1
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2025; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhang X, Jin T, Wang H, Han S, Liang Y. Microglia in morphine tolerance: cellular and molecular mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1499799. [PMID: 39669194 PMCID: PMC11635611 DOI: 10.3389/fphar.2024.1499799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Morphine has a crucial role in treating both moderate to severe pain and chronic pain. However, prolonged administration of morphine can lead to tolerance of analgesia, resulting in increased doses and poor treatment of pain. Many patients, such as those with terminal cancer, require high doses of morphine for long periods. Addressing morphine tolerance can help this group of patients to escape pain, and the mechanisms behind this need to be investigated. Microglia are the key cells involved in morphine tolerance and chronic morphine administration leads to microglia activation, which in turn leads to activation of internal microglia signalling pathways and protein transcription, ultimately leading to the release of inflammatory factors. Inhibiting the activation of microglia internal signalling pathways can reduce morphine tolerance. However, the exact mechanism of how morphine acts on microglia and ultimately leads to tolerance is unknown. This article discusses the mechanisms of morphine induced microglia activation, reviews the signalling pathways within microglia and the associated therapeutic targets and possible drugs, and provides possible directions for clinical prevention or retardation of morphine induced analgesic tolerance.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Haixia Wang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongxin Liang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Pahan P, Xie JY. Microglial inflammation modulates opioid analgesic tolerance. J Neurosci Res 2023; 101:1383-1392. [PMID: 37186407 PMCID: PMC11410303 DOI: 10.1002/jnr.25199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
As we all know, opioids are the drugs of choice for treating severe pain. However, very often, opioid use leads to tolerance, dependence, and hyperalgesia. Therefore, understanding the mechanisms underlying opioid tolerance and designing strategies for increasing the efficacy of opioids in chronic pain are important areas of research. Microglia are brain macrophages that remove debris and dead cells from the brain and participate in immune defense of the central nervous system during an insult or injury. However, recent studies indicate that microglial activation and generation of proinflammatory molecules (e.g., cytokines, nitric oxide, eicosanoids, etc.) in the brain may contribute to opioid tolerance and other side effects of opioid use. In this review, we will summarize the evidence and possible mechanisms by which proinflammatory molecules produced by activated microglia may antagonize the analgesic effect induced by opioids, and thus, lead to opioid tolerance. We will also delineate specific examples of studies that suggest therapeutic targets to counteract the development of tolerance clinically using suppressors of microglial inflammation.
Collapse
Affiliation(s)
- Priyanka Pahan
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Arkansas, Jonesboro, USA
| | - Jennifer Yanhua Xie
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Arkansas, Jonesboro, USA
| |
Collapse
|
4
|
CircNf1-mediated CXCL12 expression in the spinal cord contributes to morphine analgesic tolerance. Brain Behav Immun 2023; 107:140-151. [PMID: 36202171 DOI: 10.1016/j.bbi.2022.