1
|
da Silveira CAB, Rasador ACD, Medeiros HJS, Slawka E, Gesteira L, Pereira LC, Amaral S. Opioid-free anesthesia for minimally invasive abdominal surgery: a systematic review, meta-analysis, and trial sequential analysis. Can J Anaesth 2024; 71:1466-1485. [PMID: 39500840 DOI: 10.1007/s12630-024-02831-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 11/28/2024] Open
Abstract
PURPOSE Opioid anesthesia is commonly employed in minimally invasive surgeries but is associated with adverse effects, including postoperative nausea and vomiting (PONV). Opioid-free anesthesia aims to mitigate these issues. We conducted a systematic review, meta-analysis, and trial sequential analysis (TSA) comparing opioid and opioid-free anesthesia in minimally invasive abdominal surgeries. METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and Embase for randomized controlled trials (RCTs) comparing these approaches. Our primary outcomes were adverse effects (PONV, bradycardia), while secondary outcomes were pain, opioid consumption, and postanesthesia care unit (PACU) length of stay (LOS). We performed a TSA to investigate the conclusiveness of the results. RESULTS We included 26 RCTs encompassing 2,025 patients, with 1,009 (49%) in the opioid-free anesthesia group. Opioid-free anesthesia reduced PONV significantly (risk ratio, 0.55; 95% confidence interval [CI], 0.40 to 0.74; P < 0.001), but we found no significant differences in bradycardia rates. We found nonclinically relevant higher pain scores for opioid anesthesia (mean difference [MD], -0.9; 95% CI, -1.7 to -0.2; P = 0.01) and opioid consumption at 2 hr post surgery (MD, -5.4 mg oral morphine equivalents; 95% CI, -9.1 to -1.8; P = 0.004). We also noted a reduced time to first analgesia (MD, 88 min; 95% CI, 18 to 159; P = 0.01). We found no differences in PACU LOS. The TSA confirmed the sample size's adequacy in showing PONV reduction with opioid-free anesthesia. CONCLUSION Opioid-free anesthesia showed a significant reduction in PONV and a decrease in opioid consumption during the first 2 hr postoperatively, suggesting it can be an alternative to opioid anesthesia in minimally invasive abdominal surgeries. STUDY REGISTRATION PROSPERO ( CRD42023492385 ); first submitted 18 December 2023.
Collapse
Affiliation(s)
| | - Ana C D Rasador
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Heitor J S Medeiros
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachussets General Hospital, Boston, MA, USA
| | - Eric Slawka
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucas C Pereira
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Sara Amaral
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
3
|
Wongsripuemtet P, Ohnuma T, Temkin N, Barber J, Komisarow J, Manley GT, Hatfield J, Treggiari M, Colton K, Sasannejad C, Chaikittisilpa N, Ivins-O'Keefe K, Grandhi R, Laskowitz D, Mathew JP, Hernandez A, James ML, Raghunathan K, Miller J, Vavilala M, Krishnamoorthy V. Association of early dexmedetomidine exposure with brain injury biomarker levels following moderate - Severe traumatic brain injury: A TRACK-TBI study. J Clin Neurosci 2024; 126:338-347. [PMID: 39029302 DOI: 10.1016/j.jocn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) triggers autonomic dysfunction and inflammatory response that can result in secondary brain injuries. Dexmedetomidine is an alpha-2 agonist that may modulate autonomic function and inflammation and has been increasingly used as a sedative agent for critically ill TBI patients. We aimed to investigate the association between early dexmedetomidine exposure and blood-based biomarker levels in moderate-to-severe TBI (msTBI). METHODS We conducted a retrospective cohort study using data from the Transforming Clinical Research and Knowledge in Traumatic Brain Injury Study (TRACK-TBI), which enrolled acute TBI patients prospectively across 18 United States Level 1 trauma centers between 2014-2018. Our study population focused on adults with msTBI defined by Glasgow Coma Scale score 3-12 after resuscitation, who required mechanical ventilation and sedation within the first 48 h of ICU admission. The study's exposure was early dexmedetomidine utilization (within the first 48 h of admission). Primary outcome included brain injury biomarker levels measured from circulating blood on day 3 following injury, including glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neuron-specific enolase (NSE), S100 calcium-binding protein B (S100B) and the inflammatory biomarker C-reactive protein (CRP). Secondary outcomes assessed biomarker levels on days 5 and 14. Linear mixed-effects regression modelling of the log-transformed response variable was used to analyze the association of early dexmedetomidine exposure with brain injury biomarker levels. RESULTS Among the 352 TRACK-TBI subjects that met inclusion criteria, 50 (14.2 %) were exposed to early dexmedetomidine, predominantly male (78 %), white (81 %), and non-Hispanic (81 %), with mean age of 39.8 years. Motor vehicle collisions (27 %) and falls (22 %) were common causes of injury. No significant associations were found between early dexmedetomidine exposure with day 3 brain injury biomarker levels (GFAP, ratio = 1.46, 95 % confidence interval [0.90, 2.34], P = 0.12; UCH-L1; ratio = 1.17 [0.89, 1.53], P = 0.26; NSE, ratio = 1.19 [0.92, 1.53], P = 0.19; S100B, ratio = 1.01 [0.95, 1.06], P = 0.82; hs-CRP, ratio = 1.29 [0.91, 1.83], P = 0.15). The hs-CRP level at day 14 in the dexmedetomidine group was higher than that of the non-exposure group (ratio = 1.62 [1.12, 2.35], P = 0.012). CONCLUSIONS There were no significant associations between early dexmedetomidine exposure and day 3 brain injury biomarkers in msTBI. Our findings suggest that early dexmedetomidine use is not correlated with either decrease or increase in brain injury biomarkers following msTBI. Further research is necessary to confirm these findings.
Collapse
Affiliation(s)
- Pattrapun Wongsripuemtet
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, WA, United States; Department of Neurosurgery, University of Washington, Seattle, WA, United States
| | - Jason Barber
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Jordan Komisarow
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Geoffrey T Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Hatfield
- Department of Neurosurgery, Duke University, Durham, NC, United States; Duke University School of Medicine, Durham, NC, United States
| | - Miriam Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Katharine Colton
- Department of Neurology, Duke University, Durham, NC, United States
| | - Cina Sasannejad
- Department of Neurology, Duke University, Durham, NC, United States
| | - Nophanan Chaikittisilpa
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kelly Ivins-O'Keefe
- Department of Anesthesiology, Duke University, Durham, NC, United States; Duke University School of Medicine, Durham, NC, United States
| | - Ramesh Grandhi
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Daniel Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University, Durham, NC, United States; Department of Neurology, Duke University, Durham, NC, United States
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Adrian Hernandez
- Department of Medicine, Duke University, Durham, NC, United States
| | - Michael L James
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Neurology, Duke University, Durham, NC, United States
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Population Health Sciences, Duke University, Durham, NC, United States
| | - Joseph Miller
- Department of Emergency Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Monica Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Anesthesiology, Duke University, Durham, NC, United States; Department of Population Health Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Liu SY, Kelly-Hedrick M, Komisarow J, Hatfield J, Ohnuma T, Treggiari MM, Colton K, Arulraja E, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, James ML, Raghunathan K, Krishnamoorthy V. Association of Early Dexmedetomidine Utilization With Clinical Outcomes After Moderate-Severe Traumatic Brain Injury: A Retrospective Cohort Study. Anesth Analg 2024; 139:366-374. [PMID: 38335145 PMCID: PMC11250935 DOI: 10.1213/ane.0000000000006869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an expensive and common public health problem. Management of TBI oftentimes includes sedation to facilitate mechanical ventilation (MV) for airway protection. Dexmedetomidine has emerged as a potential candidate for improved patient outcomes when used for early sedation after TBI due to its potential modulation of autonomic dysfunction. We examined early sedation patterns, as well as the association of dexmedetomidine exposure with clinical and functional outcomes among mechanically ventilated patients with moderate-severe TBI (msTBI) in the United States. METHODS We conducted a retrospective cohort study using data from the Premier dataset and identified a cohort of critically