1
|
Zhuang Z, Li X, Luo Y, Li Y, Ahmed Isse S, Zhang Z, Luo Q, Chen X. Developmental neurotoxicity of anesthetic etomidate in zebrafish larvae: Alterations in motor function, neurotransmitter signaling, and lipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138598. [PMID: 40373404 DOI: 10.1016/j.jhazmat.2025.138598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Etomidate (ETO), a widely used anesthetic, has emerged as a concerning environmental contaminant due to its increasing misuse and demonstrated neurotoxicity in aquatic organisms. This study employed an integrated multi-omics strategy to investigate the developmental neurotoxic effects of ETO in zebrafish (Danio rerio). ETO exposure induced dose-dependent toxicity in zebrafish embryos, characterized by decreased hatching rates (10-20 %), elevated mortality (up to 30 %), and morphological abnormalities such as scoliosis and pericardial edema. Behavioral assays revealed marked locomotor suppression (40-65 % reduction) and disrupted circadian rhythmicity. Neurochemical profiling indicated a 2.1-fold increase in dopamine levels, accompanied by significant reductions in GABAergic (38 %) and serotonergic (42 %) signaling, consistent with transcriptomic downregulation of related pathway genes. Metabolomic analysis revealed dysregulated lipid metabolism, including a 3.2-fold increase in eicosapentaenoic acid (EPA), and perturbations in phenylalanine metabolism. Transgenic zebrafish models (Tg(hb9:eGFP), Tg(coro1a:DsRed), Tg(elavl3:GCaMP6f)) further demonstrated motor neuron damage, inflammatory cell infiltration in the brain, and disrupted Ca2 + dynamics, indicating blood-brain barrier disruption and neuroinflammation responses. Molecular docking analysis confirmed ETO's binding affinity for GABA-A receptors, aligning with observed neurotransmitter imbalances. These findings elucidate ETO's neurotoxic mechanisms, involving neurotransmitter imbalance, metabolic disruption, and neuroinflammatory. The results underscore the dual threat of ETO as both an emerging aquatic pollutant and a developmental neurotoxicant, highlighting the urgent need for stricter environmental monitoring and a reevaluation of its safety profile, particularly during critical developmental windows.
Collapse
Affiliation(s)
- Zile Zhuang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuewei Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yuxuan Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yihan Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Said Ahmed Isse
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Zheng Zhang
- Institute of Forensic Science XiangTan City Public Security Bureau, Xiangtan, PR China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Kuai L, Li X, Xu D, Zeng L, Xu P, Di B, Yan F, Wang D. Behavioral studies of the abuse potential and anesthetic and sedative effects of etomidate in male rodents. Psychopharmacology (Berl) 2025; 242:641-649. [PMID: 39527141 DOI: 10.1007/s00213-024-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
RATIONALE Etomidate is a short-acting general anesthetic for clinical use and has been used as alternative to propofol or added to the powdered drug and e-cigarette cartridges recently, leading to an increase in abuse. But there have been no studies conducted on the abuse potential of etomidate. OBJECTIVES AND METHODS This study aimed to evaluate the abuse potential of etomidate via conditioned place preference (CPP) and self-administration tests, reflecting its rewarding and reinforcing effects. In addition, righting reflex and open-field tests were conducted to evaluate the anesthetic and sedative effects of etomidate. RESULTS In male mice, the ED50 after intraperitoneal (i.p.) injection of anesthetic effect for etomidate was 9.156 mg/kg and the ED50 of the sedative effect 5 min after intraperitoneal injection was 2.389 mg/kg. Etomidate induced CPP in male mice at the minimum dose of 3 mg/kg i.p. and supported stable self-administration in male rats at the dose of 0.075 mg/kg/intravenous infusion. The dose-response curve of etomidate was an inverted U-shape, which showed significant self-administrations compared with the vehicle group at doses of 0.05-0.1 mg/kg/infusion etomidate and the highest intake of 21.1 ± 0.64 infusions per 4 h-session. CONCLUSIONS These results clearly demonstrate that etomidate has rewarding and reinforcing effects in male rodents, as well as effects on anesthesia and motor inhibition. These findings indicate the possibility of abuse potential in humans using etomidate.
Collapse
Affiliation(s)
- Lixin Kuai
- School of Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193
| | - Xiangyu Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China, 100193
| | - Deli Xu
- School of Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193
| | - Linggao Zeng
- Chongqing Institute for Food and Drug Control, Chongqing, China, 401121
- NMPA Key Laboratory of Quality Monitoring of Anaesthetic and Psychotropic Substances, Chongqing , China, 401121
| | - Peng Xu
- School of Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China, 100193
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193
| | - Fang Yan
- School of Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193.
| | - Dan Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, China, 100193.
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China, 100193.
| |
Collapse
|
3
|
Borghese CM, Goldschen-Ohm MP. State-dependent energetics of GABA A receptor modulators. Biophys J 2024; 123:1903-1906. [PMID: 38303510 PMCID: PMC11309981 DOI: 10.1016/j.bpj.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Cecilia M Borghese
- University of Texas at Austin, Department of Neuroscience, Austin, Texas
| | | |
Collapse
|
4
|
Chojnacka W, Teng J, Kim JJ, Jensen AA, Hibbs RE. Structural insights into GABA A receptor potentiation by Quaalude. Nat Commun 2024; 15:5244. [PMID: 38898000 PMCID: PMC11187190 DOI: 10.1038/s41467-024-49471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.
Collapse
Affiliation(s)
- Weronika Chojnacka
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jeong Joo Kim
- Protein Structure and Function, Loxo@Lilly, Louisville, CO, USA
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Gao H, Zhao Q, Song JG, Hu GX, Yu WF, Jiao YF, Song JC. Bilirubin potentiates etomidate-induced sedation by enhancing GABA-induced currents after bile duct ligation. BMC Pharmacol Toxicol 2023; 24:46. [PMID: 37740245 PMCID: PMC10517516 DOI: 10.1186/s40360-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2023] [Indexed: 09/24/2023] Open
Abstract
OBJECTIVES Our previous clinical trial showed that etomidate requirements to reach an appropriate level of anesthesia in patients with obstructive jaundice were reduced, which means that these patients are more sensitive to etomidate. However, the mechanism is still not completely clear. The present study was aimed to investigate the mechanism by which bilirubin facilitates etomidate induced sedation. METHODS A bile duct ligation (BDL) rat model was used to simulate obstructive jaundice. Anesthesia sensitivity to etomidate was determined by the time to loss of righting reflex (LORR). Intrathecal injection of bilirubin was used to test the effects of bilirubin on etomidate induced sedation. The modulating effects of bilirubin on GABA responses were studied using the whole-cell patch clamp technique. RESULTS The time to LORR induced by etomidate was significantly decreased in the BDL groups (p < 0.05), and unconjugated bilirubin in serum and cerebrospinal fluid (CSF) were markedly increased (p < 0.05). The time to LORR induced by etomidate was decreased after intrathecal injection of bilirubin (p < 0.05). A bilirubin concentration of 1.0 μM increased the GABA-induced currents of rat cortical pyramidal neurons (p < 0.05). Furthermore, 1.0 μM bilirubin enhanced GABA-induced currents modulated by etomidate (p < 0.05). CONCLUSIONS Our results demonstrated that pathologic bilirubin in CSF could enhance etomidate induced sedation. The mechanism may be that bilirubin increase the GABA-induced currents of rat pyramidal neurons.
Collapse
Affiliation(s)
- Hao Gao
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
- Department of Anesthesiology, Shanghai Shuguang Hospital, University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhao
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian-Gang Song
- Department of Anesthesiology, Shanghai Shuguang Hospital, University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Xia Hu
- Department of Transfusion Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Renji Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jin-Chao Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Abdulzahir A, Klein S, Lor C, Perkins MG, Frelka A, Pearce RA. Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABA A Receptor Point Mutations. Int J Mol Sci 2023; 24:5637. [PMID: 36982709 PMCID: PMC10053577 DOI: 10.3390/ijms24065637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert A. Pearce
- Department of Anesthesiology, University Wisconsin, Madison, WI 53705, USA; (A.A.)
| |
Collapse
|
7
|
Park I, Yang I, Cho Y, Choi Y, Shin J, Shekhar S, Lee SH, Hong S. Evaluation of site-selective drug effects on GABA receptors using nanovesicle-carbon nanotube hybrid devices. Biosens Bioelectron 2022; 200:113903. [PMID: 34973564 DOI: 10.1016/j.bios.2021.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Site-selective drug effects on the ion-channel activities of γ-aminobutyric acid type A (GABAA) receptors are evaluated by using a nanovesicle-carbon nanotube hybrid device. Here, nanovesicles containing GABAA receptors are immobilized on the channel region of a carbon nanotube field-effect transistor. The receptor responses of this hybrid device to GABA are detected with a high sensitivity down to ∼1 aM even in the presence of other neurotransmitters. Further, sensitivity differences between two GABAA-receptor-subunit compositions of α5β2γ2 and α1β2γ2 are assessed by normalizing the dose-dependent responses obtained from these hybrid devices. Specifically, the GABA concentration that produces 50% of maximal response (EC50) is obtained as ∼10 pM for α5β2γ2 subunits and ∼1 nM for α1β2γ2 subunits of GABAA receptor. Significantly, the potency profiles of both antagonist and agonist of GABAA receptor can be evaluated by analyzing EC50 values in the presence and absence of those drugs. A competitive antagonist increases the EC50 value of GABA by binding to the same site as GABA, while an allosteric agonist reduces it by binding to a different site. These results indicate that this hybrid device can be a powerful tool for the evaluation of candidate drug substances modulating GABA-mediated neurotransmission.
