1
|
White R, Schiemann AH, Burling SM, Bjorksten A, Bulger T, Gillies R, Hopkins PM, Kamsteeg EJ, Machon RG, Massey S, Miller D, Perry M, Snoeck MM, Stephens J, Street N, van den Bersselaar LR, Stowell KM. Functional analysis of RYR1 variants in patients with confirmed susceptibility to malignant hyperthermia. Br J Anaesth 2022; 129:879-888. [DOI: 10.1016/j.bja.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
|
2
|
Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating. Proc Natl Acad Sci U S A 2022; 119:e2201286119. [PMID: 35925888 PMCID: PMC9371657 DOI: 10.1073/pnas.2201286119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant hyperthermia (MH) is a life-threatening disorder caused largely by mutations in ryanodine receptor type 1 (RyR1) Ca2+-release channels. Enhanced Ca2+ release through the mutant channels induces excessive heat development upon exposure to volatile anesthetics. However, the mechanism by which Ca2+ release is accelerated at an elevated temperature is yet to be identified. Fluorescence Ca2+ imaging with rapid heating by an infrared laser beam provides direct evidence that heat induces Ca2+ release through the RyR1 channel. And the mutant channels are more heat sensitive than the wild-type channels, thereby causing an increase in the cytosolic Ca2+ concentration in mutant cells. It is likely that the heat-induced Ca2+ release participates as an enhancer in the cellular mechanism of MH. Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum–targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels’ heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.
Collapse
|
3
|
Johnston JJ, Dirksen RT, Girard T, Gonsalves SG, Hopkins PM, Riazi S, Saddic LA, Sambuughin N, Saxena R, Stowell K, Weber J, Rosenberg H, Biesecker LG. Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genet Med 2021; 23:1288-1295. [PMID: 33767344 PMCID: PMC8263483 DOI: 10.1038/s41436-021-01125-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose As a ClinGen Expert Panel (EP) we set out to adapt the ACMG pathogenicity criteria for classification of RYR1 variants as related to autosomal dominantly-inherited malignant hyperthermia (MH). Methods We specified ACMG/AMP criteria for variant classification for RYR1 and MH. Proposed rules were piloted on 84 variants. We applied quantitative evidence calibration for several criteria using likelihood ratios based on the Bayesian framework. Results Seven ACMG/AMP criteria were adopted without changes, nine were adopted with RYR1-specific modifications, and ten were dropped. The in silico (PP3 and BP4) and hot spot criteria (PM1) were evaluated quantitatively. REVEL gave an odds ratio (OR) of 23:1 for PP3 and 14:1 for BP4 using trichotomized cut-offs of ≥0.85 (pathogenic) and ≤0.5 (benign). The PM1 hotspot criterion had an OR of 24:1. PP3 and PM1 were implemented at moderate strength. Applying the revised ACMG criteria to 44 recognized MH variants, 29 were classified as pathogenic, 13 as likely pathogenic, and two as variants of uncertain significance. Conclusion Curation of these variants will facilitate classification of RYR1/MH genomic testing results, which is especially important for secondary findings analyses. Our approach to quantitatively calibrating criteria is generalizable to other variant curation expert panels.