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Severe pain in patients can be alleviated by morphine treatment. However, long-term morphine treatment induces analgesic tolerance and the molecular mechanism of morphine analgesic intolerance is still not fully elucidated. Therefore, a novel target for improving morphine analgesic tolerance is required. Whole-genome sequencing showed that circNf1 is highly expressed in the dorsal horns of morphine-treated rats. Circular RNAs (circRNAs) are known to be unique and conserved cellular molecules that are mostly present in cytoplasm and participate in various biochemical processes with different functions. Therefore, we focused on exploring the molecular mechanism by which circNf1 contributes to morphine analgesic tolerance. METHODS CircRNA sequencing revealed differential expression of circRNAs after morphine treatment, and bioinformatics software programs (miRNAda, PicTar, and RNAhybrid) were used to predict possible mRNAs and binding sites. RNA binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), fluorescence in situ hybridization (FISH), western blotting, biotin-coupled probe pull-down assay, luciferase assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect and measure the expression levels of circRNAs, mRNAs, and proteins. Intrathecal injections of small interfering RNAs (siRNAs), microRNA (miRNA) agomirs, and functional virus microinjections were administered to artificially mediate the expression of molecules. Tail immersion and hotplate tests were performed to evaluate morphine analgesic tolerance. RESULTS Morphine-induced circNf1 expression was high in the spinal cord. RIP-PCR and luciferase assay data showed that circNf1 could combine with both miR-330-3p and miR-665, and FISH showed that circNf1 co-localized with miR-330-3p and miR-665. qRT-PCR assay showed downregulation of miR-330-3p and miR-665 in morphine-treated rats; western blotting results showed that CXCL12 increased after morphine treatment, however, the upregulation of CXCL12 could be alleviated after the intrathecal injection of miR-330-3p as well as miR-665 agomir. qRT-PCR indicated that circNf1 can bind to CXCL12 promoter, the increased circNf1 can enhance CXCL12 mRNA in naïve rats, and inhibition of circNf1 can alleviate the upregulation of CXCL12 mRNA in morphine-treated rats. Behavioral tests revealed that inhibition of circNf1 and CXCL12 and the enhancement of miR-330-3p and miR-665 can alleviate morphine analgesic tolerance. CONCLUSIONS Our study indicates a novel pathway that can contribute to morphine analgesic tolerance, the circRNA to cytokine pathway, in which circNf1 functions as a sponge for miR-330-3p and miR-665 and induces the upregulation of CXCL12 at both transcriptional and translational levels in morphine-treated rats.
Collapse
|
5
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
6
|
Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res 2022; 32:461-476. [PMID: 35115667 PMCID: PMC9061814 DOI: 10.1038/s41422-022-00616-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics. Emerging evidence suggests that peripheral sensory neurons are not only responders to painful stimuli, but are also actively engaged in inflammation and immunity, whereas the intrinsic regulatory mechanism is poorly understood. Here we report the expression of proton-selective ion channel Hv1 in peripheral sensory neurons in rodents and humans, which was previously shown as selectively expressed in microglia in mammalian central nervous system. Neuronal Hv1 was up-regulated by PN or depolarizing stimulation, which in turn aggravates inflammation and nociception. Inhibiting neuronal Hv1 genetically or by a newly discovered selective inhibitor YHV98-4 reduced intracellular alkalization and ROS production in inflammatory pain, mitigated the imbalance in downstream SHP-1-pAKT signaling, and also diminished pro-inflammatory chemokine release to alleviate nociception and morphine-induced hyperalgesia and tolerance. Thus, our data reveal neuronal Hv1 as a novel target in analgesia strategy and managing opioids-related side effects.
Collapse
|
7
|
Castro NCF, Silva IS, Cartágenes SC, Fernandes LMP, Ribera PC, Barros MA, Prediger RD, Fontes-Júnior EA, Maia CSF. Morphine Perinatal Exposure Induces Long-Lasting Negative Emotional States in Adult Offspring Rodents. Pharmaceutics 2021; 14:pharmaceutics14010029. [PMID: 35056925 PMCID: PMC8778186 DOI: 10.3390/pharmaceutics14010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure.