Collapse
Affiliation(s)
- Inkyoung Park
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inwoo Yang
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shashank Shekhar
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Liu W, Yang B, Ji JW, Yang H, Song HH, Qiu HB, Song JC. The effect of obstructive jaundice on the sensitivity of intravenous anesthetic of remimazolam: study protocol for a controlled multicenter trial. Trials 2022; 23:23. [PMID: 34998423 PMCID: PMC8742432 DOI: 10.1186/s13063-021-05987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well known that obstructive jaundice could affect the pharmacodynamics of some anesthetics, and the sensitivity of some anesthetics would increase among icteric patients. Remimazolam is a new ultra-short-acting intravenous benzodiazepine sedative/anesthetic, which is a high-selective and affinity ligand for the benzodiazepine site on the GABAA receptor. However, no study has reported the pharmacodynamics of remimazolam in patients with obstructive jaundice. We hypothesize that obstructive jaundice affects the pharmacodynamics of remimazolam, and the sensitivity of remimazolam increases among icteric patients. METHODS/DESIGN The study will be performed as a prospective, controlled, multicenter trial. The study design is a comparison of remimazolam requirements to reach a bispectral index of 50 in patients with obstructive jaundice versus non-jaundiced patients with chronic cholecystitisor intrahepatic bile duct stones. Remimazolam was infused at 6 mg/kg/h until this endpoint was reached. DISCUSSION Remimazolam could be suitable for anesthesia of patients with obstructive jaundice, because remimazolam is not biotransformed in the liver. Hyperbilirubinemia has been well-described to have toxic effects on the brain, which causes the increasing of sensitivity to some anesthetics, such as desflurane, isoflurane, and etomidate. Furthermore, remimazolam and etomidate have the same mechanism of action when exerting an anesthetic effect. We aim to demonstrate that obstructive jaundice affects the pharmacodynamics of remimazolam, and the dose of remimazolam when administered to patients with obstructive jaundice should be modified. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100043585 . Registered on 23 February 2021.
Collapse
Affiliation(s)
- Wen Liu
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shiguang Rd., No. 999, Shanghai, China
| | - Bin Yang
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun-Wei Ji
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shiguang Rd., No. 999, Shanghai, China
| | - Hua Yang
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shiguang Rd., No. 999, Shanghai, China
| | - Hong-Hao Song
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Changhai Rd., No. 225, Shanghai, China.
| | - Hai-Bo Qiu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Changhai Rd., No. 225, Shanghai, China.
| | - Jin-Chao Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shiguang Rd., No. 999, Shanghai, China.
| |
Collapse
|
9
|
Bach-Rojecky L, Čutura T, Lozić M, Kliškinjić IH, Matišić V, Primorac D. Personalized Anesthetic Pharmacology. PERSONALIZED MEDICINE IN ANESTHESIA, PAIN AND PERIOPERATIVE MEDICINE 2021:65-92. [DOI: 10.1007/978-3-030-53525-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Packiasabapathy S, Rangasamy V, Horn N, Hendrickson M, Renschler J, Sadhasivam S. Personalized pediatric anesthesia and pain management: problem-based review. Pharmacogenomics 2020; 21:55-73. [PMID: 31849281 DOI: 10.2217/pgs-2019-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenetics, the genetic influence on the interpersonal variability in drug response, has enabled tailored pharmacotherapy and emerging 'personalized medicine.' Although oncology spearheaded the clinical implementation of personalized medicine, other specialties are rapidly catching up. In anesthesia, classical examples of genetically mediated idiosyncratic reactions have been long known (e.g., malignant hyperthermia and prolonged apnea after succinylcholine). The last two decades have witnessed an expanding body of pharmacogenetic evidence in anesthesia. This review highlights some of the prominent pharmacogenetic associations studied in anesthesia and pain management, with special focus on pediatric anesthesia.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Valluvan Rangasamy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Nicole Horn
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Michele Hendrickson
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Janelle Renschler
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Shalabi AR, Yu Z, Zhou X, Jounaidi Y, Chen H, Dai J, Kent DE, Feng HJ, Forman SA, Cohen JB, Bruzik KS, Miller KW. A potent photoreactive general anesthetic with novel binding site selectivity for GABA A receptors. Eur J Med Chem 2020; 194:112261. [PMID: 32247113 DOI: 10.1016/j.ejmech.2020.112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
The pentameric γ-aminobutyric acid type A receptors (GABAARs) are the major inhibitory ligand-gated ion channels in the central nervous system. They mediate diverse physiological functions, mutations in them are associated with mental disorders and they are the target of many drugs such as general anesthetics, anxiolytics and anti-convulsants. The five subunits of synaptic GABAARs are arranged around a central pore in the order β-α-β-α-γ. In the outer third of the transmembrane domain (TMD) drugs may bind to five homologous intersubunit binding sites. Etomidate binds between the pair of β - α subunit interfaces (designated as β+/α-) and R-mTFD-MPAB binds to an α+/β- and an γ+/β- subunit interface (a β- selective ligand). Ligands that bind selectively to other homologous sites have not been characterized. We have synthesized a novel photolabel, (2,6-diisopropyl-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl)methanol or pTFD-di-iPr-BnOH). It is a potent general anesthetic that positively modulates agonist and benzodiazepine binding. It enhances GABA-induced currents, shifting the GABA concentration-response curve to lower concentrations. Photolabeling-protection studies show that it has negligible affinity for the etomidate sites and high affinity for only one of the two R-mTFD-MPAB sites. Exploratory site-directed mutagenesis studies confirm the latter conclusions and hint that pTFD-di-iPr-BnOH may bind between the α+/β- and α+/γ- subunits in the TMD, making it an α+ ligand. The latter α+/γ- site has not previously been implicated in ligand binding. Thus, pTFD-di-iPr-BnOH is a promising new photolabel that may open up a new pharmacology for synaptic GABAARs.
Collapse
Affiliation(s)
- Abdelrahman R Shalabi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Zhiyi Yu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Hanwen Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Jiajia Dai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Daniel E Kent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA; Department of Health Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Drug-selective Anesthetic Insensitivity of Zebrafish Lacking γ-Aminobutyric Acid Type A Receptor β3 Subunits. Anesthesiology 2020; 131:1276-1291. [PMID: 31567362 DOI: 10.1097/aln.0000000000002963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transgenic mouse studies suggest that γ-aminobutyric acid type A (GABAA) receptors containing β3 subunits mediate important effects of etomidate, propofol, and pentobarbital. Zebrafish, recently introduced for rapid discovery and characterization of sedative-hypnotics, could also accelerate pharmacogenetic studies if their transgenic phenotypes reflect those of mammals. The authors hypothesized that, relative to wild-type, GABAA-β3 functional knock-out (β3) zebrafish would show anesthetic sensitivity changes similar to those of β3 mice. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mutagenesis was used to create a β3 zebrafish line. Wild-type and β3 zebrafish were compared for fertility, growth, and craniofacial development. Sedative and hypnotic effects of etomidate, propofol, pentobarbital, alphaxalone, ketamine, tricaine, dexmedetomidine, butanol, and ethanol, along with overall activity and thigmotaxis were quantified in 7-day postfertilization larvae using video motion analysis of up to 96 animals simultaneously. RESULTS Xenopus oocyte electrophysiology showed that the wild-type zebrafish β3 gene encodes ion channels activated by propofol and etomidate, while the β3 zebrafish transgene does not. Compared to wild-type, β3 zebrafish showed similar morphology and growth, but more rapid swimming. Hypnotic EC50s (mean [95% CI]) were significantly higher for β3 versus wild-type larvae with etomidate (1.3 [1.0 to 1.6] vs. 0.6 [0.5 to 0.7] µM; P < 0.0001), propofol (1.1 [1.0 to 1.4] vs. 0.7 [0.6 to 0.8] µM; P = 0.0005), and pentobarbital (220 [190 to 240] vs. 130 [94 to 179] μM; P = 0.0009), but lower with ethanol (150 [106 to 213] vs. 380 [340 to 420] mM; P < 0.0001) and equivalent with other tested drugs. Comparing β3 versus wild-type sedative EC50s revealed a pattern similar to hypnosis. CONCLUSIONS Global β3 zebrafish are selectively insensitive to the same few sedative-hypnotics previously reported in β3 transgenic mice, indicating phylogenetic conservation of β3-containing GABAA receptors as anesthetic targets. Transgenic zebrafish are potentially valuable models for sedative-hypnotic mechanisms research.
