID: PMC8819089 DOI: 10.3389/fmolb.2021.805594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical sustained arrhythmia; clinical therapeutic drugs have low atrial selectivity and might cause more severe ventricle arrhythmias while stopping AF. As an anti-AF drug target with high selectivity on the atrial muscle cells, the undetermined crystal structure of Kv1.5 potassium channel impeded further new drug development. Herein, with the simulated 3D structure of Kv1.5 as the drug target, a series of 3-morpholine linked aromatic amino substituted 1H-indoles as novel Kv1.5 channel inhibitors were designed and synthesized based on target–ligand interaction analysis. The synthesis route was practical, starting from commercially available material, and the chemical structures of target compounds were characterized. It was indicated that compounds T16 and T5 (100 μM) exhibited favorable inhibitory activity against the Kv1.5 channel with an inhibition rate of 70.8 and 57.5% using a patch clamp technique. All compounds did not exhibit off-target effects against other drug targets, which denoted some selectivity on the Kv1.5 channel. Interestingly, twelve compounds exhibited favorable vasodilation activity on pre-contracted arterial rings in vitro using KCl or phenylephrine (PE) by a Myograph. The vasodilation rates of compounds T16 and T4 (100 μM) even reached over 90%, which would provide potential lead compounds for both anti-AF and anti-hypertension new drug development.
Collapse
Affiliation(s)
- Wei Qin
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Jin Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu Xing
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ge Meng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| |
Collapse
|
10
|
Kojima A, Mi X, Fukushima Y, Ding WG, Omatsu-Kanbe M, Matsuura H. Elevation of propofol sensitivity of cardiac I Ks channel by KCNE1 polymorphism D85N. Br J Pharmacol 2021; 178:2690-2708. [PMID: 33763865 DOI: 10.1111/bph.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The slowly activating delayed rectifier K+ channel (IKs ), composed of pore-forming KCNQ1 α-subunits and ancillary KCNE1 β-subunits, regulates ventricular repolarization in human heart. Propofol, at clinically used concentrations, modestly inhibits the intact (wild-type) IKs channels and is therefore unlikely to appreciably prolong QT interval in ECG during anaesthesia. However, little information is available concerning the inhibitory effect of propofol on IKs channel associated with its gene variants implicated in QT prolongation. The KCNE1 single nucleotide polymorphism leading to D85N is associated with drug-induced QT prolongation and therefore regarded as a clinically important genetic variant. This study examined whether KCNE1-D85N affects the sensitivity of IKs to inhibition by propofol. EXPERIMENTAL APPROACH Whole-cell patch-clamp and immunostaining experiments were conducted in HEK293 cells and/or mouse cardiomyocyte-derived HL-1 cells, transfected with wild-type KCNQ1, wild-type or variant KCNE1 cDNAs. KEY RESULTS Propofol inhibited KCNQ1/KCNE1-D85N current more potently than KCNQ1/KCNE1 current in HEK293 cells and HL-1 cells. Immunostaining experiments in HEK293 cells revealed that pretreatment with propofol (10 μM) did not appreciably affect cell membrane expression of KCNQ1 and KCNE1 proteins in KCNQ1/KCNE1 and KCNQ1/KCNE1-D85N channels. CONCLUSION AND IMPLICATIONS The KCNE1 polymorphism D85N significantly elevates the sensitivity of IKs to inhibition by propofol. This study detects a functionally important role of KCNE1-D85N polymorphism in conferring genetic susceptibility to propofol-induced QT prolongation and further suggests the possibility that the inhibitory action of anaesthetics on ionic currents becomes exaggerated in patients carrying variants in genes encoding ion channels.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
11
|
Xiao J, Chen Z, Yu B. A Potential Mechanism of Sodium Channel Mediating the General Anesthesia Induced by Propofol. Front Cell Neurosci 2020; 14:593050. [PMID: 33343303 PMCID: PMC7746837 DOI: 10.3389/fncel.2020.593050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
