1
|
Wu FF, Liu BZ, Huang YQ, Zhu CL, Xia YL, Zhang KL, Li SJ, Yang YL, Wang YY. Anxa10 and neuropathic pain: Insights into dysregulation of endoplasmic reticulum-mitochondria contact tethering complex and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167856. [PMID: 40250776 DOI: 10.1016/j.bbadis.2025.167856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The stability of membrane contact sites is critically dependent on Endoplasmic Reticulum mitochondria contact tethering complexes (EMCTCs), and dysregulation of these sites has been implicated in neuropathic diseases. In this study, we examined the role of Annexin A10 (Anxa10), a calcium-dependent protein, in neuropathic pain by investigating its influence on EMCTCs dysregulation. Using RNA sequencing, western blotting, and behavioral assays, we observed that spared nerve injury (SNI)-induced neuropathic pain significantly increased Anxa10 expression levels within the spinal dorsal horn (SDH) of mice. By employing cell-specific gene regulation via the Cre/loxp system, we utilized loxp-modified adeno-associated virus vectors to modulate Anxa10 expression in GAD2-Cre (inhibitory neurons), vGlut2-Cre (excitatory neurons), and Fos-Cre (activity-induced neurons) transgenic mice. Our results demonstrated that specific down-regulation of Anxa10 in excitatory neurons within the SDH alleviated neuropathic pain, whereas up-regulation of Anxa10, regardless of cell type, induced spontaneous pain in mice. Ultrastructural analysis of the endoplasmic reticulum (ER) and mitochondria, as well as double immunofluorescence staining, revealed that downregulation of Anxa10 mitigated the SNI-induced reduction in ER-mitochondrial distance. Additionally, it attenuated the SNI-induced upregulation of key components of EMCTCs, including IP3R, GRP75, and VDAC1, while preventing the SNI-induced downregulation of NCX3 expression. Furthermore, we formulated and validated the hypothesis that SGK1 and PI3K are positioned downstream of Anxa10. The up-regulation of Anxa10 compromised mitochondrial integrity and disrupted mitochondrial networks, ultimately leading to elevated oxidative stress. Collectively, these findings suggest that Anxa10 represents a promising therapeutic target for correcting EMCTCs dysregulation and mitigating neuropathic pain.
Collapse
Affiliation(s)
- Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qiang Huang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Chang-Lei Zhu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Lu Xia
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Kun-Long Zhang
- Department of Rehabilitation and Physical Therapy, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ding Y. Histone deacetylases: the critical enzymes for microglial activation involved in neuropathic pain. Front Pharmacol 2025; 16:1515787. [PMID: 40115267 PMCID: PMC11922887 DOI: 10.3389/fphar.2025.1515787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Neuropathic pain is a common health problem in clinical practice that can be caused by many different factors, including infection, ischemia, trauma, diabetes mellitus, nerve compression, autoimmune disorders, cancer, trigeminal neuralgia, and abuse of certain drugs. This type of pain can persistently affect patients for a long time, even after the rehabilitation of their damaged tissues. Researchers have identified the crucial role of microglial activation in the pathogenesis of neuropathic pain. Furthermore, emerging evidence has shown that the expression and/or activities of different histone deacetylases (HDACs) can modulate microglial function and neuropathic pain. In this review, we will summarize and discuss the functions and mechanisms of HDACs in microglial activation and neuropathic pain development. Additionally, we will also list the emerging HDAC inhibitors or activators that may contribute to therapeutic advancement in alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Huikang W, Shiya C, Di P, Kiani FA, Hao L, Sha N, Xuan L, Abouelfetouh MM, Ahmed Z, Mingxing D, Yi D. Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway. J Cell Mol Med 2025; 29:e70372. [PMID: 40099662 PMCID: PMC11915118 DOI: 10.1111/jcmm.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025] Open
Abstract
Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the α2-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (n = 48), DEX Tolerance Model Groups (n = 32), SGK1 Inhibitor GSK650394 Groups (n = 48), and NF-κB Inhibitor PDTC Groups (n = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (p < 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (p < 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (p < 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (p < 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of SGK1, NR2A, and NR2B subunits (p < 0.05). Inhibiting SGK1 mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (p < 0.05). Moreover, NF-κB inhibition reversed DEX-induced tolerance and implicated the SGK1-NF-κB pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Wang Huikang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cao Shiya
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pan Di
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan, Pakistan
| | - Li Hao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Nan Sha
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Xuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Benha, Egypt
| | - Zulfiqar Ahmed
