1
|
Garberi R, Ripa C, Carenini G, Bastia L, Giani M, Foti G, Rezoagli E. Personalized ventilation guided by electrical impedance tomography with increased PEEP improves ventilation-perfusion matching in asymmetrical airway closure and contralateral pulmonary embolism during veno-venous extracorporeal membrane oxygenation: A case report. Physiol Rep 2025; 13:e70280. [PMID: 40214276 PMCID: PMC11987203 DOI: 10.14814/phy2.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025] Open
Abstract
We report the case of a 54-year-old man with right-lung pneumonia and contralateral pulmonary embolism (PE) conditioning severe refractory hypoxemia requiring veno-venous extracorporeal membrane oxygenation. Electrical impedance tomography (EIT) was used to assess recruitability and regional ventilation and perfusion. At a clinical positive-end expiratory pressure (PEEP) of 12 cmH₂O, EIT revealed predominant ventilation in the left lung and predominant perfusion in the right lung. Reduced perfusion in the left lung raised suspicion of PE, confirmed by contrast-enhanced computed tomography. The clinical PEEP was insufficient to maintain recruitment of the pneumonia-affected right lung, which showed an airway opening pressure (AOP) of 16 cmH₂O. Therefore, PEEP was increased to 20 cmH₂O to exceed the AOP of the injured lung, improving lung recruitment, stabilizing end expiratory lung impedance (EELI), and increasing V/Q matching. Oxygenation improved, following an increased cardiac output, and reduced pulmonary vascular resistance. Despite increasing ventilation pressures, the higher PEEP was well-tolerated hemodynamically, optimizing V/Q coupling in this case of unilateral shunt and contralateral dead space. This case highlights the utility of ventilation/perfusion EIT in optimizing ventilatory strategies, in anticipating the presence of pulmonary malperfusion at bedside, and demonstrating the importance of individualized, physiology-based interventions in complex critical care scenarios.
Collapse
Affiliation(s)
- Roberta Garberi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Claudio Ripa
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | | | - Luca Bastia
- Anesthesia and Intensive Care UnitAUSL Romagna, M. Bufalini HospitalCesenaItaly
| | - Marco Giani
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- Department of Anesthesia and Intensive CareFondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Giuseppe Foti
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- Department of Anesthesia and Intensive CareFondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Emanuele Rezoagli
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- Department of Anesthesia and Intensive CareFondazione IRCCS San Gerardo dei TintoriMonzaItaly
| |
Collapse
|
2
|
Nițescu V, Lescaie A, Boghițoiu D, Ulmeanu C. Benzalkonium Chloride Poisoning in Pediatric Patients: Report of Case with a Severe Clinical Course and Literature Review. TOXICS 2024; 12:139. [PMID: 38393234 PMCID: PMC10893421 DOI: 10.3390/toxics12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The use of disinfectants, particularly those containing quaternary ammonium compounds (QUACs), has dramatically escalated globally since the coronavirus disease 2019 pandemic. We report a case that highlights the risks associated with ingesting low-concentration QUAC solutions and emphasize the importance of effective management in resolving severe lesions without sequelae. A 17-month-old boy experienced severe respiratory failure after ingesting a disinfectant containing benzalkonium chloride (BAC). The child was initially treated at a local emergency department and was subsequently transferred to a pediatric poison center. Upon evaluation, the child was found to have grade III-A corrosive esophageal lesions and chemical pneumonitis. Several complications, including massive pneumothorax and candidemia, occurred during the clinical course of the disease. However, with timely medical intervention and appropriate supportive care, the patient completely recovered without any long-term sequelae. The properties of BAC and the comprehensive management approach may have been responsible for the patient's full recovery, despite the potentially life-threatening effects of ingesting disinfectants.
