1
|
Zimmermann J, Boudriot C, Eipert C, Hoffmann G, Nuttall R, Neumaier V, Bonhoeffer M, Schneider S, Schmitzer L, Kufer J, Kaczmarz S, Hedderich DM, Ranft A, Golkowski D, Priller J, Zimmer C, Ilg R, Schneider G, Preibisch C, Sorg C, Zott B. Total cerebral blood volume changes drive macroscopic cerebrospinal fluid flux in humans. PLoS Biol 2025; 23:e3003138. [PMID: 40273212 DOI: 10.1371/journal.pbio.3003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
In the mammalian brain, the directed motion of cerebrospinal fluid (CSF-flux) is instrumental in the distribution and removal of solutes. Changes in total cerebral blood volume (CBV) have been hypothesized to drive CSF-flux. We tested this hypothesis in two multimodal brain imaging experiments in healthy humans, in which we drove large changes in total CBV by neuronal burst-suppression under anesthesia or by transient global vasodilation in a hypercapnic challenge. We indirectly monitored CBV changes with a high temporal resolution based on associated changes in total brain volume by functional MRI (fMRI) and measured cerebral blood flow by arterial spin-labeling. Relating CBV-sensitive signals to fMRI-derived measures of macroscopic CSF flow across the basal cisternae, we demonstrate that increasing total CBV extrudes CSF from the skull and decreasing CBV allows its influx. Moreover, CSF largely stagnates when CBV is stable. Together, our results establish the direct coupling between total CBV changes and CSF-flux.
Collapse
Affiliation(s)
- Juliana Zimmermann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Clara Boudriot
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Eipert
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Viktor Neumaier
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Moritz Bonhoeffer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lena Schmitzer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jan Kufer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Daniel Golkowski
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Charité - Universitätsmedizin Berlin and DZNE, Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UKI DRI, Edinburgh, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rüdiger Ilg
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Asklepios Stadtklinik Bad Tölz, Bad Tölz, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Zott
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Neuroscience, Technical University of Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| |
Collapse
|
2
|
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Nunez P, Kringelbach ML, Stamatakis EA, Luppi AI. Connectome harmonic decomposition tracks the presence of disconnected consciousness during ketamine-induced unresponsiveness. Br J Anaesth 2025; 134:1088-1104. [PMID: 39933965 PMCID: PMC11947573 DOI: 10.1016/j.bja.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ketamine, in doses suitable to induce anaesthesia in humans, gives rise to a unique state of unresponsiveness accompanied by vivid experiences and sensations, making it possible to disentangle the correlated but distinct concepts of conscious awareness and behavioural responsiveness. This distinction is often overlooked in the study of consciousness. METHODS The mathematical framework of connectome harmonic decomposition (CHD) was used to view functional magnetic resonance imaging (fMRI) signals during ketamine-induced unresponsiveness as distributed patterns across spatial scales. The connectome harmonic signature of this particular state was mapped onto signatures of other states of consciousness for comparison. RESULTS An increased prevalence of fine-grained connectome harmonics was found in fMRI signals obtained during ketamine-induced unresponsiveness, indicating higher granularity. After statistical assessment, the ketamine sedation harmonic signature showed alignment with signatures of LSD-induced (fixed effect =0.0113 [0.0099, 0.0127], P<0.001) or ketamine-induced (fixed effect =0.0087 [0.0071, 0.0103], P<0.001) psychedelic states, and misalignment with signatures seen in unconscious individuals owing to propofol sedation (fixed effect =-0.0213 [-0.0245, -0.0181], P<0.001) or brain injury (fixed effect =-0.0205 [-0.0234, -0.0178], P<0.001). CONCLUSIONS The CHD framework, which only requires resting-state fMRI data and can be applied retrospectively, has the ability to track alterations in conscious awareness in the absence of behavioural responsiveness on a group level. This is possible because of ketamine's unique property of decoupling these two facets, and is important for consciousness and anaesthesia research.
Collapse
Affiliation(s)
- Milan Van Maldegem
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience, GIGA-Consciousness, University of Liege, Liege, Belgium; Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Conscious Care Lab, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Centre, University Hospital of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-CRC Human Imaging Unit, University of Liege, Liege, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | | | - Pablo Nunez
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Andrea I Luppi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK; Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Division of Information Engineering, University of Cambridge, Cambridge, UK; St John's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Wakabayashi J, Oshiro Y, Kan S, Kohta M, Taniguchi M, Obata N, Okada M, Kohmura E, Sasayama T, Mizobuchi S. Brain activity during intraoperative general anesthesia using resting-state functional magnetic resonance imaging ~ Feasibility study ~. J Anesth 2025:10.1007/s00540-025-03477-y. [PMID: 40164844 DOI: 10.1007/s00540-025-03477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND In recent years, the effects of general anesthetics on the brain have been widely studied at the sedation level using resting-state functional magnetic resonance imaging (rs-fMRI). Most anesthesia protocols use a single agent, and changes in spontaneous brain activity are examined to show the characteristics of each anesthetic agent. However, no studies have used rs-fMRI to evaluate the effects of anesthesia during actual surgery. We examined the feasibility of evaluating the effects of general anesthesia with sevoflurane using rs-fMRI during neurosurgery. METHODS We enrolled 20 adult patients scheduled for transsphenoidal surgery. We compared differences between before and during general anesthesia in terms of brain functional connectivity of the thalamus by seed-to-voxel correlation analysis and local neural activity using fractional amplitude of low-frequency fluctuations (fALFF) analysis. An exclusion mask was applied to exclude brain areas showing intraoperative spatial artifacts and correct for differences in the magnitude of intra- and preoperative head movements. RESULTS We analyzed 16 patients. Functional connectivity of the thalamus to the contralateral thalamus, bilateral caudate nucleus and globus pallidus were significantly decreased during anesthesia. The precuneus and posterior cingulate cortex showed significantly decreased fALFF values during anesthesia. CONCLUSION These findings were consistent with previous studies and indicate the feasibility of intraoperative rs-fMRI during general anesthesia.
Collapse
Affiliation(s)
- Junji Wakabayashi
- Department of Anesthesiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, Zip Code: 650-0017, Japan.
| | - Yoshitetsu Oshiro
- Department of Anesthesiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, Zip Code: 650-0017, Japan
| | - Shigeyuki Kan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masaaki Kohta
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masaaki Taniguchi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Neurosurgery, Osaka Neurological Institute, Toyonaka, Osaka, Japan
| | - Norihiko Obata
- Department of Anesthesiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, Zip Code: 650-0017, Japan
| | - Masako Okada
- Department of Anesthesiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, Zip Code: 650-0017, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Neurosurgery, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Mizobuchi
- Department of Anesthesiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, Zip Code: 650-0017, Japan
| |
Collapse
|
4
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia decreases the uniqueness of brain functional connectivity across individuals and species. Nat Hum Behav 2025:10.1038/s41562-025-02121-9. [PMID: 40128306 DOI: 10.1038/s41562-025-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/16/2025] [Indexed: 03/26/2025]
Abstract
The human brain is characterized by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI scans acquired under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain, both with respect to the brains of other individuals and the brains of another species. Using functional connectivity, we report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organized: it co-localizes with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol and reversed upon recovery. Providing convergent evidence, we show that anaesthesia shifts the functional connectivity of the human brain closer to the functional connectivity of the macaque brain in a low-dimensional space. Finally, anaesthesia diminishes the match between spontaneous brain activity and cognitive brain patterns aggregated from the Neurosynth meta-analytic engine. Collectively, the present results reveal that anaesthetized human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
- Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- School of Mathematics, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Hassanzadeh E, Ailion A, Hassanzadeh M, Hornak A, Peled N, Martino D, Warfield SK, Lan Z, Gholipour T, Stufflebeam SM. Imaging and Anesthesia Protocol Optimization in Sedated Clinical Resting-State fMRI. AJNR Am J Neuroradiol 2025; 46:293-301. [PMID: 39134370 PMCID: PMC11878968 DOI: 10.3174/ajnr.a8438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND PURPOSE The quality of resting-state fMRI (rs-fMRI) under anesthesia is variable and there are no guidelines on optimal image acquisition or anesthesia protocol. We aim to identify the factors that may lead to compromised clinical rs-fMRI under anesthesia. MATERIALS AND METHODS In this cross-sectional study, we analyzed clinical rs-fMRI data acquired under anesthesia from 2009-2023 at Massachusetts General Hospital. Independent component analysis-driven resting-state networks (RSNs) of each patient were evaluated qualitatively and quantitatively and grouped as robust or weak. Overall networks were evaluated by using the qualitative method, and motor and language networks were evaluated by using the quantitative method. RSN robustness was analyzed in 4 outcome categories: overall, combined motor-language, individual motor, and language networks. Predictor variables included rs-fMRI acquisition parameters, anesthesia medications, underlying brain structural abnormalities, age, and sex. Logistic regression was used to examine the effect of the study variables on RSN robustness. RESULTS Sixty-nine patients were identified. With qualitative assessment, 40 had robust and 29 had weak overall RSN. Quantitatively, 45 patients had robust, while 24 had weak motor-language networks. Among all the predictor variables, only sevoflurane significantly contributed to the outcomes, with sevoflurane administration reducing the odds of having robust RSN in overall (OR = 0.2, 95% CI = 0.05-0.79, P = .02), motor-language (OR = 0.18, 95% CI = 0.04-0.80, P = .02), and individual motor (OR = 0.1, 95% CI = 0.02-0.64, P = .02) categories. Individual language network robustness was not associated with the tested predictor variables. CONCLUSIONS Sevoflurane anesthesia may compromise the visibility of fMRI RSN, particularly impacting motor networks. This finding suggests that the type of anesthesia is a critical factor in rs-fMRI quality. We did not observe the association of the MR acquisition technique or underlying structural abnormality with the RSN robustness.