Collapse
Affiliation(s)
- Jennifer J Johnston
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical School, Rochester, NY, USA
| | - Thierry Girard
- Department of Anesthesiology, University of Basel, Basel, Switzerland
| | - Stephen G Gonsalves
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Hopkins
- MH Unit, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Sheila Riazi
- Department of Anesthesia and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Louis A Saddic
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Uniformed Services University Health Science, Bethesda, MD, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Stowell
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Schiemann AH, Roesl C, Pollock N, Langton E, Bulger T, Stowell KM. Identification and Functional Analysis of RYR1 Variants in a Family with a Suspected Myopathy and Associated Malignant Hyperthermia. J Neuromuscul Dis 2020; 7:51-60. [PMID: 31903994 DOI: 10.3233/jnd-190430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The ryanodine receptor 1 (RyR1) is a major skeletal muscle calcium release channel located in the sarcoplasmic reticulum and involved in excitation-contraction coupling. Variants in the gene encoding RyR1 have been linked to a range of neuromuscular disorders including myopathies and malignant hyperthermia (MH). OBJECTIVE We have identified three RYR1 variants (c.1983 G>A, p.Trp661*; c.7025A>G, p.Asn2342Ser and c.2447 C>T, p.Pro816Leu) in a family with a suspected myopathy and associated malignant hyperthermia susceptibility. We used calcium release assays to functionally characterise these variants in a recombinant system. METHODS Site-directed mutagenesis was used to introduce each variant separately into the human RYR1 cDNA. HEK293-T cells were transfected with the recombinant constructs and calcium release assays were carried out using 4-chloro-m-cresol (4-CmC) as the RyR1 agonist to investigate the functional consequences of each variant. RESULTS RYR1 c.1983 G>A, p.Trp661* resulted in a non-functional channel, c.7025A>G, p.Asn2342Ser in a hypersensitive channel and c.2447 C>T, p.Pro816Leu in a hypersensitive channel at higher concentrations of 4-CmC. CONCLUSIONS The p.Trp661* RYR1 variant should be considered as a risk factor for myopathies. The p.Asn2342Ser RYR1 variant, when expressed as a compound heterozygote with a nonsense mutation on the second allele, is likely to result in MH-susceptibility. The role of the p.Pro816Leu variant in MH remains unclear.
Collapse
Affiliation(s)
- Anja H Schiemann
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| | - Cornelia Roesl
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand.,Present address: LifeArc, Nine, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand.,Now retired
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand
| | - Kathryn M Stowell
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| |
Collapse
|
6
|
Parker R, Schiemann AH, Langton E, Bulger T, Pollock N, Bjorksten A, Gillies R, Hutchinson D, Roxburgh R, Stowell KM. Functional Characterization of C-terminal Ryanodine Receptor 1 Variants Associated with Central Core Disease or Malignant Hyperthermia. J Neuromuscul Dis 2019; 4:147-158. [PMID: 28527222 PMCID: PMC5467713 DOI: 10.3233/jnd-170210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. Objective: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. Methods: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. Results: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. Conclusions: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.
Collapse
Affiliation(s)
- Remai Parker
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Knuiman GJ, Küsters B, Eshuis L, Snoeck M, Lammens M, Heytens L, De Ridder W, Baets J, Scalco RS, Quinlivan R, Holton J, Bodi I, Wraige E, Radunovic A, von Landenberg C, Reimann J, Kamsteeg EJ, Sewry C, Jungbluth H, Voermans NC. The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. J Neurol 2019; 266:876-887. [PMID: 30788618 PMCID: PMC6420893 DOI: 10.1007/s00415-019-09209-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The histopathological features of malignant hyperthermia (MH) and non-anaesthetic (mostly exertional) rhabdomyolysis (RM) due to RYR1 mutations have only been reported in a few cases. METHODS We performed a retrospective multi-centre cohort study focussing on the histopathological features of patients with MH or RM due to RYR1 mutations (1987-2017). All muscle biopsies were reviewed by a neuromuscular pathologist. Additional morphometric and electron microscopic analysis were performed where possible. RESULTS Through the six participating centres we identified 50 patients from 46 families, including patients with MH (n = 31) and RM (n = 19). Overall, the biopsy of 90% of patients showed one or more myopathic features including: increased fibre size variability (n = 44), increase in the number of fibres with internal nuclei (n = 30), and type I fibre predominance (n = 13). Abnormalities on oxidative staining, generally considered to be more specifically associated with RYR1-related congenital myopathies, were observed in 52%, and included unevenness (n = 24), central cores (n = 7) and multi-minicores (n = 3). Apart from oxidative staining abnormalities more frequently observed in MH patients, the histopathological spectrum was similar between the two groups. There was no correlation between the presence of cores and the occurrence of clinically detectable weakness or presence of (likely) pathogenic variants. CONCLUSIONS Patients with RYR1-related MH and RM exhibit a similar histopathological spectrum, ranging from mild myopathic changes to cores and other features typical of RYR1-related congenital myopathies. Suggestive histopathological features may support RYR1 involvement, also in cases where the in vitro contracture test is not informative.