Collapse
Affiliation(s)
- Viorela Nițescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Andreea Lescaie
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Dora Boghițoiu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Coriolan Ulmeanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| |
Collapse
|
3
|
Geilen J, Kainz M, Zapletal B, Geleff S, Wisser W, Bohle B, Schweiger T, Schultz MJ, Tschernko E. Unilateral acute lung injury in pig: a promising animal model. J Transl Med 2022; 20:548. [PMID: 36435803 PMCID: PMC9701381 DOI: 10.1186/s12967-022-03753-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) occurs in 23% unilateral. Models of unilateral ALI were developed and used previously without clearly demonstrating the strictly unilateral nature and severity of lung injury by the key parameters characterizing ALI as defined by the American Thoracic Society (ATS). Thus, the use of unilateral ALI remained rare despite the innovative approach. Therefore, we developed a unilateral model of ALI and focused on the crucial parameters characterizing ALI. This model can serve for direct comparisons between the injured and intact lungs within single animals, thus, reducing the number of animals required for valid experimental conclusions. METHODS We established the model in nine pigs, followed by an evaluation of key parameters in six pigs (main study). Pigs were ventilated using an adapted left double-lumen tube for lung separation and two ventilators. ALI was induced in the left lung with cyclic rinsing (NaCl 0.9% + Triton® X-100), after which pigs were ventilated for different time spans to test for the timing of ALI onset. Ventilatory and metabolic parameters were evaluated, and bronchoalveolar lavage (BAL) was performed for measurements of inflammatory mediators. Finally, histopathological specimens were collected and examined in respect of characteristics defining the lung injury score (LIS) as suggested by the ATS. RESULTS After adjustments of the model (n = 9) we were able to induce strictly left unilateral ALI in all six pigs of the evaluation study. The median lung injury score was 0.72 (IQR 0.62-0.79) in the left lung vs 0.14 (IQR 0.14-0.16; p < 0.05) in the right lung, confirming unilateral ALI. A significant and sustained drop in pulmonary compliance (Cdyn) of the left lung occurred immediately, whereas Cdyn of the right lung remained unchanged (p < 0.05). BAL fluid concentrations of interleukin-6 and -8 were increased in both lungs. CONCLUSIONS We established a model of unilateral ALI in pigs, confirmed by histopathology, and typical changes in respiratory mechanics and an inflammatory response. This thoroughly evaluated model could serve as a basis for future studies and for comparing pathophysiological and pharmacological changes in the uninjured and injured lung within the same animal.
Collapse
Affiliation(s)
- Johannes Geilen
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Matthias Kainz
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Bernhard Zapletal
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Silvana Geleff
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Wisser
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus J. Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Edda Tschernko
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
4
|
Bastia L, Rozé H, Brochard L. Asymmetrical Lung Injury: Management and Outcome. Semin Respir Crit Care Med 2022; 43:369-378. [PMID: 35785812 DOI: 10.1055/s-0042-1744303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Among mechanically ventilated patients, asymmetrical lung injury is probably extremely frequent in the intensive care unit but the lack of standardized measurements does not allow to describe any prevalence among mechanically ventilated patients. Many past studies have focused only on unilateral injury and have mostly described the effect of lateral positioning. The good lung put downward might receive more perfusion while the sick lung placed upward receive more ventilation than supine. This usually results in better oxygenation but can also promote atelectasis in the healthy lung and no consensus has emerged on the clinical indication of this posture. Recently, electrical impedance tomography (EIT) has allowed for the first time to precisely describe the distribution of ventilation in each lung and to better study asymmetrical lung injury. At low positive-end-expiratory pressure (PEEP), a very heterogeneous ventilation exists between the two lungs and the initial increase in PEEP first helps to recruit the sick lung and protect the healthier lung. However, further increasing PEEP distends the less injured lung and must be avoided. The right level can be found using EIT and transpulmonary pressure. In addition, EIT can show that in the two lungs, airway closure is present but with very different airway opening pressures (AOPs) which cannot be identified on a global assessment. This may suggest a very different PEEP level than on a global assessment. Lastly, epidemiological studies suggest that in hypoxemic patients, the number of quadrants involved has a strong prognostic value. The number of quadrants is more important than the location of the unilateral or bilateral nature of the involvement for the prognosis, and hypoxemic patients with unilateral lung injury should probably be considered as requiring lung protective ventilation as classical acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Luca Bastia