General anesthesia has revolutionized healthcare over the past 200 years and continues to show advancements. However, many phenomena induced by general anesthetics including paradoxical excitation are still poorly understood. Voltage-gated sodium channels (NaV) were believed to be one of the proteins targeted during general anesthesia. Based on electrophysiological measurements before and after propofol treatments of different concentrations, we mathematically modified the Hodgkin–Huxley sodium channel formulations and constructed a thalamocortical model to investigate the potential roles of NaV. The ion channels of individual neurons were modeled using the Hodgkin–Huxley type equations. The enhancement of propofol-induced GABAa current was simulated by increasing the maximal conductance and the time-constant of decay. Electroencephalogram (EEG) was evaluated as the post-synaptic potential from pyramidal (PY) cells. We found that a left shift in activation of NaV was induced primarily by a low concentration of propofol (0.3–10 μM), while a left shift in inactivation of NaV was induced by an increasing concentration (0.3–30 μM). Mathematical simulation indicated that a left shift of NaV activation produced a Hopf bifurcation, leading to cell oscillations. Left shift of NaV activation around a value of 5.5 mV in the thalamocortical models suppressed normal bursting of thalamocortical (TC) cells by triggering its chaotic oscillations. This led to irregular spiking of PY cells and an increased frequency in EEG readings. This observation suggests a mechanism leading to paradoxical excitation during general anesthesia. While a left shift in inactivation led to light hyperpolarization in individual cells, it inhibited the activity of the thalamocortical model after a certain depth of anesthesia. This finding implies that high doses of propofol inhibit the network partly by accelerating NaV toward inactivation. Additionally, this result explains why the application of sodium channel blockers decreases the requirement for general anesthetics. Our study provides an insight into the roles that NaV plays in the mechanism of general anesthesia. Since the activation and inactivation of NaV are structurally independent, it should be possible to avoid side effects by state-dependent binding to the NaV to achieve precision medicine in the future.
Collapse
Affiliation(s)
- Jinglei Xiao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengguo Chen
- College of Computer, National University of Defence Technology, Changsha, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kojima A, Fukushima Y, Itoh H, Imoto K, Matsuura H. A computational analysis of the effect of sevoflurane in a human ventricular cell model of long QT syndrome: Importance of repolarization reserve in the QT-prolonging effect of sevoflurane. Eur J Pharmacol 2020; 883:173378. [DOI: 10.1016/j.ejphar.2020.173378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
13
|
Propofol abolishes torsade de pointes in different models of acquired long QT syndrome. Sci Rep 2020; 10:12133. [PMID: 32699382 PMCID: PMC7376147 DOI: 10.1038/s41598-020-69193-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is conflicting evidence regarding the impact of propofol on cardiac repolarization and the risk of torsade de pointes (TdP). The purpose of this study was to elucidate the risk of propofol-induced TdP and to investigate the impact of propofol in drug-induced long QT syndrome. 35 rabbit hearts were perfused employing a Langendorff-setup. 10 hearts were perfused with increasing concentrations of propofol (50, 75, 100 µM). Propofol abbreviated action potential duration (APD90) in a concentration-dependent manner without altering spatial dispersion of repolarization (SDR). Consequently, no proarrhythmic effects of propofol were observed. In 12 further hearts, erythromycin was employed to induce prolongation of cardiac repolarization. Erythromycin led to an amplification of SDR and triggered 36 episodes of TdP. Additional infusion of propofol abbreviated repolarization and reduced SDR. No episodes of TdP were observed with propofol. Similarly, ondansetron prolonged cardiac repolarization in another 13 hearts. SDR was increased and 36 episodes of TdP occurred. With additional propofol infusion, repolarization was abbreviated, SDR reduced and triggered activity abolished. In this experimental whole-heart study, propofol abbreviated repolarization without triggering TdP. On the contrary, propofol reversed prolongation of repolarization caused by erythromycin or ondansetron, reduced SDR and thereby eliminated drug-induced TdP.