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Livestock Production, Faculty of Veterinary & Animal Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Ding Mingxing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ding Yi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Lai CY, Hsieh MC, Yeh CM, Lin TB, Chou D, Wang HH, Lin KH, Cheng JK, Yang PS, Peng HY. CtBP1 is essential for epigenetic silencing of μ-opioid receptor genes in the dorsal root ganglion in spinal nerve ligation-induced neuropathic pain. Neurotherapeutics 2025; 22:e00493. [PMID: 39580324 PMCID: PMC11743074 DOI: 10.1016/j.neurot.2024.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator. However, the underlying molecular mechanisms of CtBP1-mediated epigenetic regulation in DRG neurons in neuropathic pain remain poorly elucidated. Here, we employed a Sprague‒Dawley rat model of spinal nerve ligation (SNL) to establish a neuropathic pain model. CtBP1 expression in the ipsilateral DRG gradually increased over a three-week period post-SNL. Immunohistochemistry revealed a significant elevation in CtBP1 levels specifically in NeuN-positive neuronal cells in the ipsilateral DRG following SNL. Further characterization demonstrated CtBP1 expression across various subtypes of DRG neurons in SNL rats. Silencing CtBP1 expression with siRNA reversed tactile allodynia in SNL rats and restored both CtBP1 and μ-opioid receptor expression in the DRG in SNL rats. Moreover, Foxp1 was identified to recruit CtBP1 for mediating μ-opioid receptor gene silencing in the DRG in SNL rats. Subsequent investigation unveiled that Foxp1 recruits CtBP1 and associates with HDAC2 to regulate H3K9Ac binding to μ-opioid receptor chromatin regions in the DRG in SNL rats, implicating epigenetic mechanisms in neuropathic pain. Targeting the Foxp1/CtBP1/HDAC2/μ-opioid receptor signaling pathway in the DRG holds promise as a potential therapeutic strategy for managing neuropathic pain.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan; Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Tzer-Bin Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
5
|
Zhang MB, Chen JL, Lu JH, Jia GL, Cao H, Li J. SGK1-HDAC4-HMGB1 signaling pathway in the spinal cord dorsal horn participates in diabetic neuropathic pain. Mol Pain 2025; 21:17448069251321143. [PMID: 39921539 PMCID: PMC11837076 DOI: 10.1177/17448069251321143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
PURPOSE This study aimed to determine whether serum-and glucocorticoid-inducible kinase1 (SGK1) activation-dependent histone deacetylase 4 (HDAC4) phosphorylation, nucleocytoplasmic trafficking, and subsequent regulation of high-mobility group protein box 1 (HMGB1) expression are involved in type 2 diabetic neuropathic pain (DNP). METHODS The type 2 diabetic neuropathic pain model was established in rats by feeding them with a high-fat and high-sugar diet for 8 weeks and then fasting them for 12 h, followed by a single intraperitoneal injection of streptozotocin (STZ, 35 mg/kg). SGK1 was inhibited in the spinal cord by intrathecal administration of the SGK1 inhibitor GSK-650394. RESULTS The present study revealed that pSGK1/tSGK1 was persistently upregulated in the spinal cord of rats with type-2 DNP. The downregulation of pSGK1/tSGK1 through the intrathecal injection of the SGK1 inhibitor GSK-650394 significantly ameliorated the pain hypersensitivity, relieved the abnormal expression of pHDAC4/tHDAC4 and HMGB1, and affected HDAC4 nucleocytoplasmic trafficking in DNP rats. CONCLUSION Our data suggest that SGK1 in the spinal cord modulates type-2 DNP by regulating the HDAC4/HMGB1 pathway.
Collapse
Affiliation(s)
- Mao-Biao Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Li Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Hui Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gai-Li Jia
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Wen ZH, Chen NF, Cheng HJ, Kuo HM, Chen PY, Feng CW, Yao ZK, Chen WF, Sung CS. Upregulated spinal histone deacetylases induce nociceptive sensitization by inhibiting the GABA system in chronic constriction injury-induced neuropathy in rats. Pain Rep 2024; 9:e1209. [PMID: 39512583 PMCID: PMC11543203 DOI: 10.1097/pr9.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/29/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Neuropathic pain (NP) affects countless people worldwide; however, few effective treatments are currently available. Histone deacetylases (HDACs) participate in epigenetic modifications in neuropathy-induced nociceptive sensitization. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that can inhibit NP. The present study aimed to examine the role of spinal HDAC and its isoforms in neuropathy. Methods Male Wistar Rat with chronic constriction injury (CCI)-induced peripheral neuropathy and HDAC inhibitor, panobinostat, was administrated intrathecally. We performed quantitative real-time polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical analysis of lumbar spinal cord dorsal horn and nociceptive behaviors (thermal hyperalgesia and mechanical allodynia) measurements. Results Herein, RT-qPCR analysis revealed that spinal hdac3, hdac4, and hdac6 were upregulated in CCI rats. Western blotting and immunofluorescence staining further confirmed that HDAC3, HDAC4, and HDAC6 were significantly upregulated, whereas GABA and its synthesis key enzyme glutamic acid decarboxylase (GAD) 65 were dramatically downregulated. Intrathecal panobinostat attenuated nociceptive behavior and restored the downregulated spinal GAD65 and GABA expression in CCI rats. Conclusions HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Yu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Chen X, Kang H, Xiao Y. The role of SGK1 in neurologic diseases: A friend or foe? IBRO Neurosci Rep 2024; 17:503-512. [PMID: 39737082 PMCID: PMC11683284 DOI: 10.1016/j.ibneur.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases. Therefore, this article reviews the role of SGK1 in Alzheimer's disease, Parkinson's disease, epilepsy, stroke and other neurological diseases in recent years, and puts forward some insights on the role of SGK1 in neurological diseases and its relationship with disease activities.