Collapse
Affiliation(s)
- G J Knuiman
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B Küsters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - L Eshuis
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Snoeck
- National MH Investigation Unit, Department of Anaesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - M Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - L Heytens
- Malignant Hyperthermia Research Unit, University of Antwerp, Antwerp, Belgium
| | - W De Ridder
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - J Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - R S Scalco
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - R Quinlivan
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - J Holton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - I Bodi
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - E Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - A Radunovic
- Barts Neuromuscular Diseases Centre, Royal London Hospital, London, UK
| | - C von Landenberg
- Muscle Lab, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - J Reimann
- Muscle Lab, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - E-J Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Muscle Signalling Section, Randall Division for Cell and Molecular Biophysics, King's College, London, UK
- Department of Basic and Clinical Neuroscience, King's College, IoPPN, London, UK
| | - N C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Merritt A, Booms P, Shaw MA, Miller DM, Daly C, Bilmen JG, Stowell KM, Allen PD, Steele DS, Hopkins PM. Assessing the pathogenicity of RYR1 variants in malignant hyperthermia. Br J Anaesth 2018; 118:533-543. [PMID: 28403410 DOI: 10.1093/bja/aex042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background . Missense variants in the ryanodine receptor 1 gene ( RYR1 ) are associated with malignant hyperthermia but only a minority of these have met the criteria for use in predictive DNA diagnosis. We examined the utility of a simplified method of segregation analysis and a functional assay for determining the pathogenicity of recurrent RYR1 variants associated with malignant hyperthermia. Methods . We identified previously uncharacterised RYR1 variants found in four or more malignant hyperthermia families and conducted simplified segregation analyses. An efficient cloning and mutagenesis strategy was used to express ryanodine receptor protein containing one of six RYR1 variants in HEK293 cells. Caffeine-induced calcium release, measured using a fluorescent calcium indicator, was compared in cells expressing each variant to that in cells expressing wild type ryanodine receptor protein. Results. We identified 43 malignant hyperthermia families carrying one of the six RYR1 variants. There was segregation of genotype with the malignant hyperthermia susceptibility phenotype in families carrying the p.E3104K and p.D3986E variants, but the number of informative meioses limited the statistical significance of the associations. HEK293 functional assays demonstrated an increased sensitivity of RyR1 channels containing the p.R2336H, p.R2355W, p.E3104K, p.G3990V and p.V4849I compared with wild type, but cells expressing p.D3986E had a similar caffeine sensitivity to cells expressing wild type RyR1. Conclusions . Segregation analysis is of limited value in assessing pathogenicity of RYR1 variants in malignant hyperthermia. Functional analyses in HEK293 cells provided evidence to support the use of p.R2336H, p.R2355W, p.E3104K, p.G3990V and p.V4849I for diagnostic purposes but not p.D3986E.