Collapse
|
14
|
Sun Y, Sun H. Retracted
:Propofol exerts anticancer activity on hepatocellular carcinoma cells by raising lncRNA DGCR5. J Cell Physiol 2019; 235:2963-2972. [DOI: 10.1002/jcp.29202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yan Sun
- Department of Anesthesiology China‐Japan Union Hospital of Jilin University Changchun China
| | - Hai Sun
- Department of Anesthesiology China‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
15
|
Hashimoto E, Kojima A, Kitagawa H, Matsuura H. Anesthetic Management of a Patient With Type 1 Long QT Syndrome Using Combined Epidural-Spinal Anesthesia for Caesarean Section: Perioperative Approach Based on Ion Channel Function. J Cardiothorac Vasc Anesth 2019; 34:465-469. [PMID: 31371065 DOI: 10.1053/j.jvca.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Eisuke Hashimoto
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
16
|
Dogan MF, Arslan SO, Yildiz O, Kurtoglu M, Parlar A. Propofol-Induced Vasodilation in Human Internal Mammary Artery: Role of Potassium Channels. J Cardiothorac Vasc Anesth 2019; 33:2183-2191. [DOI: 10.1053/j.jvca.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 12/13/2022]
|
17
|
Zhang R, Jie LJ, Wu WY, Wang ZQ, Sun HY, Xiao GS, Wang Y, Li YG, Li GR. Comparative study of carvedilol and quinidine for inhibiting hKv4.3 channel stably expressed in HEK 293 cells. Eur J Pharmacol 2019; 853:74-83. [PMID: 30880181 DOI: 10.1016/j.ejphar.2019.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/03/2023]
Abstract
The inhibition of transient outward potassium current (Ito) is the major ionic mechanism for quinidine to treat Brugada syndrome; however, quinidine is inaccessible in many countries. The present study compared the inhibitory effect of the nonselective β-adrenergic blocker carvedilol with quinidine on human Kv4.3 (hKv4.3, encoding for Ito) channel and action potential notch using a whole-cell patch technique in HEK 293 cell line expressing KCND3 as well as in ventricular epicardial myocytes of rabbit hearts. It was found that carvedilol and quinidine inhibited hKv4.3 current in a concentration-dependent manner. The IC50 of carvedilol was 1.2 μM for inhibiting hKv4.3 charge area, while the IC50 of quinidine was 2.9 μM (0.2 Hz). Both carvedilol and quinidine showed typical open channel blocking properties (i.e. decreasing the time to peak of activation and increasing the inactivation of hKv4.3), negatively shifted the V1/2 of activation and inactivation, and slowed the recovery from inactivation of the channel. Although carvedilol had weaker in use- and rate-dependent inhibition of hKv4.3 peak current than quinidine, its reduction of the charge area was more than quinidine at all frequencies (0.2-3.3 Hz). Moreover, the inhibitory effect of carvedilol on action potential notch was greater than quinidine. These results provide the novel information that carvedilol, like quinidine, significantly inhibits hKv4.3 and action potential notch, suggesting that carvedilol is likely an alternative drug for preventing malignant ventricular arrhythmias in patients with Brugada syndrome in countries where quinidine is unavailable.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China; Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ling-Jun Jie
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian 361004, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian 361004, China
| | - Zhi-Quan Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian 361004, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian 361004, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian 361004, China.
