1
|
Zhao A, Jin H, Fan G, Li Y, Li C, Li Q, Ma X, Zhao T, Sun S, Liu S, Gao Y, Qi S. Inhibition of the expression of rgs-3 alleviates propofol-induced decline in learning and memory in Caenorhabditis elegans. CNS Neurosci Ther 2022; 29:306-316. [PMID: 36284438 PMCID: PMC9804065 DOI: 10.1111/cns.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Ayang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongjiang Jin
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guibo Fan
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenglong Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qi Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaofei Ma
- Department of ICUThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Siqi Sun
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shuai Liu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yueyue Gao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sihua Qi
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
2
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
3
|
Wirak GS, Florman J, Alkema MJ, Connor CW, Gabel CV. Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans. eLife 2022; 11:72135. [PMID: 35703498 PMCID: PMC9273219 DOI: 10.7554/elife.72135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. C. elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2a. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.
Collapse
Affiliation(s)
- Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, United States
| |
Collapse
|
4
|
Nguyen NM, Vellichirammal NN, Guda C, Pendyala G. Decoding the Synaptic Proteome with Long-Term Exposure to Midazolam during Early Development. Int J Mol Sci 2022; 23:ijms23084137. [PMID: 35456952 PMCID: PMC9027542 DOI: 10.3390/ijms23084137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
The intensive use of anesthetic and sedative agents in the neonatal intensive care unit (NICU) has raised controversial concerns about the potential neurodevelopmental risks. This study focused on midazolam (MDZ), a common benzodiazepine regularly used as a sedative on neonates in the NICU. Mounting evidence suggests a single exposure to MDZ during the neonatal period leads to learning disturbances. However, a knowledge gap that remains is how long-term exposure to MDZ during very early stages of life impacts synaptic alterations. Using a preclinical rodent model system, we mimicked a dose-escalation regimen on postnatal day 3 (P3) pups until day 21. Next, purified synaptosomes from P21 control and MDZ animals were subjected to quantitative mass-spectrometry-based proteomics, to identify potential proteomic signatures. Further analysis by ClueGO identified enrichment of proteins associated with actin-binding and protein depolymerization process. One potential hit identified was alpha adducin (ADD1), belonging to the family of cytoskeleton proteins, which was upregulated in the MDZ group and whose expression was further validated by Western blot. In summary, this study sheds new information on the long-term exposure of MDZ during the early stages of development impacts synaptic function, which could subsequently perturb neurobehavioral outcomes at later stages of life.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Neetha N. Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
- Child Health Research Institute, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
5
|
Jung S, Kayser EB, Johnson SC, Li L, Worstman HM, Sun GX, Sedensky MM, Morgan PG. Tetraethylammonium chloride reduces anaesthetic-induced neurotoxicity in Caenorhabditis elegans and mice. Br J Anaesth 2022; 128:77-88. [PMID: 34857359 PMCID: PMC8787783 DOI: 10.1016/j.bja.2021.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND If anaesthetics cause permanent cognitive deficits in some children, the implications are enormous, but the molecular causes of anaesthetic-induced neurotoxicity, and consequently possible therapies, are still debated. Anaesthetic exposure early in development can be neurotoxic in the invertebrate Caenorhabditis elegans causing endoplasmic reticulum (ER) stress and defects in chemotaxis during adulthood. We screened this model organism for compounds that alleviated neurotoxicity, and then tested these candidates for efficacy in mice. METHODS We screened compounds for alleviation of ER stress induction by isoflurane in C. elegans assayed by induction of a green fluorescent protein (GFP) reporter. Drugs that inhibited ER stress were screened for reduction of the anaesthetic-induced chemotaxis defect. Compounds that alleviated both aspects of neurotoxicity were then blindly tested for the ability to inhibit induction of caspase-3 by isoflurane in P7 mice. RESULTS Isoflurane increased ER stress indicated by increased GFP reporter fluorescence (240% increase, P<0.001). Nine compounds reduced induction of ER stress by isoflurane by 90-95% (P<0.001 in all cases). Of these compounds, tetraethylammonium chloride and trehalose also alleviated the isoflurane-induced defect in chemotaxis (trehalose by 44%, P=0.001; tetraethylammonium chloride by 23%, P<0.001). In mouse brain, tetraethylammonium chloride reduced isoflurane-induced caspase staining in the anterior cortical (-54%, P=0.007) and hippocampal regions (-46%, P=0.002). DISCUSSION Tetraethylammonium chloride alleviated isoflurane-induced neurotoxicity in two widely divergent species, raising the likelihood that it may have therapeutic value. In C. elegans, ER stress predicts isoflurane-induced neurotoxicity, but is not its cause.