ill adult patients with msTBI who required MV from January 2016 to June 2020. msTBI was defined by head-neck abbreviated injury scale (AIS) values of 3 (serious), 4 (severe), and 5 (critical). We described early continuous sedative utilization patterns. Using propensity-matched models, we examined the association of early dexmedetomidine exposure (within 2 days of intensive care unit [ICU] admission) with the primary outcome of hospital mortality and the following secondary outcomes: hospital length of stay (LOS), days on MV, vasopressor use after the first 2 days of admission, hemodialysis (HD) after the first 2 days of admission, hospital costs, and discharge disposition. All medications, treatments, and procedures were identified using date-stamped hospital charge codes. RESULTS The study population included 19,751 subjects who required MV within 2 days of ICU admission. The patients were majority male and white. From 2016 to 2020, the annual percent utilization of dexmedetomidine increased from 4.05% to 8.60%. After propensity score matching, early dexmedetomidine exposure was associated with reduced odds of hospital mortality (odds ratio [OR], 0.59; 95% confidence interval [CI], 0.47-0.74; P < .0001), increased risk for liberation from MV (hazard ratio [HR], 1.20; 95% CI, 1.09-1.33; P = .0003), and reduced LOS (HR, 1.11; 95% CI, 1.01-1.22; P = .033). Exposure to early dexmedetomidine was not associated with odds of HD (OR, 1.14; 95% CI, 0.73-1.78; P = .56), vasopressor utilization (OR, 1.10; 95% CI, 0.78-1.55; P = .60), or increased hospital costs (relative cost ratio, 1.98; 95% CI, 0.93-1.03; P = .66). CONCLUSIONS Dexmedetomidine is being utilized increasingly as a sedative for mechanically ventilated patients with msTBI. Early dexmedetomidine exposure may lead to improved patient outcomes in this population.
Collapse
Affiliation(s)
- Sunny Yang Liu
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Margot Kelly-Hedrick
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
| | - Miriam M. Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | | | - Evangeline Arulraja
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | | | | | | | | | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| |
Collapse
|
5
|
Khalili H, Niakan A, Rajabpour-Sanati A, Shaghaghian E, Hesam Alavi M, Dehghankhalili M, Ghaffarpasand F. Effect of Dexmedotomdine hydrochloride (Percedex®) on functional outcome of patients with moderate and severe traumatic brain injury. J Clin Neurosci 2023; 114:146-150. [PMID: 37421901 DOI: 10.1016/j.jocn.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Traumatic brain injury (TBI) is considered among the leading causes of morbidity and mortality worldwide being associated with significant social and economic burden. The best sedative regimen in TBI patients is yet to be identified. This study was designed to determine the effects of dexmedotomdine hydrochloride (Percedex®, DEX) on functional outcome of patients with moderate and severe traumatic brain injury (TBI). This was a retrospective cohort study including patients with severe (3-8) and moderate (9-13) TBI referring to a level I trauma center. We studied two groups of patients, those receiving DEX or routine sedation regimen in neurointensive care unit (NICU). The main outcome measures were the Glasgow outcome scale extended (GOSE) at 3 and 6-month. We have also recorded ICU and hospital length of stay (LOS) and the tracheostomy rate. We included 138 patients in two study groups (each including 69). The baseline characteristics were comparable between groups. DEX was associated with lower LOS in hospital (p = 0.002) and NICU (p = 0.003). The GOSE was comparable between two study groups at 3 (p = 0.245) and 6-month (p = 0.497). Multivariate regression analysis revealed that after LOS of NICU and hospital stay adjustment, DEX group experienced significantly improved 6-month GOSE with the average improvement in score of 0.92 compared to the control group (p = 0.041). DEX administration in patients with moderate and severe TBI was associated with decreased NICU and hospital LOS and improved functional outcome at 6-month.
Collapse
Affiliation(s)
- Hosseinali Khalili
- Trauma Research Center, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Niakan
- Trauma Research Center, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Elaheh Shaghaghian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | - Fariborz Ghaffarpasand
- Research Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|