Collapse
Affiliation(s)
- Elmira Hassanzadeh
- From the Department of Radiology (E.H., Z.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alyssa Ailion
- Department of Neurology (A.A., A.H., D.M.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Masoud Hassanzadeh
- Department of Surgery (S.K.W.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alena Hornak
- Department of Neurology (A.A., A.H., D.M.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noam Peled
- Department of Radiology(N.P., S.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dana Martino
- Department of Neurology (A.A., A.H., D.M.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon K Warfield
- Department of Radiology (S.K.W.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhou Lan
- From the Department of Radiology (E.H., Z.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Taha Gholipour
- Comprehensive Epilepsy Center (T.G.), University of California San Diego, San Diego, California
| | - Steven M Stufflebeam
- Department of Radiology(N.P., S.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Troyas C, Ostertag J, Schneider G, García PS, Sleigh JW, Kreuzer M. Changes in Intra- and Cross-hemispheric Directed Functional Connectivity in the Electroencephalographic Signals during Propofol-induced Loss of Consciousness. Anesthesiology 2025; 142:142-154. [PMID: 39312635 DOI: 10.1097/aln.0000000000005241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Numerous, sometimes conflicting, changes in brain functional connectivity have been associated with the transition from wakefulness to unresponsiveness at induction of general anesthesia. However, relatively few studies have looked at the detailed time evolution of the transition, for different electroencephalogram (EEG) frequency bands, and in the clinical scenario of surgical patients undergoing general anesthesia. METHODS The authors investigated the changes in the frontal and frontoparietal directed and undirected functional connectivity to multichannel EEG data recorded from 29 adult male surgical patients undergoing propofol-induced loss of consciousness during induction of anesthesia. Directed functional connectivity was estimated using bivariate frequency domain Granger causality, and undirected connectivity was assessed using EEG coherence. RESULTS Around the point of loss of consciousness, local frontal, interhemispheric frontal, and frontoparietal feedback and feedforward Granger causality all decreased between 31% and 51.5% in the delta band (median [interquartile range] for local frontal, 0.14 [0.08, 0.27] to 0.08 [0.06, 0.12]; P = 0.02). After a lag of a few minutes, Granger causality markedly increased in the gamma and beta bands for local frontal (0.03 [0.02, 0.07] to 0.09 [0.07, 0.11]; P < 0.001) and long-distance cross-hemispheric frontoparietal feedback (0.02 [0.01, 0.04] to 0.07 [0.04, 0.09]; P < 0.001) and feedforward (0.02 [0.01, 0.04] to 0.03 [0.03, 0.04]; P = 0.01) coupling, but not for within-hemispheric frontoparietal feedback and feedforward. Frontal interhemispheric EEG coherence significantly decreased in the lower frequencies (f < 12 Hz) at loss of consciousness, while no significant increase for the beta and gamma bands was observed. CONCLUSIONS Propofol-induced loss of consciousness in surgical patients is associated with a global breakdown in low-frequency directed functional connectivity, coupled with a high-frequency increase between closely located brain regions. At loss of consciousness, Granger causality shows more pronounced changes than coherence. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Carla Troyas
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Julian Ostertag
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Paul S García
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jamie W Sleigh
- Department of Anesthesiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
8
|
Chen X, Cramer SR, Chan DC, Han X, Zhang N. Sequential Deactivation Across the Hippocampus-Thalamus-mPFC Pathway During Loss of Consciousness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406320. [PMID: 39248326 PMCID: PMC11558098 DOI: 10.1002/advs.202406320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Indexed: 09/10/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems-level neural mechanisms underpinning LOC.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Samuel R. Cramer
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Dennis C.Y. Chan
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xu Han
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neurotechnology in Mental Health ResearchThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
9
|
Dai R, Jang H, Hudetz AG, Huang Z, Mashour GA. Neural Correlates of Psychedelic, Sleep, and Sedated States Support Global Theories of Consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619731. [PMID: 39484478 PMCID: PMC11526930 DOI: 10.1101/2024.10.23.619731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions. To disentangle the global vs. local and frontoparietal vs. posterior dilemmas, we measured global functional connectivity and local neural synchrony with functional magnetic resonance imaging (fMRI) data across a spectrum of conscious states in humans induced by psychedelics, sleep, and deep sedation. We found that psychedelic states are associated with increased global functional connectivity and decreased local neural synchrony. In contrast, non-REM sleep and deep sedation displayed the opposite pattern, suggesting that consciousness arises from global brain network interactions rather than localized activity. This mirror-image pattern between enhanced and diminished states was observed in both anterior-posterior (A-P) and posterior-posterior (P-P) brain regions but not within the anterior part of the brain alone. Moreover, anterior transmodal regions played a key role in A-P connectivity, while both posterior transmodal and posterior unimodal regions were critical for P-P connectivity. Overall, these findings provide empirical evidence supporting global theories of consciousness in relation to varying states of consciousness. They also bridge the gap between two prominent theories, GNW and IIT, by demonstrating how different theories can converge on shared neuronal mechanisms.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hyunwoo Jang
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
Staquet C, Vanhaudenhuyse A, Kandeepan S, Sanders RD, Ribeiro de Paula D, Brichant JF, Laureys S, Bonhomme V, Soddu A. Changes in Intrinsic Connectivity Networks Topology Across Levels of Dexmedetomidine-Induced Alteration of Consciousness. Anesth Analg 2024; 139:798-811. [PMID: 38289856 DOI: 10.1213/ane.0000000000006799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Human consciousness is generally thought to emerge from the activity of intrinsic connectivity networks (resting-state networks [RSNs]) of the brain, which have topological characteristics including, among others, graph strength and efficiency. So far, most functional brain imaging studies in anesthetized subjects have compared wakefulness and unresponsiveness, a state considered as corresponding to unconsciousness. Sedation and general anesthesia not only produce unconsciousness but also phenomenological states of preserved mental content and perception of the environment (connected consciousness), and preserved mental content but no perception of the environment (disconnected consciousness). Unresponsiveness may be seen during unconsciousness, but also during disconnectedness. Deep dexmedetomidine sedation is frequently a state of disconnected consciousness. In this study, we were interested in characterizing the RSN topology changes across 4 different and steady-state levels of dexmedetomidine-induced alteration of consciousness, namely baseline (Awake, drug-free state), Mild sedation (drowsy, still responding), Deep sedation (unresponsive), and Recovery, with a focus on changes occurring between a connected consciousness state and an unresponsiveness state. METHODS A functional magnetic resonance imaging database acquired in 14 healthy volunteers receiving dexmedetomidine sedation was analyzed using a method combining independent component analysis and graph theory, specifically looking at changes in connectivity strength and efficiency occurring during the 4 above-mentioned dexmedetomidine-induced altered consciousness states. RESULTS Dexmedetomidine sedation preserves RSN architecture. Unresponsiveness during dexmedetomidine sedation is mainly characterized by a between-networks graph strength alteration and within-network efficiency alteration of lower-order sensory RSNs, while graph strength and efficiency in higher-order RSNs are relatively preserved. CONCLUSIONS The differential dexmedetomidine-induced RSN topological changes evidenced in this study may be the signature of inadequate processing of sensory information by lower-order RSNs, and of altered communication between lower-order and higher-order networks, while the latter remain functional. If replicated in an experimental paradigm distinguishing, in unresponsive subjects, disconnected consciousness from unconsciousness, such changes would sustain the hypothesis that disconnected consciousness arises from altered information handling by lower-order sensory networks and altered communication between lower-order and higher-order networks, while the preservation of higher-order networks functioning allows for an internally generated mental content (or dream).