Collapse
|
13
|
GABA A Receptor Ligands Often Interact with Binding Sites in the Transmembrane Domain and in the Extracellular Domain-Can the Promiscuity Code Be Cracked? Int J Mol Sci 2020; 21:ijms21010334. [PMID: 31947863 PMCID: PMC6982053 DOI: 10.3390/ijms21010334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Many allosteric binding sites that modulate gamma aminobutyric acid (GABA) effects have been described in heteropentameric GABA type A (GABAA) receptors, among them sites for benzodiazepines, pyrazoloquinolinones and etomidate. Diazepam not only binds at the high affinity extracellular “canonical” site, but also at sites in the transmembrane domain. Many ligands of the benzodiazepine binding site interact also with homologous sites in the extracellular domain, among them the pyrazoloquinolinones that exert modulation at extracellular α+/β− sites. Additional interaction of this chemotype with the sites for etomidate has also been described. We have recently described a new indole-based scaffold with pharmacophore features highly similar to pyrazoloquinolinones as a novel class of GABAA receptor modulators. Contrary to what the pharmacophore overlap suggests, the ligand presented here behaves very differently from the identically substituted pyrazoloquinolinone. Structural evidence demonstrates that small changes in pharmacophore features can induce radical changes in ligand binding properties. Analysis of published data reveals that many chemotypes display a strong tendency to interact promiscuously with binding sites in the transmembrane domain and others in the extracellular domain of the same receptor. Further structural investigations of this phenomenon should enable a more targeted path to less promiscuous ligands, potentially reducing side effect liabilities.
Collapse
|
14
|
Bach-Rojecky L, Vađunec D, Lozić M, Žunić K, Špoljar GG, Čutura T, Erceg D, Primorac D. Challenges in anesthesia personalization: resolving the pharmacogenomic puzzle. Per Med 2019; 16:511-525. [DOI: 10.2217/pme-2019-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinicians are witnessing differences in the doses required for induction and maintenance of anesthesia, as well as prolonged recovery in some patients. Predictable factors like patient characteristics, factors related to the procedure, pharmacological characteristics of anesthetics and adjunctive drugs, might explain some of the observed differences. However, the role of various polymorphisms of genes encoding for drugs’ molecular targets, transporters and metabolic enzymes can have a significant impact on anesthesia outcome, too. In the present paper, we critically discuss pharmacological characteristics of the most common drugs used in anesthesia, with a focus on the possible genetic background of unpredictable diversities in anesthesia outcomes.
Collapse
Affiliation(s)
- Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, Zagreb 10000, Croatia
| | - Dalia Vađunec
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, Zagreb 10000, Croatia
| | - Marin Lozić
- Department of Anesthesia & ICU Care of Neurosurgical Patients, Clinic for Anesthesia & Intensive Care, University Clinical Hospital Zagreb, Zagreb 10000, Croatia
| | | | | | - Tomislav Čutura
- St. Catherine Specialty Hospital, Zagreb 10000 & Zabok 49210, Croatia
| | - Damir Erceg
- St. Catherine Specialty Hospital, Zagreb 10000 & Zabok 49210, Croatia
- Croatian Catholic University, Zagreb 10000, Croatia
- Srebrnjak Children's Hospital, Zagreb 10000, Croatia
- University Josip Juraj Strossmayer Faculty of Dental Medicine & Health, School of Medicine, Osijek 31000, Croatia
- University Josip Juraj Strossmayer School of Medicine, Osijek 31000, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, Zagreb 10000 & Zabok 49210, Croatia
- University Josip Juraj Strossmayer Faculty of Dental Medicine & Health, School of Medicine, Osijek 31000, Croatia
- University Josip Juraj Strossmayer School of Medicine, Osijek 31000, Croatia
- Eberly College of Science, State College, Penn State University, PA 16802, USA
- The Henry C. Lee College of Criminal Justice & Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
15
|
Szabo A, Nourmahnad A, Halpin E, Forman SA. Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant α1 β3 γ2L GABA A Receptors Indicates Selectivity and Crosstalk among Intersubunit Transmembrane Anesthetic Sites. Mol Pharmacol 2019; 95:408-417. [PMID: 30696720 PMCID: PMC6399575 DOI: 10.1124/mol.118.115048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022] Open
Abstract
Propofol, etomidate, and barbiturate anesthetics are allosteric coagonists at pentameric α1β3γ2 GABAA receptors, modulating channel activation via four biochemically established intersubunit transmembrane pockets. Etomidate selectively occupies the two β +/α - pockets, the barbiturate photolabel R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) occupies homologous α +/β - and γ +/β - pockets, and propofol occupies all four. Functional studies of mutations at M2-15' or M3-36' loci abutting these pockets provide conflicting results regarding their relative contributions to propofol modulation. We electrophysiologically measured GABA-dependent channel activation in α1β3γ2L or receptors with single M2-15' (α1S270I, β3N265M, and γ2S280W) or M3-36' (α1A291W, β3M286W, and γ2S301W) mutations, in the absence and presence of equipotent clinical range concentrations of etomidate, R-mTFD-MPAB, and propofol. Estimated open probabilities were calculated and analyzed using global two-state Monod-Wyman-Changeux models to derive log(d) parameters proportional to anesthetic-induced channel modulating energies (where d is the allosteric anesthetic shift factor). All mutations reduced the log(d) values for anesthetics occupying both abutting and nonabutting pockets. The Δlog(d) values [log(d, mutant) - log(d, wild type)] for M2-15' mutations abutting an anesthetic's biochemically established binding sites were consistently larger than the Δlog(d) values for nonabutting mutations, although this was not true for the M3-36' mutant Δlog(d) values. The sums of the anesthetic-associated Δlog(d) values for sets of M2-15' or M3-36' mutations were all much larger than the wild-type log(d) values. Mutant Δlog(d) values qualitatively reflect anesthetic site occupancy patterns. However, the lack of Δlog(d) additivity undermines quantitative comparisons of distinct site contributions to anesthetic modulation because the mutations impaired both abutting anesthetic binding effects and positive cooperativity between anesthetic binding sites.
Collapse
Affiliation(s)
- Andrea Szabo
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Alphaxalone Binds in Inner Transmembrane β+-α- Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2018; 128:338-351. [PMID: 29210709 DOI: 10.1097/aln.0000000000001978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neurosteroids like alphaxalone are potent anxiolytics, anticonvulsants, amnestics, and sedative-hypnotics, with effects linked to enhancement of γ-aminobutyric acid type A (GABAA) receptor gating in the central nervous system. Data locating neurosteroid binding sites on synaptic αβγ GABAA receptors are sparse and inconsistent. Some evidence points to outer transmembrane β-α interfacial pockets, near sites that bind the anesthetics etomidate and propofol. Other evidence suggests that steroids bind more intracellularly in β-α interfaces. METHODS The authors created 12 single-residue β3 cysteine mutations: β3T262C and β3T266C in β3-M2; and β3M283C, β3Y284C, β3M286C, β3G287C, β3F289C, β3V290C, β3F293C, β3L297C, β3E298C, and β3F301C in β3-M3 helices. The authors coexpressed α1 and γ2L with each mutant β3 subunit in Xenopus oocytes and electrophysiologically tested each mutant for covalent sulfhydryl modification by the water-soluble reagent para-chloromercuribenzenesulfonate. Then, the authors assessed whether receptor-bound alphaxalone, etomidate, or propofol blocked cysteine modification, implying steric hindrance. RESULTS Eleven mutant β3 subunits, when coexpressed with α1 and γ2L, formed functional channels that displayed varied sensitivities to the three anesthetics. Exposure to para-chloromercuribenzenesulfonate produced irreversible functional changes in ten mutant receptors. Protection by alphaxalone was observed in receptors with β3V290C, β3F293C, β3L297C, or β3F301C mutations. Both etomidate and propofol protected receptors with β3M286C or β3V290C mutations. Etomidate also protected β3F289C. In α1β3γ2L structural homology models, all these protected residues are located in transmembrane β-α interfaces. CONCLUSIONS Alphaxalone binds in transmembrane β-α pockets of synaptic GABAA receptors that are adjacent and intracellular to sites for the potent anesthetics etomidate and propofol.