Collapse
Affiliation(s)
- Nair C. F. Castro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Izabelle S. Silva
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Sabrina C. Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Luanna M. P. Fernandes
- Departamento de Ciências Morfológicas e Fisiológicas, Centro das Ciências Biológicas e da Saúde (CCBS), Universidade Estadual do Pará, Belém 66087-662, Brazil;
| | - Paula C. Ribera
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Mayara A. Barros
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Rui D. Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Enéas A. Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Cristiane S. F. Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
- Correspondence:
| |
Collapse
|
8
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. Can Src protein tyrosine kinase inhibitors be combined with opioid analgesics? Src and opioid-induced tolerance, hyperalgesia and addiction. Biomed Pharmacother 2021; 139:111653. [PMID: 34243625 DOI: 10.1016/j.biopha.2021.111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
The clinical application of opioids may be accompanied by a series of adverse consequences, such as opioid tolerance, opioid-induced hyperalgesia, opioid dependence or addiction. In view of this issue, clinicians are faced with the dilemma of treating various types of pain with or without opioids. In this review, we discuss that Src protein tyrosine kinase plays an important role in these adverse consequences, and Src inhibitors can solve these problems well. Therefore, Src inhibitors have the potential to be used in combination with opioids to achieve synergy. How to combine them together to maximize the analgesic effect while avoiding unnecessary trouble provides a topic for follow-up research.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Dias Quintão JL, Reis Gonzaga AC, Galdino G, Lima Romero TR, Silva J, Lemos V, Campolina-Silva GH, Aparecida de Oliveira C, Bohórquez Mahecha G, Gama Duarte I. TNF-α, CXCL-1 and IL-1 β as activators of the opioid system involved in peripheral analgesic control in mice. Eur J Pharmacol 2021; 896:173900. [PMID: 33545158 DOI: 10.1016/j.ejphar.2021.173900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Tissue injury results in the release of inflammatory mediators, including a cascade of nociceptive substances, which contribute to development of hyperalgesia. In addition, during this process endogenous analgesic substances are also peripherally released with the aim of controlling the hyperalgesia. Thus, the present study aimed to investigate whether inflammatory mediators TNF-α, IL-1β, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the opioid system. Thus, male Swiss mice and the paw withdrawal test were used. All substances were injected by the intraplantar route. Carrageenan, TNF-α, CXCL-1, IL1-β, NE and PGE2 induced hyperalgesia. Selectives μ (clocinamox), δ (naltrindole) and κ (norbinaltorphimine, nor-BNI) and non-selective (naloxone) opioid receptor antagonists potentiated the hyperalgesia induced by carrageenan, TNF-α, CXCL-1 and IL1-β. In contrast, when the enzyme N-aminopeptidase involved in the degradation of endogenous opioid peptides was inhibited by bestatin, the hyperalgesia was significantly reduced. In addition, the western blotting assay indicated that the expression of the opioid δ receptor was increased after intraplantar injection of carrageenan. The data obtained in this work corroborate the hypothesis that TNF-α, CXCL-1 and IL-β cause, in addition to hyperalgesia, the release of endogenous substances such as opioid peptides, which in turn exert endogenous control over peripheral inflammatory pain.
Collapse
Affiliation(s)
- Jayane Laís Dias Quintão
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Amanda Cristina Reis Gonzaga
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Giovane Galdino
- Motricity Sciences Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - JosianeFernandes Silva
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - VirgíniaSoares Lemos
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Gabriel Henrique Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Cleida Aparecida de Oliveira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - GermánArturo Bohórquez Mahecha
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - IgorDimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Abstract
Opioids are very potent and efficacious drugs, traditionally used for both acute and chronic pain conditions. However, the use of opioids is frequently associated with the occurrence of adverse effects or clinical problems. Other than adverse effects and dependence, the development of tolerance is a significant problem, as it requires increased opioid drug doses to achieve the same effect. Mechanisms of opioid tolerance include drug-induced adaptations or allostatic changes at the cellular, circuitry, and system levels. Dose escalation in long-term opioid therapy might cause opioid-induced hyperalgesia (OIH), which is a state of hypersensitivity to painful stimuli associated with opioid therapy, resulting in exacerbation of pain sensation rather than relief of pain. Various strategies may provide extra-opioid analgesia. There are drugs that may produce independent analgesic effects. A tailored treatment provided by skilled personnel, in accordance with the individual condition, is mandatory. Any treatment aimed at reducing opioid consumption may be indicated in these circumstances. Interventional techniques able to decrease the pain input may allow a decrease in the opioid dose, thus reverting the mechanisms producing tolerance of OIH. Intrathecal therapy with local anesthetics and a sympathetic block are the most common techniques utilized in these circumstances.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Main Regional Center of Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy.
