1
|
Martucci KT. Neuroimaging of opioid effects in humans across conditions of acute administration, chronic pain therapy, and opioid use disorder. Trends Neurosci 2024; 47:418-431. [PMID: 38762362 PMCID: PMC11168870 DOI: 10.1016/j.tins.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.
Collapse
Affiliation(s)
- Katherine T Martucci
- Human Affect and Pain Neuroscience Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Da Silva JT, Hernandez-Rojas LG, Mekonen HK, Hanson S, Melemedjian O, Scott AJ, Ernst RK, Seminowicz DA, Traub RJ. Sex differences in visceral sensitivity and brain activity in a rat model of comorbid pain: a longitudinal study. Pain 2024; 165:698-706. [PMID: 37756658 PMCID: PMC10859847 DOI: 10.1097/j.pain.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT Temporomandibular disorder (TMD) and irritable bowel syndrome (IBS) are 2 chronic overlapping pain conditions (COPCs) that present with significant comorbidity. Both conditions are more prevalent in women and are exacerbated by stress. While peripheral mechanisms might contribute to pain hypersensitivity for each individual condition, mechanisms underlying the comorbidity are poorly understood, complicating pain management when multiple conditions are involved. In this study, longitudinal behavioral and functional MRI-based brain changes have been identified in an animal model of TMD-like pain (masseter muscle inflammation followed by stress) that induces de novo IBS-like comorbid visceral pain hypersensitivity in rats. In particular, data indicate that increased activity in the insula and regions of the reward and limbic systems are associated with more pronounced and longer-lasting visceral pain behaviors in female rats, while the faster pain resolution in male rats may be due to increased activity in descending pain inhibitory pathways. These findings suggest the critical role of brain mechanisms in chronic pain conditions and that sex may be a risk factor of developing COPCs.
Collapse
Affiliation(s)
- Joyce T. Da Silva
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Luis G. Hernandez-Rojas
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- Department of Computing, School of Engineering and Sciences, Tecnologico de Monterrey, Zapopan, Mexico
| | - Hayelom K. Mekonen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, the Netherlands
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| |
Collapse
|
3
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
4
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
5
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
7
|
McPhee ME, Graven-Nielsen T. Medial Prefrontal High-Definition Transcranial Direct Current Stimulation to Improve Pain Modulation in Chronic Low Back Pain: A Pilot Randomized Double-blinded Placebo-Controlled Crossover Trial. THE JOURNAL OF PAIN 2021; 22:952-967. [PMID: 33676009 DOI: 10.1016/j.jpain.2021.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Chronic low back pain (CLBP) is highly disabling, but often without identifiable source. Focus has been on impaired anti-nociceptive mechanisms contributing to pain maintenance, though methods of targeting this impairment remain limited. This randomised-controlled cross-over pilot trial used active versus sham medial prefrontal cortex (mPFC) high-definition transcranial direct current stimulation (HD-tDCS) for 3-consecutive days to improve descending pain inhibitory function. Twelve CLBP patients were included with an average visual analogue scale (VAS) pain intensity of 3.0 ± 1.5 and pain duration of 5.3 ± 2.6 years. Pressure pain thresholds (PPTs), conditioned pain modulation (CPM), and temporal summation of pain (TSP) assessed by cuff algometry, as well as pain symptomatology (intensity, unpleasantness, quality, disability) and related psychological features (pain catastrophizing, anxiety, affect), were assessed on Day1 before 3 consecutive days of HD-tDCS sessions (each 20 minutes), at 24-hours (Day 4) and 2-weeks (Day 21) following final HD-tDCS. Blinding was successful. No significant differences in psychophysical (PPT, CPM, TSP), symptomatology or psychological outcomes were observed between active and sham HD-tDCS on Day4 and Day21. CPM-effects at Day 1 negatively correlated with change in CPM-effect at Day4 following active HD-tDCS (P = .002). Lack of efficacy was attributed to several factors, not least that patients did not display impaired CPM at baseline. TRIAL REGISTRATION: : ClinicalTrials.gov (NCT03864822). PERSPECTIVE: Medial prefrontal HD-tDCS did not alter pain, psychological nor psychophysical outcomes, though correlational analysis suggested response may depend on baseline pain inhibitory efficacy, with best potential effects in patients with severe impairments in descending pain inhibitory mechanisms. Future work should focus on appropriate patient selection and optimising stimulation targeting.
Collapse
Affiliation(s)
- Megan E McPhee
- Center for Neuroplasticity and Pain (CNAP), Aalborg University, Denmark
| | | |
Collapse
|
8
|
Da Silva JT, Tricou C, Zhang Y, Tofighbakhsh A, Seminowicz DA, Ro JY. Pain modulatory network is influenced by sex and age in a healthy state and during osteoarthritis progression in rats. Aging Cell 2021; 20:e13292. [PMID: 33400367 PMCID: PMC7884031 DOI: 10.1111/acel.13292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Old age and female sex are risk factors for the development of osteoarthritis (OA) and chronic pain. We investigated the effects of sex and age on pain modulatory networks in a healthy state and during OA progression. We used functional MRI to determine the effects of sex and age on periaqueductal gray functional connectivity (PAG FC) in a healthy state (pre‐OA) and during the early and late phases of monosodium iodoacetate‐induced OA in rats. We then examined how sex and age affect longitudinal changes in PAG FC in OA. In a healthy state, females exhibited more widespread PAG FC than males, and this effect was exaggerated with aging. Young males had moderate PAG FC changes during the early phase but recruited additional brain regions, including the rostral anterior cingulate cortex (ACC), during the late phase. Young females exhibited widespread PAG FC in the early phase, which includes connections to insula, caudal ACC, and nucleus accumbens (NAc). Older groups had strong PAG FC with fewer regions in the early phase, but they recruited additional brain regions, including NAc, in the late phase. Overall, our findings show that PAG FC is modulated by sex and age in a healthy state. A widespread PAG network in the early phase of OA pain may contribute to the transition from acute to chronic OA pain and the increased risk of developing chronic pain for females. Enhanced PAG FC with the reward system may represent a potential mechanism underlying chronic OA pain in elderly patients.