Collapse
Affiliation(s)
- Xiuze Chen
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Haixian Kang
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Yechen Xiao
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
- Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| |
Collapse
|
8
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
9
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Huang Z, Zhang Y, Wang S, Qi R, Tao Y, Sun Y, Jiang D, Jiang X, Tao J. FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain via m 6A-dependent stabilization of 5-HT3A mRNA in sensory neurons. Proc Natl Acad Sci U S A 2024; 121:e2312861121. [PMID: 38285939 PMCID: PMC10861880 DOI: 10.1073/pnas.2312861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA is an emerging epigenetic regulatory mechanism that has been shown to participate in various pathophysiological processes. However, its involvement in modulating neuropathic pain is still poorly understood. In this study, we elucidate a functional role of the m6A demethylase alkylation repair homolog 5 (ALKBH5) in modulating trigeminal-mediated neuropathic pain. Peripheral nerve injury selectively upregulated the expression level of ALKBH5 in the injured trigeminal ganglion (TG) of rats. Blocking this upregulation in injured TGs alleviated trigeminal neuropathic pain, while mimicking the upregulation of ALKBH5 in intact TG neurons sufficiently induced pain-related behaviors. Mechanistically, histone deacetylase 11 downregulation induced by nerve injury increases histone H3 lysine 27 acetylation (H3K27ac), facilitating the binding of the transcription factor forkhead box protein D3 (FOXD3) to the Alkbh5 promoter and promoting Alkbh5 transcription. The increased ALKBH5 erases m6A sites in Htr3a messenger RNA (mRNA), resulting in an inability of YT521-B homology domain 2 (YTHDF2) to bind to Htr3a mRNA, thus causing an increase in 5-HT3A protein expression and 5-HT3 channel currents. Conversely, blocking the increased expression of ALKBH5 in the injured TG destabilizes nerve injury-induced 5-HT3A upregulation and reverses mechanical allodynia, and the effect can be blocked by 5-HT3A knockdown. Together, FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain through m6A-dependent stabilization of Htr3a mRNA in TG neurons. This mechanistic understanding may advance the discovery of new therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Zitong Huang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou215004, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
| | - Shoupeng Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Renfei Qi
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yu Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yufang Sun
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich81377, Germany
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Jin Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
- Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
| |
Collapse
|
12
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
13
|
Borgonetti V, Governa P, Manetti F, Galeotti N. Zingiberene, a non-zinc-binding class I HDAC inhibitor: A novel strategy for the management of neuropathic pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154670. [PMID: 36681053 DOI: 10.1016/j.phymed.2023.154670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Even though numerous Histone deacetylase inhibitors (HDACi) have been approved for the treatment of different types of cancer, and others are in clinical trials for the treatment of neurodegenerative diseases, the main problem related to the clinical use of available HDACi is their low isoform selectivity which causes undesirable effects and inevitably limits their therapeutic application. Previously, we demonstrated that a standardized Zingiber officinalis Roscoe rhizome extract (ZOE) reduced neuroinflammation through HDAC1 inhibition in a mice model of neuropathy, and this activity was related to terpenes fraction. HYPOTHESIS/PURPOSE The aim of this work was to identify the ZOE constituent responsible for the activity on HDAC1 and to study its possible application in trauma-induced neuropathic pain. METHODS The ability of ZOE and its terpenes fraction (ZTE) to inhibit HDAC and SIRT isoforms activity and protein expression was assessed in vitro. Then, a structure-based virtual screening approach was applied to predict which constituent could be responsible for the activity. In the next step, the activity of selected compound was tested in an in vitro model of neuroinflammation and in an in vivo model of peripheral neuropathy (SNI). RESULTS ZTE resulted to be more potent than ZOE on HDAC1, 2, and 6 isoforms, while ZOE was more active on HDAC8. Zingiberene (ZNG) was found to be the most promising HDAC1 inhibitor, with an IC50 of 2.3 ± 0.1 µM. A non-zinc-binding mechanism of inhibition was proposed based on molecular docking. Moreover, the oral administration of ZNG reduced thermal hyperalgesia and mechanical allodynia in animals with neuropathy after 60 min from administration, and decreased HDAC-1 levels in the spinal cord microglia. CONCLUSION We found a new non-zinc-dependent inhibitor of HDAC class I, with a therapeutic application in trauma-related neuropathic pain forms in which microglia-spinal overexpression of HDAC1 occurs. The non-zinc-binding mechanism has the potential to reduce off target effects, leading to a higher selectivity and better safety profile, compared to other HDAC inhibitors.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy
| | - Paolo Governa
- Department of Biotechnology Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy.
| |
Collapse
|
14
|
Cai L, Zeng R, Huang Q, Liu X, Cao Z, Guo Q. Paeonol inhibits chronic constriction injury-induced astrocytic activation and neuroinflammation in rats via the HDAC/miR-15a pathway. Drug Dev Res 2022; 83:1758-1765. [PMID: 36063531 DOI: 10.1002/ddr.21993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Neuropathic pain affects millions of people in the worldwide, but the major therapeutics perform limited effectiveness. Paeonol (PAE) is widely distributed in Paeonis albiflora, and has manifested anti-inflammatory and antioxidative effects in multiple diseases. The present study aims to elucidate the effect of Paeonol (PAE) on neuropathic pain (NP) and the potential targets. Chronic constriction injury model was established to mimic NP in vivo in rats. The expression of GFAP, HDAC2, AHDAC3, Ac-H3K9, Histone-H3, Ac-H4K12, Histone-H4, TNF-α, IL-1β, and IL-6 was assessed by real-time polymerase chain reaction, western blot, and/or enzyme-linked immunosorbent assay kits. Ultimately, results indicated that intervention of PAE significantly blocked neuroinflammation and astrocytic activation via blocking HDAC/miR-15a signaling in CCI rats. These data revealed PAE is a novel therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Longxue Cai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Renqing Zeng
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qi Huang
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xianfa Liu
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zuohong Cao
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qicai Guo
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
SGK1.1 isoform is involved in nociceptive modulation, offering a protective effect against noxious cold stimulus in a sexually dimorphic manner. Pharmacol Biochem Behav 2021; 212:173302. [PMID: 34838531 DOI: 10.1016/j.pbb.2021.173302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
The serum and glucocorticoid-regulated kinase 1 (SGK1) is a widely expressed protein in the Central Nervous System (CNS), involved in regulating the activity of a wide variety of ion channels and transporters and physiological functions, such as neuronal excitability. SGK1.1 is a neuronal splice isoform of SGK1, expressed exclusively in the CNS, distributed in brain and cerebellum, that decreases neuronal excitability via up-regulation of M-current, linked to Kv7.2/3 potassium channels. Strategies to maintain increased SGK1.1 activity could be helpful in decreasing neuronal hyperexcitability, as occurs in neuropathic pain. Transgenic mice overexpressing SGK1.1 (B6.Tg.sgk1) offer a particularly relevant opportunity to assess the physiological involvement of this protein in nociception. Behavior and physiological nociception were evaluated in male and female B6.Tg.sgk1 and wild-type mice (B6.WT), characterizing nociceptive thresholds to different nociceptive stimuli (thermal, chemical and mechanical), as well as the electrophysiological properties of cutaneous sensory Aδ-fibres isolated from the saphenous nerve. The acute antinociceptive effect of morphine was also evaluated. Compared with B6.WT animals, male and female B6.Tg.sgk1 mice showed increased spontaneous locomotor activity. Regarding nociception, there were no differences between transgenic and wild-type mice in heat, chemical and mechanical thresholds, but interestingly, male B6.Tg.sgk1 mice were less sensitive to cold stimulus; B6.Tg.sgk1 animals showed lower sensitivity to morphine. Electrophysiological properties of cutaneous primary afferent fibres were maintained. This is the first demonstration that the SGK1.1 isoform is involved in nociceptive modulation, offering a protective effect against noxious cold stimulus in a sexually dimorphic manner. B6.Tg.sgk1 mice offer a particularly relevant opportunity to further analyze the involvement of this protein in nociception, and studies in models of chronic, neuropathic pain are warranted.