- Palliative/Supportive Care and Rehabilitation, MD Anderson, Houston, TX, USA.
| | | | | |
Collapse
|
11
|
Liu DQ, Zhou YQ, Gao F. Targeting Cytokines for Morphine Tolerance: A Narrative Review. Curr Neuropharmacol 2019; 17:366-376. [PMID: 29189168 PMCID: PMC6482476 DOI: 10.2174/1570159x15666171128144441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite its various side effects, morphine has been widely used in clinics for decades due to its powerful analgesic effect. Morphine tolerance is one of the major side effects, hindering its long-term usage for pain therapy. Currently, the thorough cellular and molecular mechanisms underlying morphine tolerance remain largely uncertain. METHODS We searched the PubMed database with Medical subject headings (MeSH) including 'morphine tolerance', 'cytokines', 'interleukin 1', 'interleukin 1 beta', 'interleukin 6', 'tumor necrosis factor alpha', 'interleukin 10', 'chemokines'. Manual searching was carried out by reviewing the reference lists of relevant studies obtained from the primary search. The searches covered the period from inception to November 1, 2017. RESULTS The expression levels of certain chemokines and pro-inflammatory cytokines were significantly increased in animal models of morphine tolerance. Cytokines and cytokine receptor antagonist showed potent effect of alleviating the development of morphine tolerance. CONCLUSION Cytokines play a fundamental role in the development of morphine tolerance. Therapeutics targeting cytokines may become alternative strategies for the management of morphine tolerance.
Collapse
Affiliation(s)
| | | | - Feng Gao
- Address correspondence to this author at the Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China; Tel: +86 27 83662853; E-mail:
| |
Collapse
|
12
|
High levels of cerebrospinal fluid chemokines point to the presence of neuroinflammation in peripheral neuropathic pain: a cross-sectional study of 2 cohorts of patients compared with healthy controls. Pain 2018; 158:2487-2495. [PMID: 28930774 PMCID: PMC5690569 DOI: 10.1097/j.pain.0000000000001061] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to animal models, neuroinflammation is a major feature of neuropathic pain. The present findings confirm that this hypothesis is of relevance to humans. Animal models suggest that chemokines are important mediators in the pathophysiology of neuropathic pain. Indeed, these substances have been called “gliotransmitters,” a term that illustrates the close interplay between glial cells and neurons in the context of neuroinflammation and pain. However, evidence in humans is scarce. The aim of the study was to determine a comprehensive cerebrospinal fluid (CSF) inflammatory profile of patients with neuropathic pain. Our hypothesis was that we would thereby find indications of a postulated on-going process of central neuroinflammation. Samples of CSF were collected from 2 cohorts of patients with neuropathic pain (n = 11 and n = 16, respectively) and healthy control subjects (n = 11). The samples were analyzed with a multiplex proximity extension assay in which 92 inflammation-related proteins were measured simultaneously (Proseek Multiplex Inflammation I; Olink Bioscience, Uppsala, Sweden). Univariate testing with control of false discovery rate, as well as orthogonal partial least squares discriminant analysis, were used for statistical analyses. Levels of chemokines CXCL6, CXCL10, CCL8, CCL11, CCL23 in CSF, as well as protein LAPTGF-beta-1, were significantly higher in both neuropathic pain cohorts compared with healthy controls, pointing to neuroinflammation in patients. These 6 proteins were also major results in a recent similar study in patients with fibromyalgia. The findings need to be confirmed in larger cohorts, and the question of causality remains to be settled. Because it has been suggested that prevalent comorbidities to chronic pain (eg, depression, anxiety, poor sleep, and tiredness) also are associated with neuroinflammation, it will be important to determine whether neuroinflammation is a common mediator.