Collapse
Affiliation(s)
- Cecile Staquet
- From the Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness, Liege University, Liege, Belgium
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Audrey Vanhaudenhuyse
- Interdisciplinary Center of Algology, Liege University Hospital, Liege, Belgium
- Sensation & Perception Research Group, GIGA-Consciousness, Liege University, Liege, Belgium
| | - Sivayini Kandeepan
- Department of Physics and Astronomy, Western Institute for Neuroscience, University of Western Ontario, London, Ontario, Canada
- Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Robert D Sanders
- University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jean François Brichant
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Steven Laureys
- Sensation & Perception Research Group, GIGA-Consciousness, Liege University, Liege, Belgium
- Coma Science Group, GIGA-Consciousness, Liege University, Liege, Belgium
- Centre du Cerveau , Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- From the Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness, Liege University, Liege, Belgium
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Andrea Soddu
- Department of Physics and Astronomy, Western Institute for Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Altmayer V, Sangare A, Calligaris C, Puybasset L, Perlbarg V, Naccache L, Sitt JD, Rohaut B. Functional and structural brain connectivity in disorders of consciousness. Brain Struct Funct 2024:10.1007/s00429-024-02839-8. [PMID: 39052096 DOI: 10.1007/s00429-024-02839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Brain connectivity, allowing information to be shared between distinct cortical areas and thus to be processed in an integrated way, has long been considered critical for consciousness. However, the relationship between functional intercortical interactions and the structural connections thought to underlie them is poorly understood. In the present work, we explore both functional (with an EEG-based metric: the median weighted symbolic mutual information in the theta band) and structural (with a brain MRI-based metric: fractional anisotropy) connectivities in a cohort of 78 patients with disorders of consciousness. Both metrics could distinguish patients in a vegetative state from patients in minimally conscious state. Crucially, we discovered a significant positive correlation between functional and structural connectivities. Furthermore, we showed that this structure-function relationship is more specifically observed when considering structural connectivity within the intra- and inter-hemispheric long-distance cortico-cortical bundles involved in the Global Neuronal Workspace (GNW) theory of consciousness, thus supporting predictions of this model. Altogether, these results support the interest of multimodal assessments of brain connectivity in refining the diagnostic evaluation of patients with disorders of consciousness.
Collapse
Affiliation(s)
- Victor Altmayer
- Sorbonne University, Paris, F-75013, France
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France
| | - Aude Sangare
- Sorbonne University, Paris, F-75013, France
- Department of Neurophysiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Charlotte Calligaris
- Sorbonne University, Paris, F-75013, France
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France
| | - Louis Puybasset
- Sorbonne University, Paris, F-75013, France
- Department of Neuro-anesthesiology and Neurocritical Care, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | | | - Lionel Naccache
- Sorbonne University, Paris, F-75013, France
- Department of Neurophysiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Jacobo Diego Sitt
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Benjamin Rohaut
- Sorbonne University, Paris, F-75013, France.
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France.
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France.
| |
Collapse
|
12
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Chen S, Li B, Hu Y, Zhang Y, Dai W, Zhang X, Zhou Y, Su D. Common functional mechanisms underlying dynamic brain network changes across five general anesthetics: A rat fMRI study. CNS Neurosci Ther 2024; 30:e14866. [PMID: 39014472 PMCID: PMC11251872 DOI: 10.1111/cns.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Reversible loss of consciousness is the primary therapeutic endpoint of general anesthesia; however, the drug-invariant mechanisms underlying anesthetic-induced unconsciousness are still unclear. This study aimed to investigate the static, dynamic, topological and organizational changes in functional brain network induced by five clinically-used general anesthetics in the rat brain. METHOD Male Sprague-Dawley rats (n = 57) were randomly allocated to received propofol, isoflurane, ketamine, dexmedetomidine, or combined isoflurane plus dexmedetomidine anesthesia. Resting-state functional magnetic resonance images were acquired under general anesthesia and analyzed for changes in dynamic functional brain networks compared to the awake state. RESULTS Different general anesthetics induced distinct patterns of functional connectivity inhibition within brain-wide networks, resulting in multi-level network reorganization primarily by impairing the functional connectivity of cortico-subcortical networks as well as by reducing information transmission capacity, intrinsic connectivity, and network architecture stability of subcortical regions. Conversely, functional connectivity and topological properties were preserved within cortico-cortical networks, albeit with fewer dynamic fluctuations under general anesthesia. CONCLUSIONS Our findings highlighted the effects of different general anesthetics on functional brain network reorganization, which might shed light on the drug-invariant mechanism of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bo Li
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ying Hu
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yizhe Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Wanbing Dai
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Xiao Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Yan Zhou
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Diansan Su
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| |
Collapse
|
14
|
Chen X, Cramer SR, Chan DCY, Han X, Zhang N. Sequential deactivation across the thalamus-hippocampus-mPFC pathway during loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594986. [PMID: 38826282 PMCID: PMC11142108 DOI: 10.1101/2024.05.20.594986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, we conducted concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. Our results reveal that upon the loss of consciousness (LOC), as indicated by the loss of righting reflex, there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, simultaneously measured fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC might be triggered by sequential activities in the hippocampus, thalamus and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness might be a consequence, rather than a cause of LOC. Taken together, our study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering critical insight into the systems-level neural mechanisms underpinning LOC.
Collapse
|
15
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
16
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Zanner R, Berger S, Schröder N, Kreuzer M, Schneider G. Separation of responsive and unresponsive patients under clinical conditions: comparison of symbolic transfer entropy and permutation entropy. J Clin Monit Comput 2024; 38:187-196. [PMID: 37436600 PMCID: PMC10879366 DOI: 10.1007/s10877-023-01046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Electroencephalogram (EEG)-based monitoring during general anesthesia may help prevent harmful effects of high or low doses of general anesthetics. There is currently no convincing evidence in this regard for the proprietary algorithms of commercially available monitors. The purpose of this study was to investigate whether a more mechanism-based parameter of EEG analysis (symbolic transfer entropy, STE) can separate responsive from unresponsive patients better than a strictly probabilistic parameter (permutation entropy, PE) under clinical conditions. In this prospective single-center study, the EEG of 60 surgical ASA I-III patients was recorded perioperatively. During induction of and emergence from anesthesia, patients were asked to squeeze the investigators' hand every 15s. Time of loss of responsiveness (LoR) during induction and return of responsiveness (RoR) during emergence from anesthesia were registered. PE and STE were calculated at -15s and +30s of LoR and RoR and their ability to separate responsive from unresponsive patients was evaluated using accuracy statistics. 56 patients were included in the final analysis. STE and PE values decreased during anesthesia induction and increased during emergence. Intra-individual consistency was higher during induction than during emergence. Accuracy values during LoR and RoR were 0.71 (0.62-0.79) and 0.60 (0.51-0.69), respectively for STE and 0.74 (0.66-0.82) and 0.62 (0.53-0.71), respectively for PE. For the combination of LoR and RoR, values were 0.65 (0.59-0.71) for STE and 0.68 (0.62-0.74) for PE. The ability to differentiate between the clinical status of (un)responsiveness did not significantly differ between STE and PE at any time. Mechanism-based EEG analysis did not improve differentiation of responsive from unresponsive patients compared to the probabilistic PE.Trial registration: German Clinical Trials Register ID: DRKS00030562, November 4, 2022, retrospectively registered.
Collapse
Affiliation(s)
- Robert Zanner
- Department of Anesthesiology, HELIOS University Clinic Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Berger
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Natalie Schröder
- Department of Anesthesiology, HELIOS University Clinic Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
- Klinikum Fünfseenland, Robert-Koch-Allee 6, 82131, Gauting, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, HELIOS University Clinic Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany.
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
18
|
Mondino A, González J, Li D, Mateos D, Osorio L, Cavelli M, Castro-Nin JP, Serantes D, Costa A, Vanini G, Mashour GA, Torterolo P. Urethane anaesthesia exhibits neurophysiological correlates of unconsciousness and is distinct from sleep. Eur J Neurosci 2024; 59:483-501. [PMID: 35545450 DOI: 10.1111/ejn.15690] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Urethane is a general anaesthetic widely used in animal research. The state of urethane anaesthesia is unique because it alternates between macroscopically distinct electrographic states: a slow-wave state that resembles non-rapid eye movement (NREM) sleep and an activated state with features of both REM sleep and wakefulness. Although it is assumed that urethane produces unconsciousness, this has been questioned because of states of cortical activation during drug exposure. Furthermore, the similarities and differences between urethane anaesthesia and physiological sleep are still unclear. In this study, we recorded the electroencephalogram (EEG) and electromyogram in chronically prepared rats during natural sleep-wake states and during urethane anaesthesia. We subsequently analysed the power, coherence, directed connectivity and complexity of brain oscillations and found that EEG under urethane anaesthesia has clear signatures of unconsciousness, with similarities to other general anaesthetics. In addition, the EEG profile under urethane is different in comparison with natural sleep states. These results suggest that consciousness is disrupted during urethane. Furthermore, despite similarities that have led others to conclude that urethane is a model of sleep, the electrocortical traits of depressed and activated states during urethane anaesthesia differ from physiological sleep states.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Joaquín González
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Duan Li
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Diego Mateos
- Institute of Applied Mathematics of the Coast-CONICET-UNL, CCT CONICET, Santa Fe, Argentina
- Faculty of Science and Technology, Autonomous University of Entre Ríos, Parana, Argentina
| | - Lucía Osorio
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Matías Cavelli
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, USA
| | - Juan Pedro Castro-Nin
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Diego Serantes
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Alicia Costa
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Torterolo
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
19
|
Montupil J, Cardone P, Staquet C, Bonhomme A, Defresne A, Martial C, Alnagger NL, Gosseries O, Bonhomme V. The nature of consciousness in anaesthesia. BJA OPEN 2023; 8:100224. [PMID: 37780201 PMCID: PMC10539891 DOI: 10.1016/j.bjao.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.