| |
Collapse
|
18
|
Hu Z, Wu Z, Gao J, Jia Q, Li N, Ouyang Y, Yao S, Chen X. Effects of HCN Channels in the Rostral Ventrolateral Medulla Contribute to the Cardiovascular Effects of Propofol. Mol Pharmacol 2018; 94:1280-1288. [PMID: 30194107 DOI: 10.1124/mol.118.111898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were reported to express in the well-known vasomotor region, rostral ventrolateral medulla (RVLM), and can be inhibited by propofol. However, whether HCN channels in RVLM contribute to propofol-induced cardiovascular depression remains unclear. We recorded the hemodynamic changes when either continuous intravenous infusions or microinjections of propofol and ZD-7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; HCN channel blocker) in RVLM. Expressions of HCN channels in RVLM neurons of mice of different ages were examined by quantitative real-time polymerase chain reaction and Western blotting. The effects of propofol and ZD-7288 on HCN channels and the excitability of RVLM neurons were examined by electrophysiological recording. Propofol (1.25, 2.5, 5, and 7.5 mg/kg per minute, i.v., 10 minutes) decreased mean arterial pressure (MAP) and heart rate (HR) in a concentration-dependent manner in wild-type mice that were markedly attenuated in HCN1 knockout mice. Bilateral microinjection of propofol (1%, 0.1 μl) in RVLM caused a sharp and pronounced drop in MAP and HR values, which were abated by pretreatment with ZD-7288. In electrophysiological recording, propofol (5, 10, and 20 μM) concentration-dependently inhibited HCN current, increased input resistance, decreased firing rate, and caused membrane hyperpolarization in RVLM neurons. These actions of propofol were attenuated by ZD-7288 pretreatment. The mRNA and protein level of HCN channels increased in an age-dependent manner, which may contribute to the age-dependent increase in the sensitivity to propofol. Our results indicated that the inhibition of HCN channels in RVLM neurons may contribute to propofol-induced cardiovascular inhibition.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhilin Wu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Gao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Jia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Na Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
19
|
Ciconte G, Santinelli V, Brugada J, Vicedomini G, Conti M, Monasky MM, Borrelli V, Castracane W, Aloisio T, Giannelli L, Di Dedda U, Pozzi P, Ranucci M, Pappone C. General Anesthesia Attenuates Brugada Syndrome Phenotype Expression: Clinical Implications From a Prospective Clinical Trial. JACC Clin Electrophysiol 2018; 4:518-530. [PMID: 30067493 DOI: 10.1016/j.jacep.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This study investigates the electrocardiographic-electrophysiological effects of administration of anesthetic drugs for general anesthesia (GA) in patients with BrS at high risk of sudden cardiac death (SCD). BACKGROUND The safety of anesthetic agents in Brugada syndrome (BrS) is under debate. METHODS All consecutive patients with spontaneous type 1 BrS electrocardiographic (ECG) patterns undergoing epicardial ablation of the arrhythmogenic substrate (AS) under GA were enrolled. Anesthesia was induced with single bolus of propofol and maintained with sevofluorane. ECG measurements were collected before, immediately after, and 20 min after induction of GA. Three-dimensional maps during GA and after ajmaline indicated the epicardial AS before ablation. RESULTS Thirty-six patients with BrS (32 male, 88.9%; mean age 38.8 ± 12.0 years) with a spontaneous type 1 ECG pattern underwent GA. Induction was performed using propofol at mean dose of 1.6 to 2.6 mg/kg (2.1 ± 0.3 mg/kg). Twenty-eight (28 of 36, 77.8%) patients showed a reversion to a nondiagnostic pattern. ST-segment elevation (0.32 ± 0.01 mV vs. 0.19 ± 0.02 mV; p < 0.001) and J-wave amplitude (0.47 ± 0.02 mV vs. 0.31 ± 0.03 mV; p < 0.001) decreased after propofol. The AS area during GA, in the absence of BrS pattern, significantly enlarged after administration of ajmaline (3.6 ± 0.5 cm2 vs. 20.3 ± 0.8 cm2). No patient developed malignant arrhythmias during GA induction and maintenance. CONCLUSIONS This study shows that GA using single-bolus propofol and volatile anesthetics is safe in high-risk patients with BrS, and it may exert a modulating effect by reducing the manifestation of type 1 BrS pattern and AS in the form of epicardial abnormal ECGs. (Epicardial Ablation in Brugada Syndrome: An Extension Study of 200 BrS Patients; NCT03106701).