Collapse
Affiliation(s)
- Joyce T. Da Silva
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
- Department of Psychiatry School of Medicine Johns Hopkins University Baltimore Maryland USA
| | - Christina Tricou
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
| | - Youping Zhang
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
| | - Amir Tofighbakhsh
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
| | - Jin Y. Ro
- Department of Neural and Pain Sciences School of Dentistry University of Maryland Baltimore Baltimore Maryland USA
- Center to Advance Chronic Pain Research University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
9
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
10
|
Abstract
While the acute sensation of pain is protective, signaling the presence of actual or potential bodily harm, its persistence is unpleasant. When pain becomes chronic, it has limited evolutionarily advantage. Despite the differing nature of acute and chronic pain, a common theme is that sufferers seek pain relief. The possibility to medicate pain types as varied as a toothache or postsurgical pain reflects the diverse range of mechanism(s) by which pain-relieving "analgesic" therapies may reduce, eliminate, or prevent pain. Systemic application of an analgesic able to cross the blood-brain barrier can result in pain modulation via interaction with targets at different sites in the central nervous system. A so-called supraspinal mechanism of action indicates manipulation of a brain-defined circuitry. Pre-clinical studies demonstrate that, according to the brain circuitry targeted, varying therapeutic pain-relieving effects may be observed that relate to an impact on, for example, sensory and/or affective qualities of pain. In many cases, this translates to the clinic. Regardless of the brain circuitry manipulated, modulation of brain processing often directly impacts multiple aspects of nociceptive transmission, including spinal neuronal signaling. Consideration of supraspinal mechanisms of analgesia and ensuing pain relief must take into account nonbrain-mediated effects; therefore, in this review, the supraspinally mediated analgesic actions of opioidergic, anti-convulsant, and anti-depressant drugs are discussed. The persistence of poor treatment outcomes and/or side effect profiles of currently used analgesics highlight the need for the development of novel therapeutics or more precise use of available agents. Fully uncovering the complex biology of nociception, as well as currently used analgesic mechanism(s) and site(s) of action, will expedite this process.
Collapse
Affiliation(s)
- K Bannister
- Department of Pharmacology and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, Wolfson CARD, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - A H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
11
|
Shift of µ-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats. Anesthesiology 2020; 133:628-644. [PMID: 32568844 DOI: 10.1097/aln.0000000000003412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Increased descending pain facilitation accounts for opioid-induced hyperalgesia, but the underlying mechanisms remain elusive. Given the role of µ-opioid receptors in opioid-induced hyperalgesia in animals, the authors hypothesized that the dorsal reticular nucleus, a medullary pain facilitatory area, is involved in opioid-induced hyperalgesia through altered µ-opioid receptor signaling. METHODS The authors used male Wistar rats (n = 5 to 8 per group), chronically infused with morphine, to evaluate in the dorsal reticular nucleus the expressions of the µ-opioid receptor and phosphorylated cAMP response element-binding, a downstream marker of excitatory µ-opioid receptor signaling. The authors used pharmacologic and gene-mediated approaches. Nociceptive behaviors were evaluated by the von Frey and hot-plates tests. RESULTS Lidocaine fully reversed mechanical and thermal hypersensitivity induced by chronic morphine. Morphine-infusion increased µ-opioid receptor, without concomitant messenger RNA changes, and phosphorylated cAMP response element-binding levels at the dorsal reticular nucleus. µ-opioid receptor knockdown in morphine-infused animals attenuated the decrease of mechanical thresholds and heat-evoked withdrawal latencies compared with the control vector (von Frey [mean ± SD]: -17 ± 8% vs. -40 ± 9.0%; P < 0.001; hot-plate: -10 ± 5% vs. -32 ± 10%; P = 0.001). µ-opioid receptor knockdown in control animals induced the opposite (von Frey: -31 ± 8% vs. -17 ± 8%; P = 0.053; hotplate: -24 ± 6% vs. -3 ± 10%; P = 0.001). The µ-opioid receptor agonist (D-ALA2,N-ME-PHE4,GLY5-OL)-enkephalin acetate (DAMGO) decreased mechanical thresholds and did not affect heat-evoked withdrawal latencies in morphine-infused animals. In control animals, DAMGO increased both mechanical thresholds and heat-evoked withdrawal latencies. Ultra-low-dose naloxone, which prevents the excitatory signaling of the µ-opioid receptor, administered alone, attenuated mechanical and thermal hypersensitivities, and coadministered with DAMGO, restored DAMGO analgesic effects and decreased phosphorylated cAMP response element-binding levels. CONCLUSIONS Chronic morphine shifted µ-opioid receptor signaling from inhibitory to excitatory at the dorsal reticular nucleus, likely enhancing descending facilitation during opioid-induced hyperalgesia in the rat.
Collapse
|