Collapse
Affiliation(s)
- A Merritt
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - P Booms
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - M-A Shaw
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | - D M Miller
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK.,Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK
| | - C Daly
- Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK
| | - J G Bilmen
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK.,Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK
| | - K M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - P D Allen
- Department of Molecular Biosciences, UC Davis, Davis, CA, USA
| | - D S Steele
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - P M Hopkins
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK.,Malignant Hyperthermia Unit, St James's University Hospital, Leeds, UK
| |
Collapse
|
9
|
Schiemann AH, Bjorksten AR, Gillies RL, Hockey BM, Ball C, Pollock N, Bulger T, Stowell KM. A genetic mystery in malignant hyperthermia 'solved'? Br J Anaesth 2018; 121:681-682. [PMID: 30115273 DOI: 10.1016/j.bja.2018.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 11/24/2022] Open
|
10
|
Evidence of Malignant Hyperthermia in Patients Administered Triggering Agents before Malignant Hyperthermia Susceptibility Identified: Missed Opportunities Prior to Diagnosis. Anaesth Intensive Care 2017; 45:707-713. [DOI: 10.1177/0310057x1704500610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malignant hyperthermia (MH) is a hypermetabolic disorder of skeletal muscle triggered almost exclusively by potent inhalational agents and suxamethonium. Signs of an MH reaction are non-specific and may be confused with the presentation of other problems such as sepsis and overheating of a patient. A high index of suspicion is needed to be aware of an early presentation of MH. Nine patients are presented who showed abnormal signs with an earlier anaesthetic where the possible diagnosis of an MH reaction was missed. These patients either presented later with an MH reaction, confirmed by DNA analysis and in some cases in vitro contracture testing, or were diagnosed by the identification of a causative mutation confirming MH susceptibility. The MH clinical grading scale is helpful in determining the likelihood that clinical indicators indicate a possible MH reaction. Masseter muscle rigidity is a known sign of MH, confirmed in this report by positive in vitro contracture testing and DNA analysis. Several uncommon muscle disorders have a high association with MH, and postoperative myalgia unrelated to suxamethonium can be a sign which is associated with MH. These reports emphasise the importance of a thorough family history (as the MH status was known by the family in four patients), a high index of suspicion for MH, and documentation of the possibility of MH susceptibility in the anaesthesia record.
Collapse
|
11
|
Gomez AC, Holford TW, Yamaguchi N. Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation. Am J Physiol Cell Physiol 2016; 311:C749-C757. [PMID: 27558158 DOI: 10.1152/ajpcell.00134.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
Channel activities of skeletal muscle ryanodine receptor (RyR1) are activated by micromolar Ca2+ and inactivated by higher (∼1 mM) Ca2+ To gain insight into a mechanism underlying Ca2+-dependent inactivation of RyR1 and its relationship with skeletal muscle diseases, we constructed nine recombinant RyR1 mutants carrying malignant hyperthermia or centronuclear myopathy-associated mutations and determined RyR1 channel activities by [3H]ryanodine binding assay. These mutations are localized in or near the RyR1 domains which are responsible for Ca2+-dependent inactivation of RyR1. Four RyR1 mutations (F4732D, G4733E, R4736W, and R4736Q) in the cytoplasmic loop between the S2 and S3 transmembrane segments (S2-S3 loop) greatly reduced Ca2+-dependent channel inactivation. Activities of these mutant channels were suppressed at 10-100 μM Ca2+, and the suppressions were relieved by 1 mM Mg2+ The Ca2+- and Mg2+-dependent regulation of S2-S3 loop RyR1 mutants are similar to those of the cardiac isoform of RyR (RyR2) rather than wild-type RyR1. Two mutations (T4825I and H4832Y) in the S4-S5 cytoplasmic loop increased Ca2+ affinities for channel activation and decreased Ca2+ affinities for inactivation, but impairment of Ca2+-dependent inactivation was not as prominent as those of S2-S3 loop mutants. Three mutations (T4082M, S4113L, and N4120Y) in the EF-hand domain showed essentially the same Ca2+-dependent channel regulation as that of wild-type RyR1. The results suggest that nine RyR1 mutants associated with skeletal muscle diseases were differently regulated by Ca2+ and Mg2+ Four malignant hyperthermia-associated RyR1 mutations in the S2-S3 loop conferred RyR2-type Ca2+- and Mg2+-dependent channel regulation.