Collapse
|
16
|
Romanelli MN, Borgonetti V, Galeotti N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol Res 2021; 173:105901. [PMID: 34547384 DOI: 10.1016/j.phrs.2021.105901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
17
|
Huang CM, Cai JJ, Jin SW, Lin QC, Fang QJ, Nan K, Han Y, Ge WW, Liu Y, Tao YX, Cao H, Li J. Class IIa HDAC Downregulation Contributes to Surgery-Induced Cognitive Impairment Through HMGB1-Mediated Inflammatory Response in the Hippocampi of Aged Mice. J Inflamm Res 2021; 14:2301-2315. [PMID: 34103963 PMCID: PMC8180279 DOI: 10.2147/jir.s304060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Objective Perioperative neurocognitive disorders (PND) are a common complication in the elderly. Histone deacetylases (HDACs) are a class of enzymes that control the acetylation status of intracellular proteins. Thus, we explored whether HDACs trigger the release of high mobility group box 1 (HMGB1) through altering the acetylation status in the hippocampi of aged mice. Materials and Methods The effect of the Class IIa HDAC in PND was explored using an in vivo form of splenectomy. Sixteen-month-old healthy male C57BL/6J mice were randomly divided into five groups: control, anesthesia plus sham surgery, anesthesia plus splenectomy, LMK235 treatment, and PBS treatment. The hippocampi were harvested on either first, third, or seventh postoperative day. Cognitive function was assessed via a Morris water maze (MWM) test. Quantitative RT-PCR, Western blots and ELISAs were carried out to assess the targeted gene expression at transcriptional and translational levels. Results Splenectomy led to a significant deficiency in spatial memory acquisition, marked decreases in mRNA and protein levels of HDAC4 and HDAC5 in the hippocampus, and increases in the levels of total HMGB1 and acetylated HMGB1. In a similar fashion to splenectomy, treatment with the HDAC4/5 inhibitor LMK235 produced impaired spatial memory and an increase in the expression of HMGB1 and its acetylated counterpart in the hippocampus. Conclusion These results suggest that surgery leads to PND through class IIa HDAC downregulation-triggered HMGB1 release in hippocampus of aged mice. HDACs may be a potential therapeutic target for postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Chen-Miao Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jia-Jing Cai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shao-Wu Jin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Qi-Cheng Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Qian-Juan Fang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ke Nan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yuan Han
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Wen-Wei Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yuan-Xiang Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Hong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.,Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
18
|
Liu B, Li N, He Z, Zhang X, Duan G. Emerging Role of Serum Glucocorticoid-Regulated Kinase 1 in Pathological Pain. Front Mol Neurosci 2021; 14:683527. [PMID: 34093127 PMCID: PMC8177009 DOI: 10.3389/fnmol.2021.683527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
Currently, the management of acute and chronic pain in clinical practice remains unsatisfactory due to the existence of limited effective treatments, and novel therapeutic strategies for pathological pain are urgently needed. In the past few decades, the role of serum and glucocorticoid-inducible kinase 1 (SGK1) in the development of pain and diurnal rhythms has been implicated in numerous studies. The expression levels of SGK1 mRNA and protein were found to be elevated in the spinal cord and brain in various pathological pain models. Blocking SGK1 significantly attenuated pain-like responses and the development of pathological pain. These studies provide strong evidence that SGK1 plays a role in the development of various types of pathological pain and that targeting SGK1 may be a novel therapeutic strategy for pain management. In this review article, we provide evidence from animal models for the potential role of SGK1 in the regulation of pathological pain caused by inflammation, nerve injury, psychiatric disorders, and chronic opioid exposure.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Hsieh MC, Ho YC, Lai CY, Wang HH, Yang PS, Cheng JK, Chen GD, Ng SC, Lee AS, Tseng KW, Lin TB, Peng HY. Blocking the Spinal Fbxo3/CARM1/K + Channel Epigenetic Silencing Pathway as a Strategy for Neuropathic Pain Relief. Neurotherapeutics 2021; 18:1295-1315. [PMID: 33415686 PMCID: PMC8423947 DOI: 10.1007/s13311-020-00977-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11689, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan.