Collapse
|
17
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|
18
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Xie S, Ma W, Guo Q, Liu J, Li W, McLeod HL, He Y. The pharmacogenetics of medications used in general anesthesia. Pharmacogenomics 2018; 19:285-298. [PMID: 29318929 DOI: 10.2217/pgs-2017-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
General anesthesia is a state of unconsciousness, amnesia, analgesia and akinesia induced by drugs including opioids, hypnotic-sedative agents, muscle relaxants and antiemetics. Clinical and genetic factors are reported to influence the efficacy and side effects of these agents. Based on the evidence, clinical action is needed to improve clinical outcomes. This review summarizes the latest knowledge with regards to the pharmacogenetics of anesthetics and general anesthesia related complications.
Collapse
Affiliation(s)
- Shangchen Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Wenjuan Ma
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33601, USA
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33601, USA
| |
Collapse
|
20
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Amin J, Subbarayan MS. Orthosteric- versus allosteric-dependent activation of the GABA A receptor requires numerically distinct subunit level rearrangements. Sci Rep 2017; 7:7770. [PMID: 28798394 PMCID: PMC5552871 DOI: 10.1038/s41598-017-08031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/07/2017] [Indexed: 12/05/2022] Open
Abstract
Anaesthetic molecules act on synaptic transmission via the allosteric modulation of ligand-gated chloride channels, such as hetero-oligomeric α1β2γ2 GABAA receptors. To elucidate the overall activation paradigm via allosteric versus orthosteric sites, we used highly homologous, but homo-oligomeric, ρ1 receptors that are contrastingly insensitive to anaesthetics and respond partially to several full GABA α1β2γ2 receptor agonists. Here, we coexpressed varying ratios of RNAs encoding the wild-type and the mutated ρ1 subunits, which are anaesthetic-sensitive and respond with full efficacy to partial GABA agonists, to generate distinct ensembles of receptors containing five, four, three, two, one, or zero mutated subunits. Using these experiments, we then demonstrate that, in the pentamer, three anaesthetic-sensitive ρ1 subunits are needed to impart full efficacy to the partial GABA agonists. By contrast, five anaesthetic-sensitive subunits are required for direct activation by anaesthetics alone, and only one anaesthetic-sensitive subunit is sufficient to confer the anaesthetic-dependent potentiation to the GABA current. In conclusion, our data indicate that GABA and anaesthetics holistically activate the GABAA ρ1 receptor through distinct subunit level rearrangements and suggest that in contrast to the global impact of GABA via orthosteric sites, the force of anaesthetics through allosteric sites may not propagate to the neighbouring subunits and, thus, may have only a local and limited effect on the ρ1 GABAA receptor model system.
Collapse
Affiliation(s)
- Jahanshah Amin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA.
| | - Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
22
|
Novel Molecule Exhibiting Selective Affinity for GABA A Receptor Subtypes. Sci Rep 2017; 7:6230. [PMID: 28740086 PMCID: PMC5524711 DOI: 10.1038/s41598-017-05966-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023] Open
Abstract
Aminoquinoline derivatives were evaluated against a panel of receptors/channels/transporters in radioligand binding experiments. One of these derivatives (DCUK-OEt) displayed micromolar affinity for brain γ-aminobutyric acid type A (GABAA) receptors. DCUK-OEt was shown to be a positive allosteric modulator (PAM) of GABA currents with α1β2γ2, α1β3γ2, α5β3γ2 and α1β3δ GABAA receptors, while having no significant PAM effect on αβ receptors or α1β1γ2, α1β2γ1, α4β3γ2 or α4β3δ receptors. DCUK-OEt modulation of α1β2γ2 GABAA receptors was not blocked by flumazenil. The subunit requirements for DCUK-OEt actions distinguished DCUK-OEt from other currently known modulators of GABA function (e.g., anesthetics, neurosteroids or ethanol). Simulated docking of DCUK-OEt at the GABAA receptor suggested that its binding site may be at the α + β- subunit interface. In slices of the central amygdala, DCUK-OEt acted primarily on extrasynaptic GABAA receptors containing the α1 subunit and generated increases in extrasynaptic “tonic” current with no significant effect on phasic responses to GABA. DCUK-OEt is a novel chemical structure acting as a PAM at particular GABAA receptors. Given that neurons in the central amygdala responding to DCUK-OEt were recently identified as relevant for alcohol dependence, DCUK-OEt should be further evaluated for the treatment of alcoholism.
Collapse
|
23
|
Bakas T, van Nieuwenhuijzen P, Devenish S, McGregor I, Arnold J, Chebib M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA A receptors. Pharmacol Res 2017; 119:358-370. [DOI: 10.1016/j.phrs.2017.02.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
24
|
Desai R, Savechenkov PY, Zolkowska D, Ge RL, Rogawski MA, Bruzik KS, Forman SA, Raines DE, Miller KW. Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α1 β3 γ2L GABAA receptor account for their in vivo effects. J Physiol 2016; 593:4943-61. [PMID: 26378885 DOI: 10.1113/jp270971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Most barbiturates are anaesthetics but unexpectedly a few are convulsants whose mechanism of action is poorly understood. We synthesized and characterized a novel pair of chiral barbiturates that are capable of photolabelling their binding sites on GABAA receptors. In mice the S-enantiomer is a convulsant, but the R-enantiomer is an anticonvulsant. The convulsant S-enantiomer binds solely at an inhibitory site. It is both an open state inhibitor and a resting state inhibitor. Its action is pH independent, suggesting the pyrimidine ring plays little part in binding. The inhibitory site is not enantioselective because the R-enantiomer inhibits with equal affinity. In contrast, only the anticonvulsant R-enantiomer binds to the enhancing site on open channels, causing them to stay open longer. The enhancing site is enantioselective. The in vivo actions of the convulsant S-enantiomer are accounted for by its interactions with GABAA receptors. ABSTRACT Most barbiturates are anaesthetics but a few unexpectedly are convulsants. We recently located the anaesthetic sites on GABAA receptors (GABAA Rs) by photolabelling with an anaesthetic barbiturate. To apply the same strategy to locate the convulsant sites requires the creation and mechanistic characterization of a suitable agent. We synthesized enantiomers of a novel, photoactivable barbiturate, 1-methyl-5-propyly-5-(m-trifluoromethyldiazirinyl) phenyl barbituric acid (mTFD-MPPB). In mice, S-mTFD-MPPB acted as a convulsant, whereas R-mTFD-MPPB acted as an anticonvulsant. Using patch clamp electrophysiology and fast solution exchange on recombinant human α1 β3 γ2L GABAA Rs expressed in HEK cells, we found that S-mTFD-MPPB inhibited GABA-induced currents, whereas R-mTFD-MPPB enhanced them. S-mTFD-MPPB caused inhibition by binding to either of two inhibitory sites on open channels with bimolecular kinetics. It also inhibited closed, resting state receptors at similar concentrations, decreasing the channel opening rate and shifting the GABA concentration-response curve to the right. R-mTFD-MPPB, like most anaesthetics, enhanced receptor gating by rapidly binding to allosteric sites on open channels, initiating a rate-limiting conformation change to stabilized open channel states. These states had slower closing rates, thus shifting the GABA concentration-response curve to the left. Under conditions when most GABAA Rs were open, an inhibitory action of R-mTFD-MPPB was revealed that had a similar IC50 to that of S-mTFD-MPPB. Thus, the inhibitory sites are not enantioselective, and the convulsant action of S-mTFD-MPPB results from its negligible affinity for the enhancing, anaesthetic sites. Interactions with these two classes of barbiturate binding sites on GABAA Rs underlie the enantiomers' different pharmacological activities in mice.
Collapse
Affiliation(s)
- Rooma Desai
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pavel Y Savechenkov
- Deparment of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Ri Le Ge
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karol S Bruzik
- Deparment of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Stuart A Forman
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Douglas E Raines
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Keith W Miller
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Abstract
BACKGROUND Etomidate is a highly potent anesthetic agent that is believed to produce hypnosis by enhancing γ-aminobutyric acid type A (GABAA) receptor function. The authors characterized the GABAA receptor and hypnotic potencies of etomidate analogs. The authors then used computational techniques to build statistical and graphical models that relate the potencies of these etomidate analogs to their structures to identify the specific molecular determinants of potency. METHODS GABAA receptor potencies were defined with voltage clamp electrophysiology using α1β3γ2 receptors harboring a channel mutation (α1[L264T]) that enhances anesthetic sensitivity (n = 36 to 60 measurements per concentration-response curve). The hypnotic potencies of etomidate analogs were defined using a loss of righting reflexes assay in Sprague Dawley rats (n = 9 to 21 measurements per dose-response curve). Three-dimensional quantitative structure-activity relationships were determined in silico using comparative molecular field analysis. RESULTS The GABAA receptor and hypnotic potencies of etomidate and the etomidate analogs ranged by 91- and 53-fold, respectively. These potency measurements were significantly correlated (r = 0.72), but neither measurement correlated with drug hydrophobicity (r = 0.019 and 0.005, respectively). Statistically significant and predictive comparative molecular field analysis models were generated, and a pharmacophore model was built that revealed both the structural elements in etomidate analogs associated with high potency and the interactions that these elements make with the etomidate-binding site. CONCLUSIONS There are multiple specific structural elements in etomidate and etomidate analogs that mediate GABAA receptor modulation. Modifying any one element can alter receptor potency by an order of magnitude or more.