Collapse
Affiliation(s)
- Javier Montupil
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| | - Arthur Bonhomme
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Aline Defresne
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Naji L.N. Alnagger
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| |
Collapse
|
20
|
Miao J, Tantawi M, Alizadeh M, Thalheimer S, Vedaei F, Romo V, Mohamed FB, Wu C. Characteristic dynamic functional connectivity during sevoflurane-induced general anesthesia. Sci Rep 2023; 13:21014. [PMID: 38030651 PMCID: PMC10687074 DOI: 10.1038/s41598-023-43832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
General anesthesia (GA) during surgery is commonly maintained by inhalational sevoflurane. Previous resting state functional MRI (rs-fMRI) studies have demonstrated suppressed functional connectivity (FC) of the entire brain networks, especially the default mode networks, transitioning from the awake to GA condition. However, accuracy and reliability were limited by previous administration methods (e.g. face mask) and short rs-fMRI scans. Therefore, in this study, a clinical scenario of epilepsy patients undergoing laser interstitial thermal therapy was leveraged to acquire 15 min of rs-fMRI while under general endotracheal anesthesia to maximize the accuracy of sevoflurane level. Nine recruited patients had fMRI acquired during awake and under GA, of which seven were included in both static and dynamic FC analyses. Group independent component analysis and a sliding-window method followed by k-means clustering were applied to identify four dynamic brain states, which characterized subtypes of FC patterns. Our results showed that a low-FC brain state was characteristic of the GA condition as a single featuring state during the entire rs-fMRI session; In contrast, the awake condition exhibited frequent fluctuations between three distinct brain states, one of which was a highly synchronized brain state not seen in GA. In conclusion, our study revealed remarkable dynamic connectivity changes from awake to GA condition and demonstrated the advantages of dynamic FC analysis for future studies in the assessments of the effects of GA on brain functional activities.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohamed Tantawi
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahdi Alizadeh
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Thalheimer
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Faezeh Vedaei
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victor Romo
- Department of Anesthesia, Thomas Jefferson University, Philadelphia, PA, USA
| | - Feroze B Mohamed
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chengyuan Wu
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia reduces the uniqueness of brain connectivity across individuals and across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566332. [PMID: 38014199 PMCID: PMC10680788 DOI: 10.1101/2023.11.08.566332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- Neuro-X Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
Krause BM, Campbell DI, Kovach CK, Mueller RN, Kawasaki H, Nourski KV, Banks MI. Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep. Cereb Cortex 2023; 33:9850-9866. [PMID: 37434363 PMCID: PMC10472497 DOI: 10.1093/cercor/bhad249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Christopher K Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
23
|
Chang AS, Wirak GS, Li D, Gabel CV, Connor CW. Measures of Information Content during Anesthesia and Emergence in the Caenorhabditis elegans Nervous System. Anesthesiology 2023; 139:49-62. [PMID: 37027802 PMCID: PMC10266588 DOI: 10.1097/aln.0000000000004579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND Suppression of behavioral and physical responses defines the anesthetized state. This is accompanied, in humans, by characteristic changes in electroencephalogram patterns. However, these measures reveal little about the neuron or circuit-level physiologic action of anesthetics nor how information is trafficked between neurons. This study assessed whether entropy-based metrics can differentiate between the awake and anesthetized state in Caenorhabditis elegans and characterize emergence from anesthesia at the level of interneuronal communication. METHODS Volumetric fluorescence imaging measured neuronal activity across a large portion of the C. elegans nervous system at cellular resolution during distinct states of isoflurane anesthesia, as well as during emergence from the anesthetized state. Using a generalized model of interneuronal communication, new entropy metrics were empirically derived that can distinguish the awake and anesthetized states. RESULTS This study derived three new entropy-based metrics that distinguish between stable awake and anesthetized states (isoflurane, n = 10) while possessing plausible physiologic interpretations. State decoupling is elevated in the anesthetized state (0%: 48.8 ± 3.50%; 4%: 66.9 ± 6.08%; 8%: 65.1 ± 5.16%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), while internal predictability (0%: 46.0 ± 2.94%; 4%: 27.7 ± 5.13%; 8%: 30.5 ± 4.56%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), and system consistency (0%: 2.64 ± 1.27%; 4%: 0.97 ± 1.38%; 8%: 1.14 ± 0.47%; 0% vs. 4%, P = 0.006; 0% vs. 8%, P = 0.015) are suppressed. These new metrics also resolve to baseline during gradual emergence of C. elegans from moderate levels of anesthesia to the awake state (n = 8). The results of this study show that early emergence from isoflurane anesthesia in C. elegans is characterized by the rapid resolution of an elevation in high frequency activity (n = 8, P = 0.032). The entropy-based metrics mutual information and transfer entropy, however, did not differentiate well between the awake and anesthetized states. CONCLUSIONS Novel empirically derived entropy metrics better distinguish the awake and anesthetized states compared to extant metrics and reveal meaningful differences in information transfer characteristics between states. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Andrew S Chang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston University, Boston, Massachusetts
| | - Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| |
Collapse
|
24
|
Chang BA, Cassim TZ, Mittel AM, Brambrink AM, García PS. Frontal Electroencephalography Findings in Critically Ill COVID-19 Patients. J Neurosurg Anesthesiol 2023; 35:322-326. [PMID: 35249987 PMCID: PMC10249398 DOI: 10.1097/ana.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) negatively impacts the central nervous system, and studies using a full montage of electroencephalogram (EEG) electrodes have reported nonspecific EEG patterns associated with coronavirus disease 2019 (COVID-19) infection. The use of this technology is resource-intensive and limited in its implementation. In this descriptive pilot study, we report neurophysiological patterns and the potential prognostic capability of an abbreviated frontal EEG electrode montage in critically ill COVID-19 patients. MATERIALS AND METHODS Patients receiving mechanical ventilation for SARS-CoV-2 respiratory failure were monitored with Sedline Root Devices using EEG electrodes were placed over the forehead. Qualitative EEG assessments were conducted daily. The primary outcome was mortality, and secondary outcomes were duration of endotracheal intubation and lengths of intensive care and hospitalization stay. RESULTS Twenty-six patients were included in the study, and EEG discontinuity was identified in 22 (84.6%) patients. The limited sample size and patient heterogeneity precluded statistical analysis, but certain patterns were suggested by trends in the data. Survival was 100% (4/4) for those patients in which a discontinuous EEG pattern was not observed. The majority of patients (87.5%, 7/8) demonstrating activity in the low-moderate frequency range (7 to 17 Hz) survived compared with 61.1% (11/18) of those without this observation. CONCLUSIONS The majority of COVID-19 patients showed signs of EEG discontinuity during monitoring with an abbreviated electrode montage. The trends towards worse survival among those with EEG discontinuity support the need for additional studies to investigate these associations in COVID-19 patients.