| |
Collapse
|
20
|
Mangione W, Falls Z, Chopra G, Samudrala R. cando.py: Open Source Software for Predictive Bioanalytics of Large Scale Drug-Protein-Disease Data. J Chem Inf Model 2020; 60:4131-4136. [PMID: 32515949 PMCID: PMC8098009 DOI: 10.1021/acs.jcim.0c00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional drug discovery methods focus on optimizing the efficacy of a drug against a single biological target of interest for a specific disease. However, evidence supports the multitarget theory, i.e., drugs work by exerting their therapeutic effects via interaction with multiple biological targets, which have multiple phenotypic effects. Analytics of drug-protein interactions on a large proteomic scale provides insight into disease systems while also allowing for prediction of putative therapeutics against specific indications. We present a Python package for analysis of drug-proteome and drug-disease relationships implementing the Computational Analysis of Novel Drug Opportunities (CANDO) platform. The CANDO package allows for rapid drug similarity assessment, most notably via an in-house interaction scoring protocol where billions of drug-protein interactions are rapidly scored and the similarity of drug-proteome interaction signatures is calculated. The package also implements a variety of benchmarking protocols for shotgun drug discovery and repurposing, i.e., to determine how every known drug is related to every other in the context of the indications/diseases for which they are approved. Drug predictions are generated through consensus scoring of the most similar compounds to drugs known to treat a particular indication. Support for comparing and ranking novel chemical entities, as well as machine learning modules for both benchmarking and putative drug candidate prediction is also available. The CANDO Python package is available on GitHub at https://github.com/ram-compbio/CANDO, through the Conda Python package installer, and at http://compbio.org/software/.
Collapse
Affiliation(s)
- William Mangione
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery, Integrated Data Science Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| |
Collapse
|
21
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
欧阳 碧, 唐 朝, 侯 新, 陈 旦, 郭 曲, 翁 莹. [Trichostatin A suppresses up-regulation of histone deacetylase 4 and reverses differential expressions of miRNAs in the spinal cord of rats with chronic constrictive injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1421-1426. [PMID: 31907145 PMCID: PMC6942983 DOI: 10.12122/j.issn.1673-4254.2019.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the analgesic mechanism of intrathecal trichostatin A (TSA) injection in a rat model of neuropathic pain induced by chronic constrictive injury (CCI). METHODS Male SD rats were randomized into sham operation+ DMSO group (group S), CCI +DMSO group (group C), CCI +10 μg TSA group (group T), and in the latter two groups, rat models of neuropathic pain were established induced by CCI. The rats were given intrathecal injections of 10 μL 5% DMSO or 10 μg TSA (in 5% DMSO) once a day on days 7 to 9 after CCI or sham operation. The rats were euthanized after behavioral tests on day 10, and the lumbar segment of the spinal cord was sampled to determine the expression of histone deacetylase 4 (HDAC4) protein and mRNA and detect the differentially expressed miRNAs using a miRNA chip. MiR-190b-5p and miR-142-3p were selected for validation of the results using RT-qPCR. RESULTS Compared with those in group S, the rats in group C showed significantly decreased paw withdrawal mechanical threshold (PWMT) from day 3 to day 10 after CCI (P < 0.05); intrathecal injection of TSA significantly reversed the reduction of PWMT following CCI (P < 0.05). Positive HDAC4 expression was detected mainly in the cytoplasm of the neurons in the gray matter of the spinal cord, and was obviously up-regulated after CCI (Ρ < 0.05). Intrathecal injection of TSA significantly suppressed CCI-induced up-regulation of HDAC4 at 10 days after the operation (P < 0.05). Compared with the miRNA profile in group S, miRNA profiling identified 83 differentially expressed miRNAs in group C (fold change ≥2 or ≤0.5, P < 0.05); TSA treatment reversed the expressions of 58 of the differentially expressed miRNAs following CCI, including 41 miRNAs that were decreased after CCI but up-regulated following TSA treatment. The results of real-time PCR validated the changes in the expressions of miR-190b-5p and miR-142-3p. CONCLUSIONS TSA suppresses CCI-induced up-regulation of HDAC4 and reverses differential expressions of miRNAs in the spinal cord of rats, which may contribute to the analgesic effect of TSA on neuropathic pain.
Collapse
Affiliation(s)
- 碧函 欧阳
- 中南大学湘雅医院 健康管理中心,湖南 长沙 410008Health Management Center, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 朝辉 唐
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 新冉 侯
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 旦 陈
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 曲练 郭
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 莹琪 翁
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
23
|
Xiao L, Han X, Wang XE, Li Q, Shen P, Liu Z, Cui Y, Chen Y. Spinal Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) Signaling Contributes to Morphine-Induced Analgesic Tolerance in Rats. Neuroscience 2019; 413:206-218. [PMID: 31220544 DOI: 10.1016/j.neuroscience.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that phosphorylated serum- and glucocorticoid-regulated kinase 1 (SGK1) is associated with spinal nociceptive sensitization by modulating glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined whether spinal SGK1 signaling contributes to the development of morphine analgesic tolerance. Chronic morphine administration markedly induced phosphorylation of SGK1 in the spinal dorsal horn neurons. Intrathecal injection of SGK1 inhibitor GSK-650394 reduced the development of morphine tolerance with a significant leftward shift in morphine dose-effect curve. Furthermore, spinal inhibition of SGK1 suppressed morphine-induced phosphorylation of nuclear factor kappa B (NF-κB) p65 and upregulation of NMDAR NR1 and NR2B expression in the spinal dorsal horn. In contrast, intrathecal administration of NMDAR antagonist MK-801 had no effect on the phosphorylation of SGK1 in morphine-treated rats. In addition, morphine-induced upregulation of NR2B, but not NR1, was significantly abolished by intrathecal pretreatment with PDTC, a specific NF-κB activation inhibitor. Finally, spinal delivery of SGK1 small interfering RNA exhibited similar inhibitory effects on morphine-induced tolerance, phosphorylation of NF-κB p65, as well as upregulation of NR1 and NR2B expression. Our findings demonstrate that spinal SGK1 contributes to the development of morphine tolerance by enhancing NF-κB p65/NMDAR signaling. Interfering spinal SGK1 signaling pathway could be a potential strategy for prevention of morphine tolerance in chronic pain management.