Collapse
|
26
|
Chua HC, Christensen ETH, Hoestgaard-Jensen K, Hartiadi LY, Ramzan I, Jensen AA, Absalom NL, Chebib M. Kavain, the Major Constituent of the Anxiolytic Kava Extract, Potentiates GABAA Receptors: Functional Characteristics and Molecular Mechanism. PLoS One 2016; 11:e0157700. [PMID: 27332705 PMCID: PMC4917254 DOI: 10.1371/journal.pone.0157700] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Extracts of the pepper plant kava (Piper methysticum) are effective in alleviating anxiety in clinical trials. Despite the long-standing therapeutic interest in kava, the molecular target(s) of the pharmacologically active constituents, kavalactones have not been established. γ-Aminobutyric acid type A receptors (GABAARs) are assumed to be the in vivo molecular target of kavalactones based on data from binding assays, but evidence in support of a direct interaction between kavalactones and GABAARs is scarce and equivocal. In this study, we characterised the functional properties of the major anxiolytic kavalactone, kavain at human recombinant α1β2, β2γ2L, αxβ2γ2L (x = 1, 2, 3 and 5), α1βxγ2L (x = 1, 2 and 3) and α4β2δ GABAARs expressed in Xenopus oocytes using the two-electrode voltage clamp technique. We found that kavain positively modulated all receptors regardless of the subunit composition, but the degree of enhancement was greater at α4β2δ than at α1β2γ2L GABAARs. The modulatory effect of kavain was unaffected by flumazenil, indicating that kavain did not enhance GABAARs via the classical benzodiazepine binding site. The β3N265M point mutation which has been previously shown to profoundly decrease anaesthetic sensitivity, also diminished kavain-mediated potentiation. To our knowledge, this study is the first report of the functional characteristics of a single kavalactone at distinct GABAAR subtypes, and presents the first experimental evidence in support of a direct interaction between a kavalactone and GABAARs.
Collapse
Affiliation(s)
- Han Chow Chua
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Emilie T. H. Christensen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonny Y. Hartiadi
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Iqbal Ramzan
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L. Absalom
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
27
|
Ziemba AM, Forman SA. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors. PLoS One 2016; 11:e0154031. [PMID: 27110714 PMCID: PMC4844112 DOI: 10.1371/journal.pone.0154031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Background Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range. Methods Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep “notch” approach, and used these results to correct steady-state direct activation for inhibition. Results Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA. Conclusions Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.
Collapse
Affiliation(s)
- Alexis M. Ziemba
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stuart A. Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
- * E-mail:
| |
Collapse
|
28
|
A Cysteine Substitution Probes β3H267 Interactions with Propofol and Other Potent Anesthetics in α1β3γ2L γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2016; 124:89-100. [PMID: 26569173 DOI: 10.1097/aln.0000000000000934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Anesthetic contact residues in γ-aminobutyric acid type A (GABAA) receptors have been identified using photolabels, including two propofol derivatives. O-propofol diazirine labels H267 in β3 and α1β3 receptors, whereas m-azi-propofol labels other residues in intersubunit clefts of α1β3. Neither label has been studied in αβγ receptors, the most common isoform in mammalian brain. In αβγ receptors, other anesthetic derivatives photolabel m-azi-propofol-labeled residues, but not βH267. The authors' structural homology model of α1β3γ2L receptors suggests that β3H267 may abut some of these sites. METHODS Substituted cysteine modification-protection was used to test β3H267C interactions with four potent anesthetics: propofol, etomidate, alphaxalone, and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (mTFD-MPAB). The authors expressed α1β3γ2L or α1β3H267Cγ2L GABAA receptors in Xenopus oocytes. The authors used voltage clamp electrophysiology to assess receptor sensitivity to γ-aminobutyric acid (GABA) and anesthetics and to compare p-chloromercuribenzenesulfonate modification rates with GABA versus GABA plus anesthetics. RESULTS Enhancement of low GABA (eliciting 5% of maximum) responses by equihypnotic concentrations of all four anesthetics was similar in α1β3γ2L and α1β3H267Cγ2L receptors (n > 3). Direct activation of α1β3H267Cγ2L receptors, but not α1β3γ2L, by mTFD-MPAB and propofol was significantly greater than the other anesthetics. Modification of β3H267C by p-chloromercuribenzenesulfonate (n > 4) was rapid and accelerated by GABA. Only mTFD-MPAB slowed β3H267C modification (approximately twofold; P = 0.011). CONCLUSIONS β3H267 in α1β3γ2L GABAA receptors contacts mTFD-MPAB, but not propofol. The study results suggest that β3H267 is near the periphery of one or both transmembrane intersubunit (α+/β- and γ+/β-) pockets where both mTFD-MPAB and propofol bind.
Collapse
|
29
|
Chua HC, Absalom NL, Hanrahan JR, Viswas R, Chebib M. The Direct Actions of GABA, 2'-Methoxy-6-Methylflavone and General Anaesthetics at β3γ2L GABAA Receptors: Evidence for Receptors with Different Subunit Stoichiometries. PLoS One 2015; 10:e0141359. [PMID: 26496640 PMCID: PMC4619705 DOI: 10.1371/journal.pone.0141359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
2'-Methoxy-6-methylflavone (2'MeO6MF) is an anxiolytic flavonoid which has been shown to display GABAA receptor (GABAAR) β2/3-subunit selectivity, a pharmacological profile similar to that of the general anaesthetic etomidate. Electrophysiological studies suggest that the full agonist action of 2'MeO6MF at α2β3γ2L GABAARs may mediate the flavonoid's in vivo effects. However, we found variations in the relative efficacy of 2'MeO6MF (2'MeO6MF-elicited current responses normalised to the maximal GABA response) at α2β3γ2L GABAARs due to the presence of mixed receptor populations. To understand which receptor subpopulation(s) underlie the variations observed, we conducted a systematic investigation of 2'MeO6MF activity at all receptor combinations that could theoretically form (α2, β3, γ2L, α2β3, α2γ2L, β3γ2L and α2β3γ2L) in Xenopus oocytes using the two-electrode voltage clamp technique. We found that 2'MeO6MF activated non-α-containing β3γ2L receptors. In an attempt to establish the optimal conditions to express a uniform population of these receptors, we found that varying the relative amounts of β3:γ2L subunit mRNAs resulted in differences in the level of constitutive activity, the GABA concentration-response relationships, and the relative efficacy of 2'MeO6MF activation. Like 2'MeO6MF, general anaesthetics such as etomidate and propofol also showed distinct levels of relative efficacy across different injection ratios. Based on these results, we infer that β3γ2L receptors may form with different subunit stoichiometries, resulting in the complex pharmacology observed across different injection ratios. Moreover, the discovery that GABA and etomidate have direct actions at the α-lacking β3γ2L receptors raises questions about the structural requirements for their respective binding sites at GABAARs.
Collapse
Affiliation(s)
- Han Chow Chua
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan L Absalom
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Jane R Hanrahan
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Raja Viswas
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Hammer H, Bader BM, Ehnert C, Bundgaard C, Bunch L, Hoestgaard-Jensen K, Schroeder OHU, Bastlund JF, Gramowski-Voß A, Jensen AA. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol 2015; 88:401-20. [PMID: 26056160 PMCID: PMC4518083 DOI: 10.1124/mol.115.099291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug.