Collapse
|
25
|
Guo F, Li Y, Jian Z, Cui Y, Gong W, Li A, Jing W, Xu P, Chen K, Guo D, Yao D, Xia Y. Dose-related adaptive reconstruction of DMN in isoflurane administration: a study in the rat. BMC Anesthesiol 2023; 23:224. [PMID: 37380958 PMCID: PMC10303294 DOI: 10.1186/s12871-023-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The anesthetic states are accompanied by functional alterations. However, the dose-related adaptive alterations in the higher-order network under anesthesia, e. g. default mode network (DMN), are poorly revealed. METHODS We implanted electrodes in brain regions of the rat DMN to acquire local field potentials to investigate the perturbations produced by anesthesia. Relative power spectral density, static functional connectivity (FC), fuzzy entropy of dynamic FC, and topological features were computed from the data. RESULTS The results showed that adaptive reconstruction was induced by isoflurane, exhibiting reduced static and stable long-range FC, and altered topological features. These reconstruction patterns were in a dose-related fashion. CONCLUSION These results might impart insights into the neural network mechanisms underlying anesthesia and suggest the potential of monitoring the depth of anesthesia based on the parameters of DMN.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuqin Li
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhaoxin Jian
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yan Cui
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenhui Gong
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Airui Li
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Jing
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
| | - Peng Xu
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ke Chen
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Daqing Guo
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Xia
- Department of Neurosurgery, MOE Key Lab for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
26
|
Luppi AI, Hansen JY, Adapa R, Carhart-Harris RL, Roseman L, Timmermann C, Golkowski D, Ranft A, Ilg R, Jordan D, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Alnagger NL, Cardone P, Peattie AR, Manktelow AE, de Araujo DB, Sensi SL, Owen AM, Naci L, Menon DK, Misic B, Stamatakis EA. In vivo mapping of pharmacologically induced functional reorganization onto the human brain's neurotransmitter landscape. SCIENCE ADVANCES 2023; 9:eadf8332. [PMID: 37315149 PMCID: PMC10266734 DOI: 10.1126/sciadv.adf8332] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Robin L. Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Christopher Timmermann
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Andreas Ranft
- School of Medicine, Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, München, Germany
- Department of Neurology, Asklepios Clinic, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, München, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Athena Demertzi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liege, Liege, Belgium
| | - Naji L. N. Alnagger
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Paolo Cardone
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Alexander R. D. Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Stefano L. Sensi
- Department of Neuroscience and Imaging and Clinical Science, Center for Advanced Studies and Technology, Institute for Advanced Biomedical Technologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA
| | - Adrian M. Owen
- Department of Psychology and Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Wolfon Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Bratislav Misic
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Desowska A, Berde CB, Cornelissen L. Emerging functional connectivity patterns during sevoflurane anaesthesia in the developing human brain. Br J Anaesth 2023; 130:e381-e390. [PMID: 35803755 DOI: 10.1016/j.bja.2022.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Spectral-based EEG is used to monitor anaesthetic state during surgical procedures in adults. Spectral EEG features that can resemble the patterns seen in adults emerge in children after the age of 10 months and cannot distinguish wakefulness and anaesthesia in the youngest children. There is a need to explore alternative EEG measures. We hypothesise that functional connectivity is one of the measures that can help distinguish between consciousness states in children. METHODS An EEG data set of children undergoing sevoflurane general anaesthesia (age 0-3 yr) was reanalysed using debiased weighted phase lag index as a measure of functional connectivity in wakefulness (n=38) and anaesthesia (n=73). Network topology measures were compared between states in 0- to 6-, 6- to 10-, and >10-month-old children. RESULTS Functional connectivity was reduced in anaesthesia vs wakefulness in delta band (n=cluster of 17 significant connections; P=0.013; 58% connections surviving thresholding in wakefulness and 49% in anaesthesia). Network density and node degree were lower in anaesthesia even in the youngest children (0.57 in wakefulness; 0.48 in anaesthesia; t [9]=3.39; P=0.029; G=0.98; confidence interval [CI] [0.25-1.77]). Modularity was higher in anaesthesia (0-6 months: 0.16 in wakefulness and 0.19 in anaesthesia, t [9]=-2.95, P=0.04, G=-0.85, CI [-1.60 to -0.16]; >10 months: 0.16 vs 0.21, t [13]=-6.45, P<0.001, G=-1.62, CI [-2.49 to -0.85]) and decreased with age (ρ [73]=-0.456; P<0.001). CONCLUSIONS Anaesthesia modulates functional connectivity. Increased segregation into a more modular structure in anaesthesia decreases with age as adult-like features develop. These findings advance our understanding of the network architecture underlying the effects of anaesthesia on the developing brain.
Collapse
Affiliation(s)
- Adela Desowska
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles B Berde
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
29
|
Maschke C, Duclos C, Blain-Moraes S. Paradoxical markers of conscious levels: Effects of propofol on patients in disorders of consciousness. Front Hum Neurosci 2022; 16:992649. [PMID: 36277055 PMCID: PMC9584648 DOI: 10.3389/fnhum.2022.992649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human consciousness is widely understood to be underpinned by rich and diverse functional networks, whose breakdown results in unconsciousness. Candidate neural correlates of anesthetic-induced unconsciousness include: (1) disrupted frontoparietal functional connectivity; (2) disrupted brain network hubs; and (3) reduced spatiotemporal complexity. However, emerging counterexamples have revealed that these markers may appear outside of the state they are associated with, challenging both their inclusion as markers of conscious level, and the theories of consciousness that rely on their evidence. In this study, we present a case series of three individuals in disorders of consciousness (DOC) who exhibit paradoxical brain responses to exposure to anesthesia. High-density electroencephalographic data were recorded from three patients with unresponsive wakefulness syndrome (UWS) while they underwent a protocol of propofol anesthesia with a targeted effect site concentration of 2 μg/ml. Network hubs and directionality of functional connectivity in the alpha frequency band (8–13 Hz), were estimated using the weighted phase lag index (wPLI) and directed phase lag index (dPLI). The spatiotemporal signal complexity was estimated using three types of Lempel-Ziv complexity (LZC). Our results illustrate that exposure to propofol anesthesia can paradoxically result in: (1) increased frontoparietal feedback-dominant connectivity; (2) posterior network hubs; and (3) increased spatiotemporal complexity. The case examples presented in this paper challenge the role of functional connectivity and spatiotemporal complexity in theories of consciousness and for the clinical evaluation of levels of human consciousness.
Collapse
Affiliation(s)
- Charlotte Maschke
- Montreal General Hospital, McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Catherine Duclos
- Hôpital du Sacré-Cœur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montreal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, McGill University Health Centre, Montreal, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- *Correspondence: Stefanie Blain-Moraes,
| |
Collapse
|
30
|
Wang H, Zhang Y, Cheng H, Yan F, Song D, Wang Q, Cai S, Wang Y, Huang L. Selective corticocortical connectivity suppression during propofol-induced anesthesia in healthy volunteers. Cogn Neurodyn 2022; 16:1029-1043. [PMID: 36237410 PMCID: PMC9508318 DOI: 10.1007/s11571-021-09775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
We comprehensively studied directional feedback and feedforward connectivity to explore potential connectivity changes that underlie propofol-induced deep sedation. We further investigated the corticocortical connectivity patterns within and between hemispheres. Sixty-channel electroencephalographic data were collected from 19 healthy volunteers in a resting wakefulness state and propofol-induced deep unconsciousness state defined by a bispectral index value of 40. A source analysis was employed to locate cortical activity. The Desikan-Killiany atlas was used to partition cortices, and directional functional connectivity was assessed by normalized symbolic transfer entropy between higher-order (prefrontal and frontal) and lower-order (auditory, sensorimotor and visual) cortices and between hot-spot frontal and parietal cortices. We found that propofol significantly suppressed feedforward connectivity from the left parietal to right frontal cortex and bidirectional connectivity between the left frontal and left parietal cortex, between the frontal and auditory cortex, and between the frontal and sensorimotor cortex. However, there were no significant changes in either feedforward or feedback connectivity between the prefrontal and all the lower-order cortices and between the frontal and visual cortices or in feedback connectivity from the frontal to parietal cortex. Propofol anesthetic selectively decreased the unidirectional interaction between higher-order frontoparietal cortices and bidirectional interactions between the higher-order frontal cortex and lower-order auditory and sensorimotor cortices, which indicated that both feedback and feedforward connectivity were suppressed under propofol-induced deep sedation. Our findings provide critical insights into the connectivity changes underlying the top-down mechanism of propofol anesthesia at deep sedation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09775-x.
Collapse
Affiliation(s)
- Haidong Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| |
Collapse
|
31
|
Takeguchi R, Kuroda M, Tanaka R, Suzuki N, Akaba Y, Tsujimura K, Itoh M, Takahashi S. Structural and functional changes in the brains of patients with Rett syndrome: A multimodal MRI study. J Neurol Sci 2022; 441:120381. [PMID: 36027642 DOI: 10.1016/j.jns.2022.120381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To clarify the relationship between structural and functional changes in the brains of patients with Rett syndrome (RTT) using multimodal magnetic resonance imaging (MRI). METHODS Nine subjects with typical RTT (RTTs) and an equal number of healthy controls (HCs) underwent structural MRI, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI). The measurements obtained from each modality were statistically compared between RTTs and HCs and examined for their correlation with the clinical severity of RTTs. RESULTS Structural MRI imaging revealed volume reductions in most cortical and subcortical regions of the brain. Remarkable volume reductions were observed in the frontal and parietal lobes, cerebellum, and subcortical regions including the putamen, hippocampus, and corpus callosum. DTI analysis revealed decreased white matter integrity in broad regions of the brain. Fractional anisotropy values were greatly decreased in the superior longitudinal fasciculus, corpus callosum, and middle cerebellar peduncle. Rs-fMRI analysis showed decreased functional connectivity in the interhemispheric dorsal attention network, and between the visual and cerebellar networks. The clinical severity of RTTs correlated with the volume reduction of the frontal lobe and cerebellum, and with changes in DTI indices in the fronto-occipital fasciculus, corpus callosum, and cerebellar peduncles. CONCLUSION Regional volume and white matter integrity of RTT brains were reduced in broad areas, while most functional connections remained intact. Notably, two functional connectivities, between cerebral hemispheres and between the cerebrum and cerebellum, were decreased in RTT brains, which may reflect the structural changes in these brain regions.