Collapse
Affiliation(s)
- Li Xiao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-E Wang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pu Shen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Liu
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yu Cui
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Ouyang B, Chen D, Hou X, Wang T, Wang J, Zou W, Song Z, Huang C, Guo Q, Weng Y. Normalizing HDAC2 Levels in the Spinal Cord Alleviates Thermal and Mechanical Hyperalgesia After Peripheral Nerve Injury and Promotes GAD65 and KCC2 Expression. Front Neurosci 2019; 13:346. [PMID: 31024248 PMCID: PMC6468568 DOI: 10.3389/fnins.2019.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain is a worldwide health concern with poor treatment outcomes. Accumulating evidence suggests that histone hypoacetylation is involved in development and maintenance of neuropathic pain. Thus, many natural and synthetic histone deacetylase (HDACs) inhibitors were tested and exhibited a remarkable analgesic effect against neuropathic pain in animals. However, studies evaluating specific subtypes of HDACs contributing to neuropathic pain are limited. In this study, using the chronic constriction injury (CCI) rat model, we found that mRNA and protein levels of HDAC2 were increased in the lumbar spinal cord of rats after sciatic nerve injury. Intrathecal injection of TSA, a pan-HDAC inhibitor, suppressed the increase in HDAC2 protein but not mRNA, and showed a dose-dependent pain-relieving effect. By introducing HDAC2-specific shRNA into the spinal cord via a lentivirus vector, we confirmed that HDAC2 mediates mechanical and thermal hyperalgesia after nerve injury. Further examination found two essential participants in neuropathic pain in the inhibitory circuit of the central nervous system: GAD65 and KCC2 were increased in the spinal cord of CCI rats after HDAC2 knockdown. Thus, our research confirmed that HDAC2 was involved in mechanical and thermal hyperalgesia induced by peripheral nerve injury. Furthermore, GAD65 and KCC2 were the possible downstream targets of HDAC2 in pain modulation pathways.
Collapse
Affiliation(s)
- Bihan Ouyang
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
| | - Dan Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Xinran Hou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Tongxuan Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Khangura RK, Sharma J, Bali A, Singh N, Jaggi AS. An integrated review on new targets in the treatment of neuropathic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:1-20. [PMID: 30627005 PMCID: PMC6315088 DOI: 10.4196/kjpp.2019.23.1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, Wnt/β-catenin and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.
Collapse
Affiliation(s)
- Ravneet Kaur Khangura
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Jasmine Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Anjana Bali
- Akal College of Pharmacy and Technical Education, Mastuana Sahib 148002, Sangrur, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
26
|
Wen J, He T, Qi F, Chen H. MiR-206-3p alleviates chronic constriction injury-induced neuropathic pain through targeting HDAC4. Exp Anim 2018; 68:213-220. [PMID: 30587671 PMCID: PMC6511522 DOI: 10.1538/expanim.18-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It was identified that microRNAs were involved in the regulation of chronic neuropathic pain. However, the role of miR-206-3p in neuropathic pain was still unclear. In the current study, the role of miR-206-3p, a type of mature miR-206, in neuropathic pain was investigated. The potential mechanisms were also explored. We found that the expression of miR-206-3p decreased in the dorsal root ganglion (DRG) of chronic constriction sciatic nerve injury (CCI) rats, whereas the While histone deacetylase 4 (HDAC4) level increased. Further exploration showed that administration of a miR-206-3p mimic alleviated neuropathic pain and reduced the level of HDAC4, a predicted target of miR-206-3p. Overexpression of HDAC4 attenuated the effects of miR-206-3p on neuropathic pain. Our data revealed a miR-206-3p-HDAC4 signal that played a potentially important role in CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Tao He
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Fangfang Qi
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, Nanchang 330006, People's Republic of China
| |
Collapse
|
27
|
Wang X, Shen X, Xu Y, Xu S, Xia F, Zhu B, Liu Y, Wang W, Wu H, Wang F. The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 2018; 14:1744806918798408. [PMID: 30105933 PMCID: PMC6144590 DOI: 10.1177/1744806918798408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a common chronic pain condition with mechanisms far clearly
been elucidated. Mounting preclinical and clinical studies have shown
neuropathic pain is highly associated with histone acetylation modification,
which follows expression regulation of various pain-related molecules such as
mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65,
Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic
factor, and certain chemokines. As two types of pivotal enzymes involved in
histone acetylation, histone deacetylases induce histone deacetylation to
silence gene expression; in contrast, histone acetyl transferases facilitate
histone acetylation to potentiate gene transcription. Accordingly, upregulation
or blockade of acetylation may be a promising intervention direction for
neuropathic pain treatment. In fact, numerous animal studies have suggested
various histone deacetylase inhibitors, Sirt (class III histone deacetylases)
activators, and histone acetyl transferases inhibitors are effective in
neuropathic pain treatment via targeting specific epigenetic sites. In this
review, we summarize the characteristics of the molecules and mechanisms of
neuropathy-related acetylation, as well as the acetylation upregulation and
blockade for neuropathic pain therapy. Finally, we will discuss the current drug
advances focusing on neuropathy-related acetylation along with the underlying
treatment mechanisms.