Collapse
Affiliation(s)
- Harriet Hammer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Benjamin M Bader
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Corina Ehnert
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Olaf H-U Schroeder
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Jesper F Bastlund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Alexandra Gramowski-Voß
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| |
Collapse
|
31
|
Liu K, Jounaidi Y, Forman SA, Feng HJ. Etomidate uniquely modulates the desensitization of recombinant α1β3δ GABA(A) receptors. Neuroscience 2015; 300:307-13. [PMID: 26028470 DOI: 10.1016/j.neuroscience.2015.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
Abstract
Central GABA(A) receptors mediate GABAergic phasic and tonic inhibition. While synaptic αβγ GABA(A) receptors primarily mediate phasic inhibition, extrasynaptic αβδ receptors play an important role in mediating tonic inhibition. Etomidate is a general anesthetic that produces its effects by enhancing GABA(A) receptor activity. We previously showed that etomidate modulates the gating of oocyte-expressed αβγ and αβδ receptors with similar overall allosteric impact, but different pharmacological patterns. In αβγ receptors, etomidate enhances apparent GABA sensitivity (reduces GABA EC50), modestly increases maximal GABA efficacy, and slows current deactivation without affecting desensitization (Zhong et al., 2008). In αβδ receptors characterized by low GABA efficacy, etomidate dramatically increases responses to both low and maximal GABA. The effects of etomidate on desensitization and deactivation of αβδ receptors are unknown. To investigate the kinetic effects of etomidate on α1β3δ receptors of defined subunit arrangement, we expressed concatenated trimer (β3-α1-δ) and dimer (β3-α1) GABA(A) receptor subunit assemblies in human embryonic kidney (HEK)293T cells and recorded whole-cell voltage-clamp currents during rapid external solution exchanges. As expected, etomidate substantially increased maximal GABA-induced currents and prolonged deactivation. Moreover, desensitization was significantly decreased by etomidate. During prolonged GABA applications, etomidate enhanced steady-state currents more than peak currents. Thus, etomidate enhances tonic GABAergic inhibition through extrasynaptic αβδ receptors by both augmenting gating and reducing desensitization.
Collapse
Affiliation(s)
- K Liu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Anesthesia, China-Japan Friendship Hospital, Beijing, China
| | - Y Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - S A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - H-J Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Olsen RW. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:167-202. [PMID: 25637441 DOI: 10.1016/bs.apha.2014.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
33
|
Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:53-96. [PMID: 25600367 DOI: 10.1016/bs.apha.2014.10.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAA receptors are ligand-gated ion channels composed of five subunits that can be opened by GABA and be modulated by multiple pharmacologically and clinically important drugs. Over the time, hundreds of compounds from different structural classes have been demonstrated to modulate, directly activate, or inhibit GABAA receptors, and most of these compounds interact with more than one binding site at these receptors. Crystal structures of proteins and receptors homologous to GABAA receptors as well as homology modeling studies have provided insights into the possible location of ligand interaction sites. Some of these sites have been identified by mutagenesis, photolabeling, and docking studies. For most of these ligands, however, binding sites are not known. Due to the high flexibility of GABAA receptors and the existence of multiple drug-binding sites, the unequivocal identification of interaction sites for individual drugs is extremely difficult. The existence of multiple GABAA receptor subtypes with distinct subunit composition, the contribution of distinct subunit sequences to binding sites of different receptor subtypes, as well as the observation that even subunits not directly contributing to a binding site are able to influence affinity and efficacy of drugs, contribute to a unique pharmacology of each GABAA receptor subtype. Thus, each receptor subtype has to be investigated to identify a possible subtype selectivity of a compound. Although multiple binding sites make GABAA receptor pharmacology even more complicated, the exploitation of ligand interaction with novel-binding sites also offers additional possibilities for a subtype-selective modulation of GABAA receptors.
Collapse
Affiliation(s)
- Werner Sieghart
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics. PLoS One 2014; 9:e111470. [PMID: 25347186 PMCID: PMC4210246 DOI: 10.1371/journal.pone.0111470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Etomidate and propofol are potent general anesthetics that act via GABAA receptor allosteric co-agonist sites located at transmembrane β+/α- inter-subunit interfaces. Early experiments in heteromeric receptors identified βN265 (M2-15') on β2 and β3 subunits as an important determinant of sensitivity to these drugs. Mechanistic analyses suggest that substitution with serine, the β1 residue at this position, primarily reduces etomidate efficacy, while mutation to methionine eliminates etomidate sensitivity and might prevent drug binding. However, the βN265 residue has not been photolabeled with analogs of either etomidate or propofol. Furthermore, substituted cysteine modification studies find no propofol protection at this locus, while etomidate protection has not been tested. Thus, evidence of contact between βN265 and potent anesthetics is lacking and it remains uncertain how mutations alter drug sensitivity. In the current study, we first applied heterologous α1β2N265Cγ2L receptor expression in Xenopus oocytes, thiol-specific aqueous probe modification, and voltage-clamp electrophysiology to test whether etomidate inhibits probe reactions at the β-265 sidechain. Using up to 300 µM etomidate, we found both an absence of etomidate effects on α1β2N265Cγ2L receptor activity and no inhibition of thiol modification. To gain further insight into anesthetic insensitive βN265M mutants, we applied indirect structure-function strategies, exploiting second mutations in α1β2/3γ2L GABAA receptors. Using α1M236C as a modifiable and anesthetic-protectable site occupancy reporter in β+/α- interfaces, we found that βN265M reduced apparent anesthetic affinity for receptors in both resting and GABA-activated states. βN265M also impaired the transduction of gating effects associated with α1M236W, a mutation that mimics β+/α- anesthetic site occupancy. Our results show that βN265M mutations dramatically reduce the efficacy/transduction of anesthetics bound in β+/α- sites, and also significantly reduce anesthetic affinity for resting state receptors. These findings are consistent with a role for βN265 in anesthetic binding within the β+/α- transmembrane sites.
Collapse
|
35
|
Olsen RW. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands. Neurochem Res 2014; 39:1924-41. [PMID: 25015397 DOI: 10.1007/s11064-014-1382-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
Abstract
The GABAA receptors (GABAARs) play an important role in inhibitory transmission in the brain. The GABAARs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the 'receptor-specific' GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABAARs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABAARs. These binding sites depend on the GABAAR heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA, 90095-1735, USA,
| |
Collapse
|
36
|
Wang L, Yu WF. Obstructive jaundice and perioperative management. ACTA ACUST UNITED AC 2014; 52:22-9. [PMID: 24999215 DOI: 10.1016/j.aat.2014.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Abstract
The causes of obstructive jaundice are varied, but it is most commonly due to choledocholithiasis; benign strictures of the biliary tract; pancreaticobiliary malignancies; and metastatic disease. Surgery in patients with obstructive jaundice is generally considered to be associated with a higher incidence of complications and mortality. Therefore, it poses a considerable challenge to the anesthesiologist, surgeons, and the intensive care team. However, appropriate preoperative evaluation and optimization can greatly contribute to a favorable outcome for perioperative jaundiced patients. This article outlines the association between obstructive jaundice and perioperative management, and reviews the clinical and experimental studies that have contributed to our knowledge of the underlying pathophysiologic mechanisms. Pathophysiology caused by obstructive jaundice involving coagulopathies, infection, renal dysfunction, and other adverse events should be fully assessed and reversed preoperatively. The depressed cardiovascular effects of obstructive jaundice are worth noticing because it has complicated mechanisms and needs to be further explored. Alterations of anesthesia-related drugs induced by obstructive jaundice are varied and clinicians should be aware of the possible need for a decrease in the anesthetic dose. Recommendations concerning the perioperative management of the patients with obstructive jaundice including preoperative biliary drainage, anti-infection, nutrition support, coagulation reversal, cardiovascular evaluation, perioperative fluid therapy, and hemodynamic optimization should be taken.
Collapse
Affiliation(s)
- Long Wang
- Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
37
|
Differential modulation of GABA(A) receptor function by aryl pyrazoles. Eur J Pharmacol 2014; 733:1-6. [PMID: 24704372 DOI: 10.1016/j.ejphar.2014.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 01/28/2023]
Abstract
Several aryl pyrazoles characterized by a different molecular structure (flexible vs constrained), but chemically related to rimonabant and AM251, were tested for their ability to modulate the function of recombinant α1β2γ2L GABAA receptors expressed in Xenopus laevis oocytes. The effects of 6Bio-R, 14Bio-R, NESS 0327, GP1a and GP2a (0.3-30 μM) were evaluated using a two-electrode voltage-clamp technique. 6Bio-R and 14Bio-R potentiated GABA-evoked Cl(-) currents. NESS 0327, GP1a and GP2a did not affect the GABAA receptor function, but they acted as antagonists of 6Bio-R. Moreover, NESS 0327 inhibited the potentiation of the GABAA receptor function induced by rimonabant. The benzodiazepine site seems to participate in the action of these compounds. In fact, flumazenil antagonized the potentiation of the GABAA receptor induced by 6Bio-R, and NESS 0327 reduced the action of lorazepam and zolpidem. On the contrary, NESS 0327 did not antagonize the action of "classic" GABAergic modulators (propanol, anesthetics, barbiturates or steroids). In α1β2 receptors 6Bio-R potentiated the GABAergic function, but flumazenil was still able to antagonize the potentiation induced by 6Bio-R. Aryl pyrazole derivatives activity at the GABAA receptor depends on their molecular structure. These compounds bind to both an αβγ binding site, and to an α/β site which do not require the γ subunit and that may provide structural leads for drugs with potential anticonvulsant effects.