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Hadrien Rozé
- Thoracic Surgery and Lung Transplant Unit, Department of Anesthesiology and Critical Care, Bordeaux University Hospital, Haut Leveque Hospital, Pessac, France.,Centre de Recherche Cardio Thoracique INSERM 1045, Pessac, France
| | - Laurent Brochard
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
| |
Collapse
|
5
|
Hexarelin modulates lung mechanics, inflammation, and fibrosis in acute lung injury. Drug Target Insights 2021; 15:26-33. [PMID: 34871336 PMCID: PMC8638068 DOI: 10.33393/dti.2021.2347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) is an acute form of diffuse lung injury characterized by (i) an intense inflammatory response, (ii) increased pulmonary vascular permeability, and (iii) the loss of respiratory pulmonary tissue. In this article we explore the therapeutic potential of hexarelin, a synthetic hexapeptide growth hormone secretagogue (GHS), in an experimental model of ARDS. Hexarelin has anti-inflammatory properties and demonstrates cardiovascular-protective activities including the inhibition of cardiomyocyte apoptosis and cardiac fibrosis, both of which may involve the angiotensin-converting enzyme (ACE) system. Methods: In our experimental model, ARDS was induced by the instillation of 100 mM HCl into the right bronchus; these mice were treated with hexarelin (320 μg/kg, ip) before (Pre) or after (Post) HCl challenge, or with vehicle. Respiratory system compliance, blood gas analysis, and differential cell counts in a selective bronchoalveolar lavage (BAL) were determined 6 or 24 hours after HCl instillation. In an extended study, mice were observed for a subsequent 14 days in order to assess lung fibrosis. Results: Hexarelin induced a significant improvement in lung compliance and a reduction of the number of total immune cells in BAL 24 hours after HCl instillation, accompanied with a lower recruitment of neutrophils compared with the vehicle group. At day 14, hexarelin-treated mice presented with less pulmonary collagen deposition compared with vehicle-treated controls. Conclusions: Our data suggest that hexarelin can inhibit the early phase of the inflammatory response in a murine model of HCl-induced ARDS, thereby blunting lung remodeling processes and fibrotic development.
Collapse
|
6
|
Maaskant A, Meijer L, Fagrouch Z, Bakker J, van Geest L, Zijlmans DGM, Verstrepen BE, Langermans JAM, Verschoor EJ, Stammes MA. Bronchoalveolar lavage affects thorax computed tomography of healthy and SARS-CoV-2 infected rhesus macaques (Macaca mulatta). PLoS One 2021; 16:e0252941. [PMID: 34242213 PMCID: PMC8270458 DOI: 10.1371/journal.pone.0252941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Medical imaging as method to assess the longitudinal process of a SARS-CoV-2 infection in non-human primates is commonly used in research settings. Bronchoalveolar lavage (BAL) is regularly used to determine the local virus production and immune effects of SARS-CoV-2 in the lower respiratory tract. However, the potential interference of those two diagnostic modalities is unknown in non-human primates. The current study investigated the effect and duration of BAL on computed tomography (CT) in both healthy and experimentally SARS-CoV-2-infected female rhesus macaques (Macaca mulatta). In addition, the effect of subsequent BALs was reviewed. Thorax CTs and BALs were obtained from four healthy animals and 11 experimentally SARS-CoV-2-infected animals. From all animals, CTs were obtained just before BAL, and 24 hours post-BAL. Additionally, from the healthy animals, CTs immediately after, and four hours post-BAL were obtained. Thorax CTs were evaluated for alterations in lung density, measured in Hounsfield units, and a visual semi-quantitative scoring system. An increase in the lung density was observed on the immediately post-BAL CT but resolved within 24 hours in the healthy animals. In the infected animals, a significant difference in both the lung density and CT score was still found 24 hours after BAL. Furthermore, the differences between time points in CT score were increased for the second BAL. These results indicate that the effect of BAL on infected lungs is not resolved within the first 24 hours. Therefore, it is important to acknowledge the interference between BAL and CT in rhesus macaques.
Collapse
Affiliation(s)
| | - Lisette Meijer
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Zahra Fagrouch
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Leo van Geest
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | | | | | - Jan A. M. Langermans
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
- Department Population Health Sciences, Division Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
7
|
Bastia L, Engelberts D, Osada K, Katira BH, Damiani LF, Yoshida T, Chen L, Ferguson ND, Amato MBP, Post M, Kavanagh BP, Brochard L. Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury. Am J Respir Crit Care Med 2021; 203:969-976. [PMID: 33091317 DOI: 10.1164/rccm.202005-1556oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.