Collapse
Affiliation(s)
- Ryo Takeguchi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan.
| | - Mami Kuroda
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Ryosuke Tanaka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Nao Suzuki
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Yuichi Akaba
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan; Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Aichi 464-8602, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Aichi 464-8602, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| |
Collapse
|
32
|
Sirmpilatze N, Mylius J, Ortiz-Rios M, Baudewig J, Paasonen J, Golkowski D, Ranft A, Ilg R, Gröhn O, Boretius S. Spatial signatures of anesthesia-induced burst-suppression differ between primates and rodents. eLife 2022; 11:e74813. [PMID: 35607889 PMCID: PMC9129882 DOI: 10.7554/elife.74813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/01/2022] [Indexed: 01/19/2023] Open
Abstract
During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded-predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.
Collapse
Affiliation(s)
- Nikoloz Sirmpilatze
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
| | - Judith Mylius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Michael Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jürgen Baudewig
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jaakko Paasonen
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Heidelberg University HospitalHeidelbergGermany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Asklepios Stadtklinik Bad TölzBad TölzGermany
| | - Olli Gröhn
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
- Leibniz Science Campus Primate CognitionGöttingenGermany
| |
Collapse
|
33
|
Zhang L, Li H, Deng L, Fang K, Cao Y, Huang C, Gu E, Li J. Electroencephalogram Mechanism of Dexmedetomidine Deepening Sevoflurane Anesthesia. Front Neurosci 2022; 16:913042. [PMID: 35645714 PMCID: PMC9133498 DOI: 10.3389/fnins.2022.913042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Dexmedetomidine, as an α2-adrenoceptor agonist, plays anti-sympathetic, sedative and analgesic roles in perioperative period. Also, dexmedetomidine can reduce the minimal alveolar concentration (MAC) of sevoflurane and the risk of postoperative cognitive dysfunction (POCD) induced by sevoflurane anesthesia. But so far, the electroencephalogram (EEG) mechanism of dexmedetomidine deepening sevoflurane anesthesia is not clear. In this study, by analyzing the changes of the power spectrum and bicoherence spectrum of EEG before and after dexmedetomidine infusion, the EEG mechanism of dexmedetomidine deepening sevoflurane anesthesia was studied. We analyzed dexmedetomidine-induced changes in power spectrum and bicoherence spectrum in 23 patients under sevoflurane anesthesia. After anesthesia induction, the sevoflurane concentration was maintained at 0.8 MAC for 15 min, and then dexmedetomidine was administered at a loading dose of 0.8 μg/kg in 10 min, followed by a maintenance rate of 0.5 μg⋅kg–1⋅h–1. Frontal EEG data from 5 min before and 10 min after dexmedetomidine infusion were compared. After dexmedetomidine infusion, the mean α power peak decreased from 6.09 to 5.43 dB and shifted to a lower frequency, the mean θ bicoherence peak increased from 29.57 to 41.25% and shifted to a lower frequency, and the median α bicoherence peak increased from 41.49 to 46.36% and shifted to a lower frequency. These results demonstrate that dexmedetomidine deepens sevoflurane anesthesia, and enhances α and θ bicoherences while shifting peak values of these bands to lower frequencies through regulating thalamo-cortical reverberation networks probably.
Collapse
Affiliation(s)
- Lei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hua Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyun Deng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Cao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- *Correspondence: Erwei Gu,
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
- Jun Li,
| |
Collapse
|
34
|
Li JY, Gao SJ, Li RR, Wang W, Sun J, Zhang LQ, Wu JY, Liu DQ, Zhang P, Tian B, Mei W. A Neural Circuit from the Paraventricular Thalamus to the Bed Nucleus of the Stria Terminalis for the Regulation of States of Consciousness during Sevoflurane Anesthesia in Mice. Anesthesiology 2022; 136:709-731. [PMID: 35263424 DOI: 10.1097/aln.0000000000004195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The neural circuitry underlying sevoflurane-induced modulation of consciousness is poorly understood. This study hypothesized that the paraventricular thalamus bed nucleus of the stria terminalis pathway plays an important role in regulating states of consciousness during sevoflurane anesthesia. METHODS Rabies virus-based transsynaptic tracing techniques were employed to reveal the neural pathway from the paraventricular thalamus to the bed nucleus of the stria terminalis. This study investigated the role of this pathway in sevoflurane anesthesia induction, maintenance, and emergence using chemogenetic and optogenetic methods combined with cortical electroencephalogram recordings. Both male and female mice were used in this study. RESULTS Both γ-aminobutyric acid-mediated and glutamatergic neurons in the bed nucleus of the stria terminalis receive paraventricular thalamus glutamatergic projections. Chemogenetic inhibition of paraventricular thalamus glutamatergic neurons prolonged the sevoflurane anesthesia emergence time (mean ± SD, hM4D-clozapine N-oxide vs. mCherry-clozapine N-oxide, 281 ± 88 vs. 172 ± 48 s, P < 0.001, n = 24) and decreased the induction time (101 ± 32 vs. 136 ± 34 s, P = 0.002, n = 24), as well as the EC5 0 for the loss or recovery of the righting reflex under sevoflurane anesthesia (mean [95% CI] for the concentration at which 50% of the mice lost their righting reflex, 1.16 [1.12 to 1.20] vs. 1.49 [1.46 to 1.53] vol%, P < 0.001, n = 20; and for the concentration at which 50% of the mice recovered their righting reflex, 0.95 [0.86 to 1.03] vs. 1.34 [1.29 to 1.40] vol%, P < 0.001, n = 20). Similar results were observed during suppression of the paraventricular thalamus bed nucleus-stria terminalis pathway. Optogenetic activation of this pathway produced the opposite effects. Additionally, transient stimulation of this pathway efficiently induced behavioral arousal during continuous steady-state general anesthesia with sevoflurane and reduced the depth of anesthesia during sevoflurane-induced burst suppression. CONCLUSIONS In mice, axonal projections from the paraventricular thalamic neurons to the bed nucleus of the stria terminalis contribute to regulating states of consciousness during sevoflurane anesthesia.
Collapse
Affiliation(s)
- Jia-Yan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Ran Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Chen X, Zheng X, Cai J, Yang X, Lin Y, Wu M, Deng X, Peng YG. Effect of Anesthetics on Functional Connectivity of Developing Brain. Front Hum Neurosci 2022; 16:853816. [PMID: 35360283 PMCID: PMC8963106 DOI: 10.3389/fnhum.2022.853816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
The potential anesthetic neurotoxicity on the neonate is an important focus of research investigation in the field of pediatric anesthesiology. It is essential to understand how these anesthetics may affect the development and growth of neonatal immature and vulnerable brains. Functional magnetic resonance imaging (fMRI) has suggested that using anesthetics result in reduced functional connectivity may consider as core sequence for the neurotoxicity and neurodegenerative changes in the developed brain. Anesthetics either directly impact the primary structures and functions of the brain or indirectly alter the hemodynamic parameters that contribute to cerebral blood flow (CBF) in neonatal patients. We hypothesis that anesthetic agents may either decrease the brain functional connectivity in neonatal patients or animals, which was observed by fMRI. This review will summarize the effect and mechanism of anesthesia on the rapid growth and development infant and neonate brain with fMRI through functional connectivity. It is possible to provide the new mechanism of neuronal injury induced by anesthetics and objective imaging evidence in animal developing brain.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuemei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianghui Cai
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Department of Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengjun Wu
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Mengjun Wu,
| | - Xiaofan Deng
- Center of Organ Transplantation, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Yong G. Peng
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|
37
|
Nir T, Raizman R, Meningher I, Jacob Y, Huang KH, Schwartz AE, Brallier JW, Ahn H, Kundu P, Tang CY, Delman BN, McCormick PJ, Scarpa J, Sano M, Deiner SG, Livny A, Baxter MG, Mincer JS. Lateralisation of subcortical functional connectivity during and after general anaesthesia. Br J Anaesth 2022; 128:65-76. [PMID: 34802696 PMCID: PMC8787782 DOI: 10.1016/j.bja.2021.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Arousal and awareness are two important components of consciousness states. Functional neuroimaging has furthered our understanding of cortical and thalamocortical mechanisms of awareness. Investigating the relationship between subcortical functional connectivity and arousal has been challenging owing to the relatively small size of brainstem structures and thalamic nuclei, and their depth in the brain. METHODS Resting state functional MRI scans of 72 healthy volunteers were acquired before, during, 1 h after, and 1 day after sevoflurane general anaesthesia. Functional connectivity of subcortical regions of interest vs whole brain and homotopic functional connectivity for assessment of left-right symmetry analyses of both cortical and subcortical regions of interest were performed. Both analyses used high resolution atlases generated from deep brain stimulation applications. RESULTS Functional connectivity in subcortical loci within the thalamus and of the ascending reticular activating system was sharply restricted under anaesthesia, featuring a general lateralisation of connectivity. Similarly, left-right homology was sharply reduced under anaesthesia. Subcortical bilateral functional connectivity was not fully restored after emergence from anaesthesia, although greater restoration was seen between ascending reticular activating system loci and specific thalamic nuclei thought to be involved in promoting and maintaining arousal. Functional connectivity was fully restored to baseline by the following day. CONCLUSIONS Functional connectivity in the subcortex is sharply restricted and lateralised under general anaesthesia. This restriction may play a part in loss and return of consciousness. CLINICAL TRIAL REGISTRATION NCT02275026.