Collapse
|
38
|
Olsen RW, Li GD, Wallner M, Trudell JR, Bertaccini EJ, Lindahl E, Miller KW, Alkana RL, Davies DL. Structural models of ligand-gated ion channels: sites of action for anesthetics and ethanol. Alcohol Clin Exp Res 2013; 38:595-603. [PMID: 24164436 DOI: 10.1111/acer.12283] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
The molecular mechanism(s) of action of anesthetic, and especially, intoxicating doses of alcohol (ethanol [EtOH]) have been of interest even before the advent of the Research Society on Alcoholism. Recent physiological, genetic, and biochemical studies have pin-pointed molecular targets for anesthetics and EtOH in the brain as ligand-gated ion channel (LGIC) membrane proteins, especially the pentameric (5 subunit) Cys-loop superfamily of neurotransmitter receptors including nicotinic acetylcholine (nAChRs), GABAA (GABAA Rs), and glycine receptors (GlyRs). The ability to demonstrate molecular and structural elements of these proteins critical for the behavioral effects of these drugs on animals and humans provides convincing evidence for their role in the drugs' actions. Amino acid residues necessary for pharmacologically relevant allosteric modulation of LGIC function by anesthetics and EtOH have been identified in these channel proteins. Site-directed mutagenesis revealed potential allosteric modulatory sites in both the trans-membrane domain (TMD) and extracellular domain (ECD). Potential sites of action and binding have been deduced from homology modeling of other LGICs with structures known from crystallography and cryo-electron microscopy studies. Direct information about ligand binding in the TMD has been obtained by photoaffinity labeling, especially in GABAA Rs. Recent structural information from crystallized procaryotic (ELIC and GLIC) and eukaryotic (GluCl) LGICs allows refinement of the structural models including evaluation of possible sites of EtOH action.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology , David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Anesthesiology , David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stewart DS, Hotta M, Li GD, Desai R, Chiara DC, Olsen RW, Forman SA. Cysteine substitutions define etomidate binding and gating linkages in the α-M1 domain of γ-aminobutyric acid type A (GABAA) receptors. J Biol Chem 2013; 288:30373-30386. [PMID: 24009076 DOI: 10.1074/jbc.m113.494583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Etomidate is a potent general anesthetic that acts as an allosteric co-agonist at GABAA receptors. Photoreactive etomidate derivatives labeled αMet-236 in transmembrane domain M1, which structural models locate in the β+/α- subunit interface. Other nearby residues may also contribute to etomidate binding and/or transduction through rearrangement of the site. In human α1β2γ2L GABAA receptors, we applied the substituted cysteine accessibility method to α1-M1 domain residues extending from α1Gln-229 to α1Gln-242. We used electrophysiology to characterize each mutant's sensitivity to GABA and etomidate. We also measured rates of sulfhydryl modification by p-chloromercuribenzenesulfonate (pCMBS) with and without GABA and tested if etomidate blocks modification of pCMBS-accessible cysteines. Cys substitutions in the outer α1-M1 domain impaired GABA activation and variably affected etomidate sensitivity. In seven of eight residues where pCMBS modification was evident, rates of modification were accelerated by GABA co-application, indicating that channel activation increases water and/or pCMBS access. Etomidate reduced the rate of modification for cysteine substitutions at α1Met-236, α1Leu-232 and α1Thr-237. We infer that these residues, predicted to face β2-M3 or M2 domains, contribute to etomidate binding. Thus, etomidate interacts with a short segment of the outer α1-M1 helix within a subdomain that undergoes significant structural rearrangement during channel gating. Our results are consistent with in silico docking calculations in a homology model that orient the long axis of etomidate approximately orthogonal to the transmembrane axis.
Collapse
Affiliation(s)
- Deirdre S Stewart
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Mayo Hotta
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Guo-Dong Li
- the Departments of Molecular and Medical Pharmacology and; Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Rooma Desai
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - David C Chiara
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | - Stuart A Forman
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114,.
| |
Collapse
|
40
|
Stewart DS, Hotta M, Desai R, Forman SA. State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor. Mol Pharmacol 2013; 83:1200-8. [PMID: 23525330 PMCID: PMC3657098 DOI: 10.1124/mol.112.084558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/22/2013] [Indexed: 11/22/2022] Open
Abstract
A central axiom of ligand-receptor theory is that agonists bind more tightly to active than to inactive receptors. However, measuring agonist affinity in inactive receptors is confounded by concomitant activation. We identified a cysteine substituted mutant γ-aminobutyric acid type A (GABAA) receptor with unique characteristics allowing the determination of allosteric agonist site occupancy in both inactive and active receptors. Etomidate, the allosteric agonist, is an anesthetic that activates or modulates α1β2γ2L GABAA receptors via transmembrane sites near β2M286 residues in M3 domains. Voltage-clamp electrophysiology studies of α1β2M286Cγ2L receptors show that GABA is an efficacious agonist and that etomidate modulates GABA-activated activity, but direct etomidate agonism is absent. Quantitative analysis of mutant activity using an established Monod-Wyman-Changeux (MWC) allosteric model indicates that the intrinsic efficacy of etomidate, defined as its relative affinity for active versus inactive receptors, is lower than in wild-type receptors. Para-chloromercuribenzene sulfonate covalently modifies β2M286C side-chain sulfhydryls, irreversibly altering GABA-induced currents. Etomidate concentration dependently reduces the apparent rate of β2M286C-pCMBS bond formation, tracked electrophysiologically. High etomidate concentrations completely protect the β2M286C suflhydryl from covalent modification, suggesting close steric interactions. The 50% protective etomidate concentration (PC50) is 14 μM in inactive receptors and 1.1 to 2.2 μM during GABA-activation, experimentally demonstrating that activated receptors bind etomidate more avidly than do inactive receptors. The experimental PC50 values are remarkably close to, and therefore validate, MWC model predictions for etomidate dissociation constants in both inactive and active receptors. Our results support MWC models as valid frameworks for understanding the agonism, coagonism, and modulation of ligand-gated ion channels.
Collapse
Affiliation(s)
- Deirdre S Stewart
- Department of Anesthesia Critical Care & Pain Medicine, Beecher-Mallinckrodt Research Laboratories, and Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Scheepens A, Bisson JF, Skinner M. p
-Coumaric Acid Activates the GABA-A Receptor In Vitro
and is Orally Anxiolytic In Vivo. Phytother Res 2013; 28:207-11. [DOI: 10.1002/ptr.4968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/04/2013] [Accepted: 02/16/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Arjan Scheepens
- The New Zealand Institute for Plant and Food Research; 120 Mt Albert Rd, Sandringham Auckland 1142 New Zealand
| | - Jean-Francois Bisson
- ETAP-Ethologie Appliquee; 13 Rue du Bois de la Champelle 54500 Vandoeuvre-les-Nancy France
| | - Margot Skinner
- The New Zealand Institute for Plant and Food Research; 120 Mt Albert Rd, Sandringham Auckland 1142 New Zealand
| |
Collapse
|
42
|
|
43
|
Monod-Wyman-Changeux allosteric mechanisms of action and the pharmacology of etomidate. Curr Opin Anaesthesiol 2012; 25:411-8. [PMID: 22614249 DOI: 10.1097/aco.0b013e328354feea] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Formal Monod-Wyman-Changeux allosteric mechanisms have proven valuable in framing research on the mechanism of etomidate action on its major molecular targets, γ-aminobutyric acid type A (GABAA) receptors. However, the mathematical formalism of these mechanisms makes them difficult to comprehend. RECENT FINDINGS We illustrate how allosteric models represent shifting equilibria between various functional receptor states (closed versus open) and how co-agonism can be readily understood as simply addition of gating energy associated with occupation of distinct agonist sites. We use these models to illustrate how the functional effects of a point mutation, α1M236W, in GABAA receptors can be translated into an allosteric model phenotype. SUMMARY Allosteric co-agonism provides a robust framework for design and interpretation of structure-function experiments aimed at understanding where and how etomidate affects its GABAA receptor target molecules.