Collapse
Affiliation(s)
- Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science
| | - L Felipe Damiani
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Takeshi Yoshida
- The Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada; and
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Institute of Medical Science
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science.,Department of Critical Care Medicine, Hospital for Sick Children, and.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
8
|
JAK2/STAT1-mediated HMGB1 translocation increases inflammation and cell death in a ventilator-induced lung injury model. J Transl Med 2019; 99:1810-1821. [PMID: 31467427 DOI: 10.1038/s41374-019-0308-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
Janus kinase 2/signal transducer and activators of transcription 1 (JAK2/STAT1) signaling is a common pathway that contributes to numerous inflammatory disorders, including different forms of acute lung injury (ALI). However, the role of JAK2/STAT1 in ventilator-induced lung injury (VILI) and its underlying mechanism remain unclear. In this study, using lipopolysaccharide (LPS) inhalation plus mechanical ventilation as VILI mouse model, we found that the administration of JAK2 inhibitor AZD1480 markedly attenuated lung destruction, diminished protein leakage, and inhibited cytokine release. In addition, when mouse macrophage-like RAW 264.7 cells were exposed to LPS and cyclic stretch (CS), AZD1480 prevented cell autophagy, reduced apoptosis, and suppressed lactate dehydrogenase release by downregulating JAK2/STAT1 phosphorylation levels and inducing HMGB1 translocation from the nucleus to the cytoplasm. Furthermore, HMGB1 and STAT1 knockdown attenuated LPS+CS-induced autophagy and apoptosis in RAW 264.7 cells. In conclusion, these findings reveal the connection between the JAK2/STAT1 pathway and HMGB1 translocation in mediating lung inflammation and cell death in VILI, suggesting that these molecules may serve as novel therapeutic targets for VILI.
Collapse
|
9
|
Gramatté J, Pietzsch J, Bergmann R, Richter T. Causative treatment of acid aspiration induced acute lung injury - Recent trends from animal experiments and critical perspective. Clin Hemorheol Microcirc 2018; 69:187-195. [PMID: 29630538 DOI: 10.3233/ch-189113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aspiration of low-pH gastric fluid leads to an initial pneumonitis, which may become complicated by subsequent pneumonia or acute respiratory distress syndrome. Current treatment is at best supportive, but there is growing experimental evidence on the significant contribution of both neutrophils and platelets in the development of this inflammatory pulmonary reaction, a condition that can be attenuated by several medicinal products. This review aims to summarize novel findings in experimental models on pathomechanisms after an acid-aspiration event. Given the clinical relevance, specific emphasis is put on deduced potential experimental therapeutic approaches, which make use of the characteristic alteration of microcirculation in the injured lung.
Collapse
Affiliation(s)
- Johannes Gramatté
- Department of Anesthesia and Intensive Care, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ralf Bergmann
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Richter
- Department of Anesthesia and Intensive Care, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Mauri T, Zambelli V, Cappuzzello C, Bellani G, Dander E, Sironi M, Castiglioni V, Doni A, Mantovani A, Biondi A, Garlanda C, D'amico G, Pesenti A. Intraperitoneal adoptive transfer of mesenchymal stem cells enhances recovery from acid aspiration acute lung injury in mice. Intensive Care Med Exp 2017; 5:13. [PMID: 28265979 PMCID: PMC5339261 DOI: 10.1186/s40635-017-0126-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/21/2017] [Indexed: 01/22/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) might act as fine-tuners of inflammation during acute lung injury. We assessed the effects of adoptive transfer of MSCs in acid aspiration acute lung injury and explored the role of long pentraxin PTX3. Methods We conducted a prospective experimental interventional study on wild-type (WT) and PTX3-deficient (PTX3−/−) mice. Acute lung injury was induced in WT and PTX3−/− mice by instillation of hydrochloric acid into the right bronchus. One hour later, animals received intraperitoneal sterile phosphate-buffered saline (PBS), WT-MSCs (1 × 106) or PTX3−/−-MSCs (1 × 106). Twenty-four hours after injury, we measured the effects of treatments on arterial blood gases, wet/dry lung weight (W/D), CT scan analysis of lung collapse, neutrophils, TNFα and CXCL1 in bronchoalveolar lavage, and plasma PTX3. d-dimer was assayed in 1 week and OH-proline in 2 weeks to track the fibrotic evolution. Results In 24 h, in comparison to PBS, WT-MSCs improved oxygenation and reduced W/D and alveolar collapse. These effects were associated with decreased concentrations of alveolar neutrophils and cytokines. WT-MSCs increased d-dimer concentration and decreased OH-proline levels, too. Treatment with PTX3−/−-MSCs ameliorated oxygenation, W/D, and alveolar TNFα, though to a lesser extent than WT-MSCs. PTX3−/−-MSCs did not improve lung collapse, neutrophil count, CXCL1, d-dimer, and OH-proline concentrations. The protective effects of WT-MSCs were dampened by lack of endogenous PTX3, too. Conclusions In acid aspiration acute lung injury, MSCs improve pulmonary function and limit fibrosis by fine-tuning inflammation. The role of PTX3 in determining MSCs’ effects might merit further scrutiny. Electronic supplementary material The online version of this article (doi:10.1186/s40635-017-0126-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Claudia Cappuzzello
- Research Center 'M. Tettamanti', Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Erica Dander
- Research Center 'M. Tettamanti', Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Marina Sironi
- Humanitas Clinical and Research Center, Rozzano, MI, Italy
| | | | - Andrea Doni
- Humanitas Clinical and Research Center, Rozzano, MI, Italy
| | | | - Andrea Biondi
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.,Research Center 'M. Tettamanti', Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | | | - Giovanna D'amico
- Research Center 'M. Tettamanti', Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Zambelli V, Bellani G, Amigoni M, Grassi A, Scanziani M, Farina F, Latini R, Pesenti A. The effects of exogenous surfactant treatment in a murine model of two-hit lung injury. Anesth Analg 2015; 120:381-8. [PMID: 25502842 DOI: 10.1213/ane.0000000000000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Because pulmonary endogenous surfactant is altered during acute respiratory distress syndrome, surfactant replacement may improve clinical outcomes. However, trials of surfactant use have had mixed results. We designed this animal model of unilateral (right) lung injury to explore the effect of exogenous surfactant administered to the injured lung on inflammation in the injured and noninjured lung. METHODS Mice underwent hydrochloric acid instillation (1.5 mL/kg) into the right bronchus and prolonged (7 hours) mechanical ventilation (25 mL/kg). After 3 hours, mice were treated with 1 mL/kg exogenous surfactant (Curosurf®) (surf group) or sterile saline (NaCl 0.9%) (vehicle group) in the injured (right) lung or did not receive any treatment (hydrochloric acid, ventilator-induced lung injury). Gas exchange, lung compliance, and bronchoalveolar inflammation (cells, albumin, and cytokines) were evaluated. After a significant analysis of variance (ANOVA) test, Tukey post hoc test was used for statistical analysis. RESULTS At least 8 to 10 mice in each group were analyzed for each evaluated variable. Surfactant treatment significantly increased both the arterial oxygen tension to fraction of inspired oxygen ratio and respiratory system static compliance (P = 0.027 and P = 0.007, respectively, for surf group versus vehicle). Surfactant therapy increased indices of inflammation in the acid-injured lung compared with vehicle: inflammatory cells (685 [602-773] and 216 [125-305] × 1000/mL, respectively; P < 0.001) and albumin in bronchoalveolar lavage (BAL) (1442 ± 588 and 743 ± 647 μg/mL, respectively; P = 0.027). These differences were not found (P = 0.96 and P = 0.54) in the contralateral (uninjured) lung (inflammatory cells 131 [78-195] and 119 [87-149] × 1000/mL and albumin 135 ± 100 and 173 ± 115 μg/mL). CONCLUSIONS Exogenous surfactant administration to an acid-injured right lung improved gas exchange and whole respiratory system compliance. However, markers of inflammation increased in the right (injured) lung, although this result was not found in the left (uninjured) lung. These data suggest that the mechanism by which surfactant improves lung function may involve both uninjured and injured alveoli.