Collapse
Affiliation(s)
- Tommer Nir
- Department of Anesthesiology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Inbar Meningher
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yael Jacob
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kuang-Han Huang
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur E Schwartz
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jess W Brallier
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Helen Ahn
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prantik Kundu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Hyperfine Research, Guilford, CT, USA
| | - Cheuk Y Tang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bradley N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick J McCormick
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark G Baxter
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua S Mincer
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Li F, Li Y, Zheng H, Jiang L, Gao D, Li C, Peng Y, Cao Z, Zhang Y, Yao D, Xu T, Yuan TF, Xu P. Identification of the General Anesthesia Induced Loss of Consciousness by Cross Fuzzy Entropy-Based Brain Network. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2281-2291. [PMID: 34705652 DOI: 10.1109/tnsre.2021.3123696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the spatiotemporal complexity and network connectivity are clarified to be disrupted during the general anesthesia (GA) induced unconsciousness, it remains to be difficult to exactly monitor the fluctuation of consciousness clinically. In this study, to track the loss of consciousness (LOC) induced by GA, we first developed the multi-channel cross fuzzy entropy method to construct the time-varying networks, whose temporal fluctuations were then explored and quantitatively evaluated. Thereafter, an algorithm was further proposed to detect the time onset at which patients lost their consciousness. The results clarified during the resting state, relatively stable fuzzy fluctuations in multi-channel network architectures and properties were found; by contrast, during the LOC period, the disrupted frontal-occipital connectivity occurred at the early stage, while at the later stage, the inner-frontal connectivity was identified. When specifically exploring the early LOC stage, the uphill of the clustering coefficients and the downhill of the characteristic path length were found, which might help resolve the propofol-induced consciousness fluctuation in patients. Moreover, the developed detection algorithm was validated to have great capacity in exactly capturing the time point (in seconds) at which patients lost consciousness. The findings demonstrated that the time-varying cross-fuzzy networks help decode the GA and are of great significance for developing anesthesia depth monitoring technology clinically.
Collapse
|
39
|
Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. Combined resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined ISO/MED anesthesia. Neuroimage 2021; 245:118626. [PMID: 34637903 DOI: 10.1016/j.neuroimage.2021.118626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany; Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Daniel Segelcke
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany.
| |
Collapse
|
40
|
Li Y, Li F, Zheng H, Jiang L, Peng Y, Zhang Y, Yao D, Xu T, Yuan T, Xu P. Recognition of general anesthesia-induced loss of consciousness based on the spatial pattern of the brain networks. J Neural Eng 2021; 18. [PMID: 34534980 DOI: 10.1088/1741-2552/ac27fc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Objective.Unconsciousness is a key feature related to general anesthesia (GA) but is difficult to be evaluated accurately by anesthesiologists clinically.Approach.To tracking the loss of consciousness (LOC) and recovery of consciousness (ROC) under GA, in this study, by investigating functional connectivity of the scalp electroencephalogram, we explore any potential difference in brain networks among anesthesia induction, anesthesia recovery, and the resting state.Main results.The results of this study demonstrated significant differences among the three periods, concerning the corresponding brain networks. In detail, the suppressed default mode network, as well as the prolonged characteristic path length and decreased clustering coefficient, during LOC was found in the alpha band, compared to the Resting and the ROC state. When to further identify the Resting and LOC states, the fused network topologies and properties achieved the highest accuracy of 95%, along with a sensitivity of 93.33% and a specificity of 96.67%.Significance.The findings of this study not only deepen our understanding of propofol-induced unconsciousness but also provide quantitative measurements subserving better anesthesia management.
Collapse
Affiliation(s)
- Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Tao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China.,Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, People's Republic of China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| |
Collapse
|
41
|
Golkowski D, Willnecker R, Rösler J, Ranft A, Schneider G, Jordan D, Ilg R. Dynamic Patterns of Global Brain Communication Differentiate Conscious From Unconscious Patients After Severe Brain Injury. Front Syst Neurosci 2021; 15:625919. [PMID: 34566586 PMCID: PMC8458756 DOI: 10.3389/fnsys.2021.625919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
The neurophysiology of the subjective sensation of being conscious is elusive; therefore, it remains controversial how consciousness can be recognized in patients who are not responsive but seemingly awake. During general anesthesia, a model for the transition between consciousness and unconsciousness, specific covariance matrices between the activity of brain regions that we call patterns of global brain communication reliably disappear when people lose consciousness. This functional magnetic imaging study investigates how patterns of global brain communication relate to consciousness and unconsciousness in a heterogeneous sample during general anesthesia and after brain injury. First, we describe specific patterns of global brain communication during wakefulness that disappear during propofol (n = 11) and sevoflurane (n = 14) general anesthesia. Second, we search for these patterns in a cohort of unresponsive wakeful patients (n = 18) and unmatched healthy controls (n = 20) in order to evaluate their potential use in clinical practice. We found that patterns of global brain communication characterized by high covariance in sensory and motor areas or low overall covariance and their dynamic change were strictly associated with intact consciousness in this cohort. In addition, we show that the occurrence of these two patterns is significantly related to activity within the frontoparietal network of the brain, a network known to play a crucial role in conscious perception. We propose that this approach potentially recognizes consciousness in the clinical routine setting.
Collapse
Affiliation(s)
- Daniel Golkowski
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Neurologische Klinik und Poliklinik, University of Heidelberg, Heidelberg, Germany
| | - Rebecca Willnecker
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jennifer Rösler
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Denis Jordan
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rüdiger Ilg
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| |
Collapse
|
42
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
43
|
Wang J, Xu Y, Deshpande G, Li K, Sun P, Liang P. The Effect of Light Sedation with Midazolam on Functional Connectivity of the Dorsal Attention Network. Brain Sci 2021; 11:brainsci11081107. [PMID: 34439725 PMCID: PMC8392174 DOI: 10.3390/brainsci11081107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Altered connectivity within and between the resting-state networks (RSNs) brought about by anesthetics that induce altered consciousness remains incompletely understood. It is known that the dorsal attention network (DAN) and its anticorrelations with other RSNs have been implicated in consciousness. However, the role of DAN-related functional patterns in drug-induced sedative effects is less clear. In the current study, we investigated altered functional connectivity of the DAN during midazolam-induced light sedation. In a placebo-controlled and within-subjects experimental study, fourteen healthy volunteers received midazolam or saline with a 1-week interval. Resting-state fMRI data were acquired before and after intravenous drug administration. A multiple region of interest-driven analysis was employed to investigate connectivity within and between RSNs. It was found that functional connectivity was significantly decreased by midazolam injection in two regions located in the left inferior parietal lobule and the left middle temporal area within the DAN as compared with the saline condition. We also identified three clusters in anticorrelation between the DAN and other RSNs for the interaction effect, which included the left medial prefrontal cortex, the right superior temporal gyrus, and the right superior frontal gyrus. Connectivity between all regions and DAN was significantly decreased by midazolam injection. The sensorimotor network was minimally affected. Midazolam decreased functional connectivity of the dorsal attention network. These findings advance the understanding of the neural mechanism of sedation, and such functional patterns might have clinical implications in other medical conditions related to patients with cognitive impairment.
Collapse
Affiliation(s)
- Junkai Wang
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
| | - Yachao Xu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Gopikrishna Deshpande
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 35233, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560030, India
- Center for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
- Correspondence: (P.S.); (P.L.)
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- Correspondence: (P.S.); (P.L.)
| |
Collapse
|
44
|
Gui S, Li J, Li M, Shi L, Lu J, Shen S, Li P, Mei W. Revealing the Cortical Glutamatergic Neural Activity During Burst Suppression by Simultaneous wide Field Calcium Imaging and Electroencephalography in Mice. Neuroscience 2021; 469:110-124. [PMID: 34237388 DOI: 10.1016/j.neuroscience.2021.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Burst suppression (BS) is an electroencephalogram (EEG) pattern in which signals alternates between high-amplitude slow waves (burst waves) and nearly flat low-amplitude waves (suppression waves). In this study, we used wide-field (8.32 mm × 8.32 mm) fluorescent calcium imaging to record the activity of glutamatergic neurons in the parietal and occipital cortex, in conjunction with EEG recordings under BS induced by different anesthetics (sevoflurane, isoflurane, and propofol), to investigate the spatiotemporal pattern of neural activity under BS. The calcium signal of all observed cortices was decreased during the phase of EEG suppression. However, during the phase of EEG burst, the calcium signal in areas of the medial cortex, such as the secondary motor and retrosplenial area, was excited, whereas the signal in areas of the lateral cortex, such as the hindlimb cortex, forelimb cortex, barrel field, and primary visual area, was still suppressed or only weakly excited. Correlation analysis showed a strong correlation between the EEG signal and the calcium signal in the medial cortex under BS (except for propofol induced signals). As the burst-suppression ratio (BSR) increased, the regions with strong correlation coefficients became smaller, but strong correlation coefficients were still noted in the medial cortex. Taken together, our results reveal the landscape of cortical activity underlying BS.