Collapse
Affiliation(s)
- Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Gabriele Vicedomini
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Manuel Conti
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Valeria Borrelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Walter Castracane
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Tommaso Aloisio
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Luigi Giannelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Umberto Di Dedda
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Paolo Pozzi
- Johnson & Johnson, Biosense Webster, Pomezia, Rome, Italy
| | - Marco Ranucci
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
20
|
Interactions of Propofol With Human Voltage-gated Kv1.5 Channel Determined by Docking Simulation and Mutagenesis Analyses. J Cardiovasc Pharmacol 2018; 71:10-18. [DOI: 10.1097/fjc.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Muszkiewicz A, Liu X, Bueno-Orovio A, Lawson BAJ, Burrage K, Casadei B, Rodriguez B. From ionic to cellular variability in human atrial myocytes: an integrative computational and experimental study. Am J Physiol Heart Circ Physiol 2017; 314:H895-H916. [PMID: 29351467 PMCID: PMC6008144 DOI: 10.1152/ajpheart.00477.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Variability refers to differences in physiological function between individuals, which may translate into different disease susceptibility and treatment efficacy. Experiments in human cardiomyocytes face wide variability and restricted tissue access; under these conditions, computational models are a useful complementary tool. We conducted a computational and experimental investigation in cardiomyocytes isolated from samples of the right atrial appendage of patients undergoing cardiac surgery to evaluate the impact of variability in action potentials (APs) and subcellular ionic densities on Ca2+ transient dynamics. Results showed that 1) variability in APs and ionic densities is large, even within an apparently homogenous patient cohort, and translates into ±100% variation in ionic conductances; 2) experimentally calibrated populations of models with wide variations in ionic densities yield APs overlapping with those obtained experimentally, even if AP characteristics of the original generic model differed significantly from experimental APs; 3) model calibration with AP recordings restricts the variability in ionic densities affecting upstroke and resting potential, but redundancy in repolarization currents admits substantial variability in ionic densities; and 4) model populations constrained with experimental APs and ionic densities exhibit three Ca2+ transient phenotypes, differing in intracellular Ca2+ handling and Na+/Ca2+ membrane extrusion. These findings advance our understanding of the impact of variability in human atrial electrophysiology. NEW & NOTEWORTHY Variability in human atrial electrophysiology is investigated by integrating for the first time cellular-level and ion channel recordings in computational electrophysiological models. Ion channel calibration restricts current densities but not cellular phenotypic variability. Reduced Na+/Ca2+ exchanger is identified as a primary mechanism underlying diastolic Ca2+ fluctuations in human atrial myocytes.
Collapse
Affiliation(s)
- Anna Muszkiewicz
- Department of Computer Science, University of Oxford , Oxford , United Kingdom
| | - Xing Liu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital , Oxford , United Kingdom
| | | | - Brodie A J Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology , Brisbane, Queensland , Australia.,School of Mathematics, Queensland University of Technology , Brisbane, Queensland , Australia
| | - Kevin Burrage
- Department of Computer Science, University of Oxford , Oxford , United Kingdom.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology , Brisbane, Queensland , Australia.,School of Mathematics, Queensland University of Technology , Brisbane, Queensland , Australia
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital , Oxford , United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
22
|
Effects of equol on multiple K+ channels stably expressed in HEK 293 cells. PLoS One 2017; 12:e0183708. [PMID: 28832658 PMCID: PMC5568406 DOI: 10.1371/journal.pone.0183708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the effects of equol on cardiovascular K+ channel currents. The cardiovascular K+ channel currents were determined in HEK 293 cells stably expressing cloned differential cardiovascular K+ channels with conventional whole-cell patch voltage-clamp technique. We found that equol inhibited hKv1.5 (IC50: 15.3 μM), hKv4.3 (IC50: 29.2 μM and 11.9 μM for hKv4.3 peak current and charge area, respectively), IKs (IC50: 24.7 μM) and IhERG (IC50: 31.6 and 56.5 μM for IhERG.tail and IhERG.step, respectively), but not hKir2.1 current, in a concentration-dependent manner. Interestingly, equol increased BKCa current with an EC50 of 0.1 μM. It had no significant effect on guinea pig ventricular action potentials at concentrations of ≤3 μM. These results demonstrate that equol inhibits several cardiac K+ currents at relatively high concentrations, whereas it increases BKCa current at very low concentrations, suggesting that equol is a safe drug candidate for treating patients with cerebral vascular disorders.