Collapse
|
13
|
Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 2018. [DOI: 10.1016/j.neuropharm.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Lin CP, Lu DH. Role of Neuroinflammation in Opioid Tolerance: Translational Evidence from Human-to-Rodent Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:125-139. [DOI: 10.1007/978-981-13-1756-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 2017; 74:3275-3291. [PMID: 28389721 PMCID: PMC11107618 DOI: 10.1007/s00018-017-2513-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
17
|
Rosa SG, Pesarico AP, Tagliapietra CF, da Luz SC, Nogueira CW. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome. J Psychopharmacol 2017; 31:1250-1262. [PMID: 28857657 DOI: 10.1177/0269881117724353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and toxicity.
Collapse
Affiliation(s)
- Suzan G Rosa
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Ana P Pesarico
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Carolina F Tagliapietra
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Sônia Ca da Luz
- 2 Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina W Nogueira
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
18
|
Peng Y, Guo G, Shu B, Liu D, Su P, Zhang X, Gao F. Spinal CX3CL1/CX3CR1 May Not Directly Participate in the Development of Morphine Tolerance in Rats. Neurochem Res 2017; 42:3254-3267. [PMID: 28776289 DOI: 10.1007/s11064-017-2364-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 12/26/2022]
Abstract
CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly.
Collapse
Affiliation(s)
- Yawen Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Genhua Guo
- Department of Anesthesiology, The Central People's Hospital of Ji'an City, 106 Jinggangshan Road, Ji'an, 343000, People's Republic of China
| | - Bin Shu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Peng Su
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Xuming Zhang
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Lin CP, Kang KH, Tu HJ, Wu MY, Lin TH, Liou HC, Sun WZ, Fu WM. CXCL12/CXCR4 Signaling Contributes to the Pathogenesis of Opioid Tolerance: A Translational Study. Anesth Analg 2017; 124:972-979. [PMID: 28212183 DOI: 10.1213/ane.0000000000001480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term opioid therapy for chronic pain may lead to analgesic tolerance, especially when administered intrathecally, thus preventing adequate pain relief. Discovering drug targets to treat opioid tolerance using a mechanism-based approach targeting opioid-induced neuroinflammation provides new therapeutic opportunities. In this study, we provide translational evidence that CXCL12/CXCR4 signaling contributes to the pathogenesis of opioid tolerance. METHODS The CXCL12 levels in the cerebrospinal fluid of opioid-tolerant patients were compared with those of opioid-naive subjects. For further investigation, a rodent translational study was designed using 2 clinically relevant opioid delivery paradigms: daily intraperitoneal morphine injections and continuous intrathecal morphine infusion. We measured rats' tail flick responses and calculated the percentage of maximum possible effects (%MPE) to demonstrate opioid acute antinociception and the development of analgesic tolerance. The effects of exogenous CXCL12, CXCL12 neutralizing antibody, and receptor antagonist AMD3100 were investigated by intrathecal administration. Data were presented as mean ± SEM. RESULTS CXCL12 was significantly upregulated in the cerebrospinal fluid of opioid-tolerant patients for 892 ± 34 pg/mL (n = 27) versus 755 ± 33 pg/mL (n = 10) in naive control subjects (P = .03). Furthermore, after 2 and 5 days of intrathecal morphine infusion, rat lumbar spinal cord dorsal horn CXCL12 messenger RNA levels were significantly upregulated by 3.2 ± 0.7 (P = .016) and 3.4 ± 0.3 (P = .003) fold, respectively. Results from the daily intraperitoneal morphine injection experiments revealed that administering an intrathecal infusion of CXCL12 for 24 hours before the first morphine injection did not decrease antinociception efficacy on day 1 but accelerated tolerance after day 2 (%MPE 49.5% vs 88.1%, P = .0003). In the intrathecal morphine coinfusion experiments, CXCL12 accelerated tolerance development (%MPE 9.4% vs 43.4% on day 1, P < .0001), whereas coadministration with CXCL12 neutralizing antibody attenuated tolerance (72.5% vs 43.4% on day 1, P < .0001; 47.6% vs 17.5% on day 2, P < .0001). Coadministration of receptor antagonist AMD 3100 can persistently preserve morphine analgesic effects throughout the study period (27.9% ± 4.1% vs 0.9% ± 1.6% on day 5, P = .03). CONCLUSIONS The CXCL12/CXCR4 pathway contributes to the pathogenesis of opioid tolerance. Our study indicates that intervening with CXCL12/CXCR4 signaling has therapeutic potential for opioid tolerance.