Collapse
Affiliation(s)
- Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Timothy W Holford
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and .,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| |
Collapse
|
12
|
Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10:93. [PMID: 26238698 PMCID: PMC4524368 DOI: 10.1186/s13023-015-0310-1] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals. MH affects humans, certain pig breeds, dogs and horses. The classic signs of MH include hyperthermia, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, hyperkalaemia, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue. In humans the syndrome is inherited in an autosomal dominant pattern, while in pigs it is autosomal recessive. Uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation leads to the pathophysiologic changes. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 400 variants have been identified in the RYR1 gene located on chromosome 19q13.1, and at least 34 are causal for MH. Less than 1 % of variants have been found in CACNA1S but not all of these are causal. Diagnostic testing involves the in vitro contracture response of biopsied muscle to halothane, caffeine, and in some centres ryanodine and 4-chloro-m-cresol. Elucidation of the genetic changes has led to the introduction of DNA testing for susceptibility to MH. Dantrolene sodium is a specific antagonist and should be available wherever general anesthesia is administered. Increased understanding of the clinical manifestation and pathophysiology of the syndrome, has lead to the mortality decreasing from 80 % thirty years ago to <5 % in 2006.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ, 07039, USA.
| | - Neil Pollock
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Terasa Bulger
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
13
|
Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. PLoS One 2015; 10:e0130606. [PMID: 26115329 PMCID: PMC4482644 DOI: 10.1371/journal.pone.0130606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
- * E-mail:
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo 105–8461, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| |
Collapse
|
14
|
Gillies RL, Bjorksten AR, Du Sart D, Hockey BM. Analysis of the entire ryanodine receptor type 1 and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) coding regions for variants associated with malignant hyperthermia in Australian families. Anaesth Intensive Care 2015; 43:157-66. [PMID: 25735680 DOI: 10.1177/0310057x1504300204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defects in the genes coding for the skeletal muscle ryanodine receptor (RYR1) and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) have been identified as causative for malignant hyperthermia (MH). Sixty-two MH susceptible individuals presenting to the same diagnostic centre had copy deoxyribonucleic acid, derived from muscle ribonucleic acid, sequenced to identify variants with the potential to be responsible for the MH phenotype in both RYR1 and CACNA1S. These genetic findings were combined with clinical episode details and in vitro contracture test results to improve our understanding of the Australian MH cohort. Twelve novel variants were identified in RYR1 and six in CACNA1S. Known RYR1 causative mutations were identified in six persons and novel variants in RYR1 and CACNA1S in a further 17 persons. Trends indicated higher mutation identification in those with more definitive clinical episodes and stronger in vitro contracture test responses.
Collapse
Affiliation(s)
- R L Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| | - A R Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| | - D Du Sart
- Victorian Clinical Genetics Services, Parkville, Victoria
| | - B M Hockey
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| |
Collapse
|
15
|
Roesl C, Sato K, Schiemann A, Pollock N, Stowell KM. Functional characterisation of the R2452W ryanodine receptor variant associated with malignant hyperthermia susceptibility. Cell Calcium 2014; 56:195-201. [PMID: 25086907 DOI: 10.1016/j.ceca.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder that manifests in susceptible individuals exposed to volatile anaesthetics. Over 400 variants in the ryanodine receptor 1 (RYR1) have been reported but relatively few have been definitively associated with susceptibility to MH. This is largely due to the technical challenges of demonstrating abnormal Ca(2+) release from the sarcoplasmic reticulum. This study focuses on the R2452W variant and its functional characterisation with the aim of classifying this variant as MH causative. HEK293 cells were transiently transfected with full-length human wildtype or R2452W mutant RYR1 cDNA. In addition, B-lymphoblastoid cells from blood and myoblasts propagated from in vitro contracture tests were extracted from patients positive for the R2452W variant. All cell lines generated were loaded with the ratiometric dye Fura-2 AM, stimulated with the RYR1-specific agonist 4-chloro-m-cresol and Ca(2+) release from the sarcoplasmic/endoplasmic reticulum was monitored by fluorescence emission. All cells expressing the RYR1 R2452W variant show a significantly higher Ca(2+) release in response to the agonist, 4-chloro-m-cresol, compared to cells expressing RYR1 WT. These results indicate that the R2452W variant results in a hypersensitive ryanodine receptor 1 and suggest that the R2452W variant in the ryanodine receptor 1 is likely to be causative of MH.
Collapse
Affiliation(s)
- Cornelia Roesl
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Keisaku Sato
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerstion North, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Abstract
The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.
Collapse
Affiliation(s)
- Kathryn M Stowell
- From the Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|