Collapse
Affiliation(s)
- Shen Gui
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiayan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Miaowen Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, 55 Fruit St, Boston, MA 02121, United States
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, Suzhou, Jiangsu 215125, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Salemi-Mokri-Boukani P, Karimian-Sani-Varjovi H, Safari MS. The promoting effect of vagus nerve stimulation on Lempel-Ziv complexity index of consciousness. Physiol Behav 2021; 240:113553. [PMID: 34375622 DOI: 10.1016/j.physbeh.2021.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that vagus nerve stimulation (VNS) promotes cognitive and behavioral restoration after traumatic brain injuries. As vagus nerve has wide effects over the brain and visceral organs, stimulation of the sensory/visceral afferents might have a therapeutic potential to modulate the level of consciousness. One of the most important challenges in studying consciousness is objective evaluation of the consciousness level. Brain complexity that can be measured through Lempel-Ziv complexity (LZC) index was used as a novel mathematical approach for objective measurement of consciousness. The main goal of our study was to examine the effects of VNS on LZC index of consciousness. In this study, we did VNS on the anesthetized rats, and simultaneously LFPs recording was performed in two different cortical areas of primary somatosensory (S1) or visual (V1) cortex. LZC and the amplitude of slow waves were computed during different periods of VNS. We found that the LZC index during VNS period was significantly higher in both of the cortical areas of S1 and V1. Slow-wave activity decreased during VNS in S1, while there was no significant change in V1. Our findings showed that VNS can augment the consciousness level, and LZC index is a more sensitive parameter for detecting the level of consciousness.
Collapse
Affiliation(s)
- Paria Salemi-Mokri-Boukani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Karimian-Sani-Varjovi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Future Institute, Tehran, Iran
| | - Mir-Shahram Safari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Future Institute, Tehran, Iran.
| |
Collapse
|
46
|
Impact of anesthesia on static and dynamic functional connectivity in mice. Neuroimage 2021; 241:118413. [PMID: 34293463 DOI: 10.1016/j.neuroimage.2021.118413] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
A few studies have compared the static functional connectivity between awake and lightly anesthetized states in rodents by resting-state fMRI. However, impact of light anesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under light anesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric and subcortical connections were key connections for anesthetized condition from awake state. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only under light anesthesia compared with awake state. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anesthesia. These results indicate that typical anesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.
Collapse
|
47
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis EA. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021; 42:2802-2822. [PMID: 33738899 PMCID: PMC8127159 DOI: 10.1002/hbm.25405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamic interplay of integration and segregation in the brain is at the core of leading theoretical accounts of consciousness. The human brain dynamically alternates between a sub-state where integration predominates, and a predominantly segregated sub-state, with different roles in supporting cognition and behaviour. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from healthy volunteers before, during, and after loss of responsiveness induced with different concentrations of the inhalational anaesthetic, sevoflurane. We show that dynamic states characterised by high brain integration are especially vulnerable to general anaesthesia, exhibiting attenuated complexity and diminished small-world character. Crucially, these effects are reversed upon recovery, demonstrating their association with consciousness. Higher doses of sevoflurane (3% vol and burst-suppression) also compromise the temporal balance of integration and segregation in the human brain. Additionally, we demonstrate that reduced anticorrelations between the brain's default mode and executive control networks dynamically reconfigure depending on the brain's state of integration or segregation. Taken together, our results demonstrate that the integrated sub-state of brain connectivity is especially vulnerable to anaesthesia, in terms of both its complexity and information capacity, whose breakdown represents a generalisable biomarker of loss of consciousness and its recovery.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Andreas Ranft
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyAsklepios ClinicBad TölzGermany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - David K. Menon
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Wolfon Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Emmanuel A. Stamatakis
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
48
|
Differential classification of states of consciousness using envelope- and phase-based functional connectivity. Neuroimage 2021; 237:118171. [PMID: 34000405 DOI: 10.1016/j.neuroimage.2021.118171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
The development of sophisticated computational tools to quantify changes in the brain's oscillatory dynamics across states of consciousness have included both envelope- and phase-based measures of functional connectivity (FC), but there are very few direct comparisons of these techniques using the same dataset. The goal of this study was to compare an envelope-based (i.e. Amplitude Envelope Correlation, AEC) and a phase-based (i.e. weighted Phase Lag Index, wPLI) measure of FC in their classification of states of consciousness. Nine healthy participants underwent a three-hour experimental anesthetic protocol with propofol induction and isoflurane maintenance, in which five minutes of 128-channel electroencephalography were recorded before, during, and after anesthetic-induced unconsciousness, at the following time points: Baseline; light sedation with propofol (Light Sedation); deep unconsciousness following three hours of surgical levels of anesthesia with isoflurane (Unconscious); five minutes prior to the recovery of consciousness (Pre-ROC); and three hours following the recovery of consciousness (Recovery). Support vector machine classification was applied to the source-localized EEG in the alpha (8-13 Hz) frequency band in order to investigate the ability of AEC and wPLI (separately and together) to discriminate i) the four states from Baseline; ii) Unconscious ("deep" unconsciousness) vs. Pre-ROC ("light" unconsciousness); and iii) responsiveness (Baseline, Light Sedation, Recovery) vs. unresponsiveness (Unconscious, Pre-ROC). AEC and wPLI yielded different patterns of global connectivity across states of consciousness, with AEC showing the strongest network connectivity during the Unconscious epoch, and wPLI showing the strongest connectivity during full consciousness (i.e., Baseline and Recovery). Both measures also demonstrated differential predictive contributions across participants and used different brain regions for classification. AEC showed higher classification accuracy overall, particularly for distinguishing anesthetic-induced unconsciousness from Baseline (83.7 ± 0.8%). AEC also showed stronger classification accuracy than wPLI when distinguishing Unconscious from Pre-ROC (i.e., "deep" from "light" unconsciousness) (AEC: 66.3 ± 1.2%; wPLI: 56.2 ± 1.3%), and when distinguishing between responsiveness and unresponsiveness (AEC: 76.0 ± 1.3%; wPLI: 63.6 ± 1.8%). Classification accuracy was not improved compared to AEC when both AEC and wPLI were combined. This analysis of source-localized EEG data demonstrates that envelope- and phase-based FC provide different information about states of consciousness but that, on a group level, AEC is better able to detect relative alterations in brain FC across levels of anesthetic-induced unconsciousness compared to wPLI.
Collapse
|
49
|
Mashour GA, Palanca BJA, Basner M, Li D, Wang W, Blain-Moraes S, Lin N, Maier K, Muench M, Tarnal V, Vanini G, Ochroch EA, Hogg R, Schwartz M, Maybrier H, Hardie R, Janke E, Golmirzaie G, Picton P, McKinstry-Wu AR, Avidan MS, Kelz MB. Recovery of consciousness and cognition after general anesthesia in humans. eLife 2021; 10:59525. [PMID: 33970101 PMCID: PMC8163502 DOI: 10.7554/elife.59525] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for 3 hr and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ben JA Palanca
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Mathias Basner
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wei Wang
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Stefanie Blain-Moraes
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Nan Lin
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Kaitlyn Maier
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maxwell Muench
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Vijay Tarnal
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Giancarlo Vanini
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - E Andrew Ochroch
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Rosemary Hogg
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marlon Schwartz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hannah Maybrier
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Randall Hardie
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ellen Janke
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Goodarz Golmirzaie
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Paul Picton
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
50
|
Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics. J Neurosci 2021; 41:3462-3478. [PMID: 33664133 PMCID: PMC8051693 DOI: 10.1523/jneurosci.2718-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study, we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. We also demonstrate, for the first time, that activation of these preoptic glutamatergic neurons causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, decreases body temperature, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons can initiate, but not maintain, arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the hypothesis that the preoptic area causally contributes to the regulation of both sleep and wakefulness. SIGNIFICANCE STATEMENT Historically, the preoptic area of the hypothalamus has been considered a key site for sleep generation. However, emerging modeling and empirical data suggest that this region might play a dual role in sleep-wake control. We demonstrate that chemogenetic stimulation of preoptic glutamatergic neurons produces brief arousals that fragment sleep, persistently suppresses REM sleep, causes hypothermia, and shifts EEG patterns toward a “lighter” NREM sleep state. We propose that preoptic glutamatergic neurons can initiate, but not maintain, arousal from sleep and gate REM sleep generation, possibly to block REM-like intrusions during NREM-to-wake transitions. In contrast to the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic, we provide further evidence that preoptic neurons also generate wakefulness.
Collapse
|