Collapse
|
23
|
Voltage gated ion channels blockade is the underlying mechanism of BIMU8 induced cardiotoxicity. Toxicol Lett 2017; 277:64-68. [DOI: 10.1016/j.toxlet.2017.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022]
|
24
|
Wang Y, Zhou Q, Wu B, Zhou H, Zhang X, Jiang W, Wang L, Wang A. Propofol induces excessive vasodilation of aortic rings by inhibiting protein kinase Cβ2 and θ in spontaneously hypertensive rats. Br J Pharmacol 2017; 174:1984-2000. [PMID: 28369981 DOI: 10.1111/bph.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Exaggerated hypotension following administration of propofol is strongly predicted in patients with hypertension. Increased PKCs play a crucial role in regulating vascular tone. We studied whether propofol induces vasodilation by inhibiting increased PKC activity in spontaneously hypertensive rats (SHRs) and, if so, whether contractile Ca2+ sensitization pathways and filamentous-globular (F/G) actin dynamics were involved. EXPERIMENTAL APPROACH Rings of thoracic aorta, denuded of endothelium, from normotensive Wistar-Kyoto (WKY) rats and SHR were prepared for functional studies. Expression and activity of PKCs in vascular smooth muscle (VSM) cells were determined by Western blot analysis and elisa respectively. Phosphorylation of the key proteins in PKC Ca2+ sensitization pathways was also examined. Actin polymerization was evaluated by differential centrifugation to probe G- and F-actin content. KEY RESULTS Basal expression and activity of PKCβ2 and PKCθ were increased in aortic VSMs of SHR, compared with those from WKY rats. Vasorelaxation of SHR aortas by propofol was markedly attenuated by LY333531 (a specific PKCβ inhibitor) or the PKCθ pseudo-substrate inhibitor. Furthermore, noradrenaline-enhanced phosphorylation, and the translocation of PKCβ2 and PKCθ, was inhibited by propofol, with decreased actin polymerization and PKCβ2-mediated Ca2+ sensitization pathway in SHR aortas. CONCLUSION AND IMPLICATIONS Propofol suppressed increased PKCβ2 and PKCθ activity, which was partly responsible for exaggerated vasodilation in SHR. This suppression results in inhibition of actin polymerization, as well as that of the PKCβ2- but not PKCθ-mediated, Ca2+ sensitization pathway. These data provide a novel explanation for the unwanted side effects of propofol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huixuan Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
25
|
Montero-Tinnirello J, Magaldi M, Fontanals J, Masgoret P, Bravo JC. Sinusal reversion of supraventricular tachyarrhythmias after propofol administration. A case series. Med Intensiva 2016; 41:499-501. [PMID: 28027785 DOI: 10.1016/j.medin.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022]
Affiliation(s)
- J Montero-Tinnirello
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Clínic, Barcelona, España.