Collapse
Affiliation(s)
- Vanessa Zambelli
- From the *Department of Health Science, University of Milano-Bicocca, Monza, Italy; †Department of Emergency, San Gerardo Hospital, Monza, Italy; and ‡Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zambelli V, Bellani G, Borsa R, Pozzi F, Grassi A, Scanziani M, Castiglioni V, Masson S, Decio A, Laffey JG, Latini R, Pesenti A. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp 2015. [PMID: 26215809 PMCID: PMC4512981 DOI: 10.1186/s40635-015-0044-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The renin-angiotensin system (RAS) plays a role in the pathogenesis of ARDS, Angiotensin II (Ang-II) contributing to the pathogenesis of inflammation and fibrogenesis. Angiotensin-(1-7) (Ang-(1-7)) may antagonize the effects of Ang-II. This study was aimed at evaluating the potential for Ang-(1-7) to reduce injury, inflammation and fibrosis in an experimental model of ARDS in the acute and late phases. Methods Male Sprague Dawley rats underwent an instillation of 0.1 M hydrochloric acid (HCl, 2.5 ml/kg) into the right bronchus. In an acute ARDS study, acid-injured rats were subjected to high stretch mechanical ventilation (18 ml/kg) for 5 h and randomized to receive an intravenous infusion of either vehicle (saline), Ang-(1-7) at low dose(0.27 μg/kg/h) (ALD), or high dose (60 μg/kg/h) (AHD) starting simultaneously with injury or 2 h afterwards. Arterial blood gas analysis and bronchoalveolar lavage (BAL) were performed to assess the injury. For the late ARDS study, after HCl instillation rats were randomized to either vehicle or high dose Ang-(1-7) (300 μg/kg/day) infused by mini osmotic pumps for two weeks, and lung hydroxyproline content measured. Results In the acute ARDS study, Ang-(1-7) led to a significant improvement in oxygenation (PaO2/FiO2 : vehicle 359 ± 86; ALD 436 ± 72; AHD 44 442 ± 56; ANOVA p = 0.007) and reduced white blood cells counts (vehicle 4,519 ± 2,234; ALD 2,496 ± 621; AHD 2,744 ± 119/mm3; ANOVA p = 0.004). Only treatment with high dose Ang-(1-7) reduced inflammatory cell numbers in BAL (vehicle 127 ± 34; AHD 96 ± 34/ μl; p = 0.033). Interestingly also delayed administration of Ang-(1-7) was effective in reducing injury. In later ARDS, Ang-(1-7) decreased hydroxyproline content (649 ± 202 and 1,117 ± 297 μg/lung; p < 0.05). Conclusions Angiotensin-(1-7), decreased the severity of acute lung injury and inflammation induced by combined acid aspiration and high stretch ventilation. Furthermore, continuous infusion of Ang-(1-7) reduced lung fibrosis 2 weeks following acid aspiration injury. These results call for further research on Ang-(1-7) as possible therapy for ARDS.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lai CC, Liu WL, Chen CM. Glutamine attenuates acute lung injury caused by acid aspiration. Nutrients 2014; 6:3101-16. [PMID: 25100435 PMCID: PMC4145297 DOI: 10.3390/nu6083101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023] Open
Abstract
Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer's solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.
Collapse
Affiliation(s)
- Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying Dist., Tainan 73657 Taiwan.
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying Dist., Tainan 73657 Taiwan.
| | - Chin-Ming Chen
- Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
14
|
Fodor GH, Peták F, Erces D, Balogh AL, Babik B. Lung mechanical changes following bronchoaspiration in a porcine model: differentiation of direct and indirect mechanisms. Respir Physiol Neurobiol 2014; 199:41-9. [PMID: 24814560 DOI: 10.1016/j.resp.2014.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/01/2014] [Accepted: 05/02/2014] [Indexed: 01/13/2023]
Abstract
Bronchoaspiration results in local deterioration of lung function through direct damage and/or indirect systemic effects related to neurohumoral pathways. We distinguished these effects by selectively intubating the two main bronchi in pigs while a PEEP of 4 or 10cm H2O was maintained. Gastric juice was instilled only into the right lung. Lung mechanical and ventilation defects were assessed by measuring unilateral pulmonary input impedance (ZL,s) and the third phase slope of the capnogram (SIII) for each lung side separately before the aspiration and for 120min thereafter. Marked transient elevations in ZL,s parameters and SIII were observed in the affected lung after aspiration. Elevating PEEP did not affect these responses in the ZL,s parameters, whereas it prevented the SIII increases. None of these indices changed in the intact left lung. These findings furnish evidence of the predominance of the local direct damage over the indirect systemic effects in the development of the deterioration of lung function, and demonstrate the benefit of an initially elevated PEEP following aspiration.
Collapse
Affiliation(s)
- Gergely H Fodor
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| | - Dániel Erces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Adám L Balogh
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Barna Babik
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| |
Collapse
|