Collapse
Affiliation(s)
- Chih-Peng Lin
- From the *Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan; †Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; ‡Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan; and §Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Silva RL, Lopes AH, Guimarães RM, Cunha TM. CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol Dis 2017; 105:109-116. [PMID: 28587921 DOI: 10.1016/j.nbd.2017.06.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/04/2023] Open
Abstract
Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is associated with plasticity of nociceptive pathway in which pain is prolonged even after healing of the injured tissue. Generally combinations of analgesic drugs are not sufficient to achieve selective palliation from chronic pain, besides causing a greater number of side effects. In order to identify novel alternatives for more effective treatments, it is necessary to clarify the underlying mechanisms of pathological pain. It is well established that there are two main components in pathological pain development and maintenance: (i) primary sensory neuron sensitization (peripheral sensitization), and (ii) central sensitization. In both components cytokines and chemokines act as key mediators in pain modulation. CXCL1 is a chemokine that promote both nociceptor and central sensitization via its main receptor CXCR2, which is a promising target for novel analgesic drugs. Here, we reviewed and discussed the role of the CXCL1/CXCR2 signaling axis in pathological pain conditions triggered by either peripheral inflammation or nerve injury.
Collapse
Affiliation(s)
- Rangel L Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre H Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Graduate Program in Basic and Applied Immunology, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Hsiao SM, Lin HH, Kuo HC. Treatment Outcome of Overactive Bladder Patients Receiving Antimuscarinic Therapy for More than One Year. Low Urin Tract Symptoms 2016; 10:21-26. [PMID: 27515567 DOI: 10.1111/luts.12136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/01/2016] [Accepted: 03/22/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Details on the therapeutic effects of long-term antimuscarinic therapy have not been reported. Thus, the aim of this study is to evaluate the detailed long-term therapeutic effect of antimuscarinic therapy. METHODS All consecutive patients who visited the urologic outpatient clinics of a medical center for treatment of overactive bladder syndrome and received antimuscarinic therapy of 12 months or more were retrospectively reviewed. All medical records, including the Overactive Bladder Symptom score (OABSS), the modified Indevus Urgency Severity Scale and the International Prostate Symptoms score (IPSS) questionnaires, and uroflowmetry parameters were reviewed at each visit. RESULTS A total of 140 patients had received 12 months or more of antimuscarinic therapy. Sustained therapeutic effects were observed by persistent decreases of IPSS-storage score, IPSS-total score and OABSS score. Moreover, the maximum flow rate did not change over time. A temporary increase in postvoid residual volume and decrease in voiding efficiency were found, but these parameters improved over long-term visits. Side-effects were observed in 81 patients (57.9%) and included dry mouth (n = 58, 41.4%), constipation (n = 48, 34.3%) and blurred vision (n = 4, 2.9%); all side-effects were tolerable. Patients aged 75 years or more (n = 94) had a higher comorbidity rate (n = 46, 48.9%) before treatment but generally exhibited similar therapeutic effects as overall patients; elderly patients could also tolerate side-effects. CONCLUSION Sustained therapeutic effects were observed in patients who received 12 months or more of antimuscarinic therapy, even in elderly patients. In addition, side-effects in patients receiving long-term therapy were also common but tolerable.
Collapse
Affiliation(s)
- Sheng-Mou Hsiao
- Department of Obstetrics and Gynecology, Far Eastern Memorial Hospital, Banqiao, Taiwan
| | - Ho-Hsiung Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
22
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|