| | - M Magaldi
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Clínic, Barcelona, España
| | - J Fontanals
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Clínic, Barcelona, España
| | - P Masgoret
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Clínic, Barcelona, España
| | - J C Bravo
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Clínic, Barcelona, España
| |
Collapse
|
26
|
Han SN, Jing Y, Yang LL, Zhang Z, Zhang LR. Propofol inhibits hERG K + channels and enhances the inhibition effects on its mutations in HEK293 cells. Eur J Pharmacol 2016; 791:168-178. [PMID: 27575519 DOI: 10.1016/j.ejphar.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
QT interval prolongation, a potential risk for arrhythmias, may result from gene polymorphisms relevant to cardiomyocyte repolarization. Another noted cause of QT interval prolongation is the administration of chemical compounds such as anesthetics, which may affect a specific type of cardiac K+ channel encoded by the human ether-a-go-go-related gene (hERG). hERG K+ current was recorded using whole-cell patch clamp in human embryonic kidney (HEK293) cells expressing wild type (WT) or mutated hERG channels. Expression of hERG K+ channel proteins was evaluated using western blot and confirmed by fluorescent staining and imaging. Computational modeling was adopted to identify the possible binding site(s) of propofol with hERG K+ channels. Propofol had a significant inhibitory effect on WT hERG K+ currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC50) of 60.9±6.4μM. Mutations in drug-binding sites (Y652A or F656C) of the hERG channel were found to attenuate hERG current blockage by propofol. However, propofol did not inhibit the trafficking of hERG protein to the cell membrane. Meanwhile, for the three selective hERG K+ channel mutant heterozygotes WT/Q738X-hERG, WT/A422T-hERG, and WT/H562P-hERG, the IC50 of propofol was calculated as 14.2±2.8μM, 3.3±1.2μM, and 5.9±1.9μM, respectively, which were much lower than that for the wild type. These findings indicate that propofol may potentially increase QT interval prolongation risk in patients via direct inhibition of the hERG K+ channel, especially in those with other concurrent triggering factors such as hERG gene mutations.
Collapse
Affiliation(s)
- Sheng-Na Han
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Jing
- Department of Physiology and Neurobiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Lin-Lin Yang
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular & Medical Biotechnology, College of Life Science in Nanjing Normal University, Nanjing 210046, China.
| | - Li-Rong Zhang
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
27
|
Kojima A, Ito Y, Ding WG, Kitagawa H, Matsuura H. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region. Eur J Pharmacol 2015; 764:622-632. [PMID: 26256861 DOI: 10.1016/j.ejphar.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
The intravenous anesthetic propofol affects the function of a diversity of ligand-gated and voltage-gated ion channels. However, there is little information as to whether propofol directly interacts with voltage-gated ion channel proteins to modulate their functions. The Kv1.5 channel is activated by membrane depolarization during action potentials and contributes to atrial repolarization in the human heart. This study was undertaken to examine the effect of propofol on voltage-gated human Kv1.5 (hKv1.5) channel and to elucidate the underlying molecular determinants. Site-directed mutagenesis was carried out through six amino acids that reside within the pore domain of hKv1.5 channel. Whole-cell patch-clamp technique was used to record membrane currents through the wild type and mutant hKv1.5 channels heterologously expressed in Chinese hamster ovary cells. Propofol (≥5 μM) reversibly and concentration-dependently (IC50 of 49.3±9.4 μM; n=6) blocked hKv1.5 current. Propofol-induced block of hKv1.5 current gradually progressed during depolarizing voltage-clamp steps and was enhanced by higher frequency of activation, consistent with a preferential block of the channels in their open state. The degree of current block by propofol was significantly attenuated in T480A, I502A, I508A and V516A, but not in H463C and L510A mutants of hKv1.5 channel. Thus, several amino acids near the selectivity filter (Thr480) or within S6 (Ile502, Ile508 and Val516) are found to be critically involved in the blocking action of propofol. This study provides the first evidence suggesting that direct interaction with specific amino acids underlies the blocking action of propofol on voltage-gated hKv1.5 channel.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Yuki Ito
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|