Collapse
Affiliation(s)
- Xian Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yingli Xu
- 2 Nursing Center, Operating Room, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Fan Xia
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- 3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yusheng Liu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
28
|
GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription. Neuropharmacology 2018; 135:536-546. [DOI: 10.1016/j.neuropharm.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
|
29
|
Histone deacetylase 5 (HDAC5) regulates neuropathic pain through SRY-related HMG-box 10 (SOX10)-dependent mechanism in mice. Pain 2017; 159:526-539. [DOI: 10.1097/j.pain.0000000000001125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Sanna MD, Guandalini L, Romanelli MN, Galeotti N. The new HDAC1 inhibitor LG325 ameliorates neuropathic pain in a mouse model. Pharmacol Biochem Behav 2017; 160:70-75. [DOI: 10.1016/j.pbb.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
|
31
|
HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord. Brain Res 2017; 1669:97-105. [DOI: 10.1016/j.brainres.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/09/2023]
|
32
|
Abstract
More than 20% of adults worldwide experience different types of chronic pain, which are frequently associated with several comorbidities and a decrease in quality of life. Several approved painkillers are available, but current analgesics are often hampered by insufficient efficacy and/or severe adverse effects. Consequently, novel strategies for safe, highly efficacious treatments are highly desirable, particularly for chronic pain. Epigenetic mechanisms such as DNA methylation, histone modifications and microRNAs (miRNAs) strongly affect the regulation of gene expression, potentially for long periods over years or even generations, and have been associated with pathophysiological pain. Several studies, mostly in animals, revealed that inhibitors of DNA methylation, activators and inhibitors of histone modification and modulators of miRNAs reverse a number of pathological changes in the pain epigenome, which are associated with altered expression of pain-relevant genes. This epigenetic modulation might then reduce the nociceptive response and provide novel therapeutic options for analgesic therapy of chronic pain states. However, a number of challenges, such as nonspecific effects and poor delivery to target cells and tissues, hinder the rapid development of such analgesics. In this Review, we critically summarize data on epigenetics and pain, focusing on challenges in clinical development as well as possible new approaches to the drug modulation of the pain epigenome.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Khangura RK, Bali A, Jaggi AS, Singh N. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol 2017; 795:36-42. [DOI: 10.1016/j.ejphar.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|
34
|
Hsieh MC, Lai CY, Ho YC, Wang HH, Cheng JK, Chau YP, Peng HY. Tet1-dependent epigenetic modification of BDNF expression in dorsal horn neurons mediates neuropathic pain in rats. Sci Rep 2016; 6:37411. [PMID: 27857218 PMCID: PMC5114645 DOI: 10.1038/srep37411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) mediates the conversion of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), hence promoting DNA demethylation. Although recent studies have linked the DNA demethylation of specific genes to pain hypersensitivity, the role of spinal Tet1-dependent DNA demethylation in nociception hypersensitivity development remains elusive. Here, we report correlated with behavioral allodynia, spinal nerve ligation (SNL) upregulated Tet1 expression in dorsal horn neurons that hydroxylate 5 mC to 5 hmC at CpG dinucleotides in the bdnf promoter to promote spinal BDNF expression at day 7 after operation. Focal knockdown of spinal Tet1 expression decreased Tet1 binding and 5 hmC enrichment, further increased 5 mC enrichment at CpG sites in the bdnf promoter and decreased spinal BDNF expression accompanied by the alleviation of the developed allodynia. Moreover, at day 7 after operation, SNL-enhanced Tet1 expression also inhibited the binding of DNA methyltransferases (DNMTs, i.e., DNMT1, DNMT3a, and DNMT3b) to the bdnf promoter, a requirement for transcriptional silencing by catalysing 5-cytosine (5C) to 5 mC. Together, these data suggest at CpG sites of the bdnf promoter, SNL-enhanced Tet1 expression promotes DNA demethylation both by converting 5 mC to 5 hmC and inhibiting DNMT binding to regulate spinal BDNF expression, hence contributing to behavioral allodynia development.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
35
|
Tao W, Zhou W, Wang Y, Sun T, Wang H, Zhang Z, Jin Y. Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain. Neuroscience 2016; 339:54-63. [PMID: 27646288 DOI: 10.1016/j.neuroscience.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/31/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The efficacy of opioids in patients with chronic neuropathic pain remains controversial. Although activation of δ-opioid receptors (DORs) in the brainstem reduces inflammation-induced persistent hyperalgesia, it is not effective under persistent neuropathic pain conditions and these clinical problems remain largely unknown. In this study, by using a chronic constriction injury (CCI) of the sciatic nerve in rats, we found that in the brainstem nucleus raphe magnus (NRM), DORs emerged on the surface membrane of central synaptic terminals on day 3 after CCI surgery and disappeared on day 14. Histone deacetylase (HDAC) inhibitors microinjected into the NRM in vivo increased the level of synaptosomal DOR protein and NRM infusion of DOR agonists producing an antinociceptive effect in a nerve growth factor (NGF) signaling-dependent manner. In vitro, in CCI rat slices incubated with HDAC inhibitors, DOR agonists significantly inhibited EPSCs. This effect was blocked by tyrosine receptor kinase A antagonists. Chromatin immunoprecipitation analysis revealed that NRM infusion of HDAC inhibitors in CCI rats increased the level of histone H4 acetylation at Ngf gene promoter regions. NGF was infused into the NRM or incubated CCI rat slices drove DORs to the surface membrane of synaptic terminals. Taken together, epigenetic upregulation of NGF activity by HDAC inhibitors in the NRM promotes the trafficking of DORs to pain-modulating neuronal synapses under neuropathic pain conditions, leading to δ-opioid analgesia. These findings indicate that therapeutic use of DOR agonists combined with HDAC inhibitors might be effective in chronic neuropathic pain managements.