Collapse
|
44
|
Two etomidate sites in α1β2γ2 γ-aminobutyric acid type A receptors contribute equally and noncooperatively to modulation of channel gating. Anesthesiology 2012; 116:1235-44. [PMID: 22531336 DOI: 10.1097/aln.0b013e3182567df3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Etomidate is a potent hypnotic agent that acts via γ-aminobutyric acid receptor type A (GABA(A)) receptors. Evidence supports the presence of two etomidate sites per GABA(A) receptor, and current models assume that each site contributes equally and noncooperatively to drug effects. These assumptions remain untested. METHODS We used concatenated dimer (β2-α1) and trimer (γ2-β2-α1) GABA(A) subunit assemblies that form functional α1β2γ2 channels, and inserted α1M236W etomidate site mutations into both dimers (β2-α1M236W) and trimers (γ2-β2-α1M236W). Wild-type or mutant dimers (D(wt) or D(αM236W)) and trimers (T(wt) or T(αM236W)) were coexpressed in Xenopus oocytes to produce four types of channels: D(wt)T(wt), D(αM236W)T(wt), D(wt)T(αM236W), and D(αM236W)T(αM236W). For each channel type, two-electrode voltage clamp was performed to quantitatively assess GABA EC(50), etomidate modulation (left shift), etomidate direct activation, and other functional parameters affected by αM236W mutations. RESULTS Concatenated wild-type D(wt)T(wt) channels displayed etomidate modulation and direct activation similar to α1β2γ2 receptors formed with free subunits. D(αM236W)T(αM236W) receptors also displayed altered GABA sensitivity and etomidate modulation similar to mutated channels formed with free subunits. Both single-site mutant receptors (D(αM236W)T(wt) and D(wt)T(αM236W)) displayed indistinguishable functional properties and equal gating energy changes for GABA activation (-4.9 ± 0.48 vs. -4.7 ± 0.48 kJ/mol, respectively) and etomidate modulation (-3.4 ± 0.49 vs. -3.7 ± 0.38 kJ/mol, respectively), which together accounted for the differences between D(wt)T(wt) and D(αM236W)T(αM236W) channels. CONCLUSIONS These results support the hypothesis that the two etomidate sites on α1β2γ2 GABA(A) receptors contribute equally and noncooperatively to drug interactions and gating effects.
Collapse
|
45
|
Fernandez SP, Karim N, Mewett KN, Chebib M, Johnston GA, Hanrahan JR. Flavan-3-ol esters: new agents for exploring modulatory sites on GABA(A) receptors. Br J Pharmacol 2012; 165:965-77. [PMID: 21806603 DOI: 10.1111/j.1476-5381.2011.01615.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Enhancement of GABAergic function is the primary mechanism of important therapeutic agents such as benzodiazepines, barbiturates, neurosteroids, general anaesthetics and some anticonvulsants. Despite their chemical diversity, many studies have postulated that these agents may bind at a common or overlapping binding site, or share an activation domain. Similarly, we found that flavan-3-ol esters act as positive modulators of GABA(A) receptors, and noted that this action resembled the in vitro profile of general anaesthetics. In this study we further investigated the interactions between these agents. EXPERIMENTAL APPROACH Using two-electrode voltage clamp electrophysiological recordings on receptors of known subunit composition expressed in Xenopus oocytes, we evaluated positive modulation by etomidate, loreclezole, diazepam, thiopentone, 5α-pregnan-3α-ol-20-one (THP) and the flavan-3-ol ester 2S,3R-trans 3-acetoxy-4'-methoxyflavan (Fa131) on wild-type and mutated GABA(A) receptors. KEY RESULTS The newly identified flavan, 2S,3S-cis 3-acetoxy-3',4'-dimethoxyflavan (Fa173), antagonized the potentiating actions of Fa131, etomidate and loreclezole at α1β2 and α1β2γ2L GABA(A) receptors. Furthermore, Fa173 blocked the potentiation of GABA responses by high, but not low, concentrations of diazepam, but did not block the potentiation induced by propofol, the neurosteroid THP or the barbiturate thiopental. Mutational studies on 'anaesthetic-influencing' residues showed that, compared with wild-type GABA(A) receptors, α1M236Wβ2γ2L and α1β2N265Sγ2L receptors are resistant to potentiation by etomidate, loreclezole and Fa131. CONCLUSIONS AND IMPLICATIONS Fa173 is a selective antagonist that can be used for allosteric modulation of GABA(A) receptors. Flavan-3-ol derivatives are potential ligands for etomidate/loreclezole-related binding sites at GABA(A) receptors and the low-affinity effects of diazepam are mediated via the same site.
Collapse
Affiliation(s)
- Sebastian P Fernandez
- Department of Pharmacology Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Karim N, Curmi J, Gavande N, Johnston GA, Hanrahan JR, Tierney ML, Chebib M. 2'-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA(A) receptors. Br J Pharmacol 2012; 165:880-96. [PMID: 21797842 DOI: 10.1111/j.1476-5381.2011.01604.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Flavonoids are known to have anxiolytic and sedative effects mediated via actions on ionotropic GABA receptors. We sought to investigate this further. EXPERIMENTAL APPROACH We evaluated the effects of 2'-methoxy-6-methylflavone (2'MeO6MF) on native GABA(A) receptors in new-born rat hippocampal neurons and determined specificity from 18 human recombinant GABA(A) receptor subtypes expressed in Xenopus oocytes. We used ligand binding, two-electrode voltage clamp and patch clamp studies together with behavioural studies. KEY RESULTS 2'MeO6MF potentiated GABA at α2β1γ2L and all α1-containing GABA(A) receptor subtypes. At α2β2/3γ2L GABA(A) receptors, however, 2'MeO6MF directly activated the receptors without potentiating GABA. This activation was attenuated by bicuculline and gabazine but not flumazenil indicating a novel site. Mutation studies showed position 265 in the β1/2 subunit was key to whether 2'MeO6MF was an activator or a potentiator. In hippocampal neurons, 2'MeO6MF directly activated single-channel currents that showed the hallmarks of GABA(A) Cl(-) currents. In the continued presence of 2'MeO6MF the single-channel conductance increased and these high conductance channels were disrupted by the γ2(381-403) MA peptide, indicating that such currents are mediated by α2/γ2-containing GABA(A) receptors. In mice, 2'MeO6MF (1-100 mg·kg(-1) ; i.p.) displayed anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark tests. 2'MeO6MF induced sedative effects at higher doses in the holeboard, actimeter and barbiturate-induced sleep time tests. No myorelaxant effects were observed in the horizontal wire test. CONCLUSIONS AND IMPLICATIONS 2'MeO6MF will serve as a tool to study the complex nature of the activation and modulation of GABA(A) receptor subtypes.
Collapse
Affiliation(s)
- Nasiara Karim
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology 2012; 116:47-55. [PMID: 22104494 DOI: 10.1097/aln.0b013e31823d0c36] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Propofol produces its major actions via γ-aminobutyric acid type A (GABA(A)) receptors. At low concentrations, propofol enhances agonist-stimulated GABA(A) receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABA(A) receptor activation. It is unknown if the propofol binding site(s) on GABA(A) receptors that modulate agonist-induced activity also mediate direct activation. METHODS GABA(A) α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABA(A) receptors by identifying equiefficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. RESULTS Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABA(A) receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric coagonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. CONCLUSIONS Our results support the hypothesis that propofol, like etomidate, acts at GABA(A) receptor sites mediating both GABA modulation and direct activation.
Collapse
|
48
|
Forman SA, Stewart D. Mutations in the GABAA receptor that mimic the allosteric ligand etomidate. Methods Mol Biol 2012; 796:317-33. [PMID: 22052498 DOI: 10.1007/978-1-61779-334-9_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Etomidate is a hydrophobic molecule, a potent general anesthetic, and the best understood drug in this group. Etomidate's target molecules are GABA(A) receptors, its site of action has been identified with photolabeling, and a quantitative allosteric coagonist model has emerged for etomidate effects on GABA(A) receptors. We have shown that when methionine residues that are thought to be adjacent to the etomidate site are mutated to tryptophan, that the bulky hydrophobic side-chains alter mutant GABA(A) receptor function in ways that mimic the effects of etomidate binding to wild-type receptors. Furthermore, these mutations reduce receptor modulation by etomidate. Both of these observations support the hypothesis that these methionine residues form part of the etomidate binding pocket.
Collapse
Affiliation(s)
- Stuart A Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
49
|
Song JC, Sun YM, Zhang MZ, Yang LQ, Tao TZ, Yu WF. The Etomidate Requirement Is Decreased in Patients with Obstructive Jaundice. Anesth Analg 2011; 113:1028-32. [DOI: 10.1213/ane.0b013e31822dac4a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Abstract
This review focuses on the unique clinical and molecular pharmacologic features of etomidate. Among general anesthesia induction drugs, etomidate is the only imidazole, and it has the most favorable therapeutic index for single-bolus administration. It also produces a unique toxicity among anesthetic drugs: inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate in the central nervous system are specific γ-aminobutyric acid type A receptor subtypes. Amino acids forming etomidate binding sites have been identified in transmembrane domains of these proteins. Etomidate binding site structure models for the main enzyme mediating etomidate adrenotoxicity have also been developed. Based on this deepening understanding of molecular targets and actions, new etomidate derivatives are being investigated as potentially improved sedative-hypnotics or for use as highly selective inhibitors of adrenal steroid synthesis.
Collapse
|