Collapse
Affiliation(s)
- Sangwook Jung
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Hailey M Worstman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Grace X Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment. Sci Rep 2021; 11:19398. [PMID: 34588499 PMCID: PMC8481492 DOI: 10.1038/s41598-021-98405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Anaesthesia exposure to the developing nervous system causes neuroapoptosis and behavioural impairment in vertebrate models. Mechanistic understanding is limited, and target-based approaches are challenging. High-throughput methods may be an important parallel approach to drug-discovery and mechanistic research. The nematode worm Caenorhabditis elegans is an ideal candidate model. A rich subset of its behaviour can be studied, and hundreds of behavioural features can be quantified, then aggregated to yield a 'signature'. Perturbation of this behavioural signature may provide a tool that can be used to quantify the effects of anaesthetic regimes, and act as an outcome marker for drug screening and molecular target research. Larval C. elegans were exposed to: isoflurane, ketamine, morphine, dexmedetomidine, and lithium (and combinations). Behaviour was recorded, and videos analysed with automated algorithms to extract behavioural features. Anaesthetic exposure during early development leads to persisting behavioural variation (in total, 125 features across exposure combinations). Higher concentrations, and combinations of isoflurane with ketamine, lead to persistent change in a greater number of features. Morphine and dexmedetomidine do not appear to lead to behavioural impairment. Lithium rescues the neurotoxic phenotype produced by isoflurane. Findings correlate well with vertebrate research: impairment is dependent on agent, is concentration-specific, is more likely with combination therapies, and can potentially be rescued by lithium. These results suggest that C. elegans may be an appropriate model with which to pursue phenotypic screens for drugs that mitigate the neurobehavioural impairment. Some possibilities are suggested for how high-throughput platforms might be organised in service of this field.
Collapse
|
7
|
Obara S. Anesthesiologist behavior and anesthesia machine use in the operating room during the COVID-19 pandemic: awareness and changes to cope with the risk of infection transmission. J Anesth 2020; 35:351-355. [PMID: 32856167 PMCID: PMC7453066 DOI: 10.1007/s00540-020-02846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease [coronavirus disease 2019 (COVID-19) infection] first appeared in December 2019 in China and is now spreading worldwide. Because SARS-CoV-2 can be transmitted via aerosols and surface contaminations of the environment, appropriate use of anesthesia machines and appropriate behavior in the operation room (OR) are required specifically in relation to this disease. The use of high-performance hydrophobic filters with a high rate of virus rejection is recommended as the type of viral filter, and surgical team behaviors that result in aerosol splashes should be avoided. Appropriate hand hygiene by the anesthesiologist is crucial to prevent unexpected environmental contamination. When the anesthesia machine is used instead of an intensive care unit ventilator, it is important to keep the fresh gas flow at least equal to the minute ventilation to prevent excessive humidity in the circuit and to monitor condensation in the circuit and inspiratory carbon dioxide pressure. In addition, both the surgical smoke inherent in thermal tissue destruction and the surgical team's shoe soles may be factors for the presence of SARS-CoV-2 in the operating room. Ensuring social distancing-even with a mask in the OR-may be beneficial because healthcare providers may be asymptomatic carriers. After the acute crisis period of COVID-19, the number of cases of essential but nonurgent surgeries for waiting patients is likely to increase; therefore, optimization of OR scheduling will be an important topic. Anesthesiologists will benefit from new standard practices focusing on the prevention of COVID-19 infection.
Collapse
Affiliation(s)
- Shinju Obara
- Surgical Operation Department, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
8
|
Beyond Anesthesia Apoptosis: Wiring and Communication Matter! Anesthesiology 2020; 133:495-496. [PMID: 32788555 DOI: 10.1097/aln.0000000000003462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|