Collapse
Affiliation(s)
- Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenjie Zhou
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuping Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tingting Sun
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haitao Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan Jin
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
36
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
37
|
Fbxo3-Dependent Fbxl2 Ubiquitination Mediates Neuropathic Allodynia through the TRAF2/TNIK/GluR1 Cascade. J Neurosci 2016; 35:16545-60. [PMID: 26674878 DOI: 10.1523/jneurosci.2301-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Emerging evidence has indicated that the pathogenesis of neuropathic pain is mediated by spinal neural plasticity in the dorsal horn, which provides insight for analgesic therapy. Here, we report that the abundance of tumor necrosis factor receptor-associated factor 2 and NcK-interacting kinase (TNIK), a kinase that is presumed to regulate neural plasticity, was specifically enhanced in ipsilateral dorsal horn neurons after spinal nerve ligation (SNL; left L5 and L6). Spinal TNIK-associated allodynia is mediated by downstream TNIK-GluR1 coupling and the subsequent phosphorylation-dependent trafficking of GluR1 toward the plasma membrane in dorsal horn neurons. Tumor necrosis factor receptor-associated factor 2 (TRAF2), which is regulated by spinal F-box protein 3 (Fbxo3)-dependent F-box and leucine-rich repeat protein 2 (Fbxl2) ubiquitination, contributes to SNL-induced allodynia by modifying TNIK/GluR1 phosphorylation-associated GluR1 trafficking. Although exhibiting no effect on Fbxo3/Fbxl2/TRAF2 signaling, focal knockdown of spinal TNIK expression prevented SNL-induced allodynia by attenuating TNIK/GluR1 phosphorylation-dependent subcellular GluR1 redistribution. In contrast, intrathecal administration of BC-1215 (N1,N2-Bis[[4-(2-pyridinyl)phenyl]methyl]-1,2-ethanediamine) (a novel Fbxo3 inhibitor) prevented SNL-induced Fbxl2 ubiquitination and subsequent TFAF2 de-ubiquitination to ameliorate behavioral allodynia via antagonizing TRAF2/TNIK/GluR1 signaling. By targeting spinal Fbxo3-dependent Fbxl2 ubiquitination and the subsequent TRAF2/TNIK/GluR1 cascade, spinal application of a TNF-α-neutralizing antibody ameliorated SNL-induced allodynia, and, conversely, intrathecal TNF-α injection into naive rats induced allodynia via a spinal Fbxo3/Fbxl2-dependent modification of the TRAF2/TNIK/GluR1 cascade. Together, our results suggest that spinal TNF-α contributes to the development of neuropathic pain by upregulating TRAF2/TNIK/GluR1 signaling via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic pain by targeting the F-box protein or TNIK. SIGNIFICANCE STATEMENT TNF-α participates in neuropathic pain development by facilitating the spinal TRAF2-dependent TNIK-GluR1 association, which drives GluR1-containing AMPA receptor trafficking toward the plasma membrane. In addition, F-box protein 3 modifies this pathway by inhibiting F-box and leucine-rich repeat protein 2-mediated TRAF2 ubiquitination, suggesting that protein ubiquitination contributes crucially to the development of neuropathic pain. These results provide a novel therapeutic strategy for pain relief.
Collapse
|
38
|
Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD, Peng HY. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal Res 2016; 60:263-76. [PMID: 26732138 DOI: 10.1111/jpi.12307] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons.
Collapse
Affiliation(s)
- Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
39
|
SIRPα1-SHP2 Interaction Regulates Complete Freund Adjuvant–Induced Inflammatory Pain via Src-Dependent GluN2B Phosphorylation in Rats. Anesth Analg 2016; 122:871-881. [DOI: 10.1213/ane.0000000000001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
VPS26A-SNX27 Interaction-Dependent mGluR5 Recycling in Dorsal Horn Neurons Mediates Neuropathic Pain in Rats. J Neurosci 2016; 35:14943-55. [PMID: 26538661 DOI: 10.1523/jneurosci.2587-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Retromer, which crucially contributes to endosomal sorting machinery through the retrieval and recycling of signaling receptors away from degradation, has been identified as a critical element for glutamatergic-receptor-dependent neural plasticity at excitatory synapses. We observed it accompanied by behavioral allodynia; neuropathic injury time-dependently enhanced VPS26A and SNX27 expression; VPS26A-SNX27 coprecipitation; and VPS26A-positive, SNX27-positive, and VPS26A-SNX27 double-labeled immunoreactivity in the dorsal horn of Sprague Dawley rats that were all sufficiently ameliorated through the focal knock-down of spinal VPS26A expression. Although the knock-down of spinal SNX27 expression exhibited similar effects, spinal nerve ligation (SNL)-enhanced VPS26A expression remained unaffected. Moreover, SNL also increased membrane-bound and total mGluR5 abundance, VPS26A-bound SNX27 and mGluR5 and mGluR5-bound VPS26A and SNX27 coprecipitation, and mGluR5-positive and VPS26A/SNX27/mGluR5 triple-labeled immunoreactivity in the dorsal horn, and these effects were all attenuated through the focal knock-down of spinal VPS26A and SNX27 expression. Although administration with MPEP adequately ameliorated SNL-associated allodynia, mGluR5 expression, and membrane insertion, SNL-enhanced VPS26A and SNX27 expression were unaffected. Together, these results suggested a role of spinal VPS26A-SNX27-dependent mGluR5 recycling in the development of neuropathic pain. This is the first study that links retromer-associated sorting machinery with the spinal plasticity underlying pain hypersensitivity and proposes the possible pathophysiological relevance of endocytic recycling in pain pathophysiology through the modification of glutamatergic mGluR5 recycling. SIGNIFICANCE STATEMENT VPS26A-SNX27-dependent mGluR5 recycling plays a role in the development of neuropathic pain. The regulation of the VPS26A-SNX27 interaction that modifies mGluR5 trafficking and expression in the dorsal horn provides a novel therapeutic strategy for pain relief.
Collapse
|