1
|
Wohlbauer DM, Hem CB, McCallick C, Arenberg JG. Speech performance in adults with cochlear implants using combined channel deactivation and dynamic current focusing. Hear Res 2025; 463:109285. [PMID: 40347546 DOI: 10.1016/j.heares.2025.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES AND METHODS Cochlear implant listeners show difficulties in understanding speech in noise. Channel interactions from activating overlapping neural populations reduce the signal accuracy necessary to interpret complex signals. Optimizing programming strategies based on focused detection thresholds to reduce channel interactions has led to improved performance. In the current study, two previously suggested methods, channel deactivation and focused dynamic tripolar stimulation, were combined. Utilizing an automatic channel selection algorithm from focused detection threshold profiles, three cochlear implant programs were created with the same deactivated channels but varying proportions of channels employing focused stimulation, monopolar, dynamic focused and a mixed program. Thirteen ears in eleven adult cochlear implant listeners with Advanced Bionics HiRes90k devices were tested. Vowel identification and sentence perception in quiet and noise served as outcome measures, and the influences of listening experience, age, clinical consonant-nucleus-consonant performance, and perceptual thresholds on speech performance were assessed. RESULTS Across subjects, different degrees of focusing showed individual performance improvements for vowels and sentences over the monopolar program. Focused listening benefits were shown for individuals with less cochlear implant experience, and clinically poor performers seem to benefit more from focusing than good performers. However, only slight trends and no significant group improvements were observed. CONCLUSION The current findings suggest that deactivating and focusing subsets of channels might improve speech performance for some individuals, especially poor performers, a possible effect of reduced channel interactions. The findings also show that performance is largely variable among individuals.
Collapse
Affiliation(s)
- Dietmar M Wohlbauer
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA.
| | - Charles B Hem
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA; Harvard University, Cambridge, 02114, MA, USA
| | - Caylin McCallick
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| | - Julie G Arenberg
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| |
Collapse
|
2
|
Baumann U, Weißgerber T, Hoppe U. [Fitting of cochlear implant systems]. HNO 2025; 73:335-356. [PMID: 40204958 PMCID: PMC12021728 DOI: 10.1007/s00106-025-01593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The technical fitting of cochlear implant (CI) systems is a central component of the CI care process. On the one hand, this consists of a standardized procedure, while on the other, the individual needs of the patient are taken into account. It starts with the "initial fitting" during basic therapy, where the initial focus is on achieving a satisfactory impression of sound and loudness. In the follow-up therapy, fine adjustment is carried out to achieve the best possible speech perception in quiet and in noise. The aim is to individually adjust the CI processor to audiological targets. The fitting is carried out by a specially qualified professional in accordance with the German CI fitting guidelines and takes into account anatomical conditions, electrophysiological measurements, and audiological evaluation data. The CI fitting should maintain hearing and speech perception throughout life, thus ensuring a significant improvement in quality of life. In children, achieving the best possible CI fitting is fundamental to facilitating normal speech development.
Collapse
Affiliation(s)
- Uwe Baumann
- Universitätsmedizin Frankfurt, Schwerpunkt Audiologische Akustik, Klinik für HNO-Heilkunde, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| | - Tobias Weißgerber
- Universitätsmedizin Frankfurt, Schwerpunkt Audiologische Akustik, Klinik für HNO-Heilkunde, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - Ulrich Hoppe
- Audiologische Abteilung, Hals‑, Nasen‑, Ohrenklinik, Kopf- und Halschirurgie, Universitätsklinikum Erlangen, Waldstraße 1, 91054, Erlangen, Deutschland
| |
Collapse
|
3
|
Wohlbauer DM, Hem C, McCallick C, Arenberg JG. Speech in noise performance in adults with cochlear implants using a combined channel deactivation strategy with a variable number of dynamic focused channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621419. [PMID: 39554103 PMCID: PMC11565966 DOI: 10.1101/2024.10.31.621419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVES AND METHODS Cochlear implant listeners show difficulties in understanding speech in noise. Channel interactions from activating overlapping neural populations reduce the signal accuracy necessary to interpret complex signals. Optimizing programming strategies based on focused detection thresholds to reduce channel interactions has led to improved performance. In the current study, two previously suggested methods, channel deactivation and focused dynamic tripolar stimulation, were combined to create three cochlear implant programs. Utilizing an automatic channel selection algorithm from focused detection threshold profiles, three programs were created with the same deactivated channels but varying proportions of channels employing focused stimulation, monopolar, dynamic focused and a mixed program. Thirteen ears in eleven adult cochlear implant listeners with Advanced Bionics HiRes90k devices were tested. Vowel identification and sentence perception in quiet and noise served as outcome measures, and the influences of listening experience, age, clinical consonant-nucleus-consonant performance, and perceptual thresholds on speech performance were assessed. RESULTS Across subjects, different degrees of focusing showed individual performance improvements for vowels and sentences over the monopolar program. However, only slight trends and no significant group improvements were observed. Focused listening benefits were shown for individuals with less cochlear implant experience, and clinically poor performers seem to benefit more from focusing than good performers. CONCLUSION The current findings suggest that deactivating and focusing subsets of channels improves speech performance for some individuals, especially poor performers, a possible effect of reduced channel interactions. The findings also show that individual performance is largely variable, possibly due to listening experience, age, or the underlying detection threshold.
Collapse
|
4
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Chern A, Denham MW, Leiderman AS, Sharma RK, Su IW, Ucci AJ, Jones JM, Mancuso D, Cellum IP, Galatioto JA, Lalwani AK. The Association of Hearing Loss With Active Music Enjoyment in Hearing Aid Users. Otolaryngol Head Neck Surg 2023; 169:1590-1596. [PMID: 37555237 DOI: 10.1002/ohn.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Hearing aids (HAs) are designed for speech rather than music listening. The impact of HAs on music enjoyment is poorly studied. We examine the effect of HAs on active music enjoyment in individuals with varying levels of hearing loss (HL). STUDY DESIGN Cross-sectional study. SETTING Tertiary medical center and community. METHODS Adult (≥18 years) bilateral HA users and normal hearing (NH) controls actively listened to musical stimuli and rated their enjoyment across 3 measures (pleasantness, musicality, naturalness) with and without HAs using a visual analog scale. Multivariable linear regression was used to assess the association between HL (measured by a pure-tone average [PTA] and word recognition score [WRS] of the better ear) and music enjoyment with and without HAs, adjusting for covariates. Music enjoyment was compared between HA users and NH controls, and HA users with and without their HAs. RESULTS One hundred bilateral HA users (mean age 66.0 years, 52% female, better ear mean [SD] PTA 50.2 [13.5] dBHL, mean WRS 84.5 [16.5]%) completed the study. Increasing severity of HL (PTA) was independently associated with decreased music enjoyment (pleasantness, musicality, naturalness) with and without HAs (p < .05). HA usage increased music enjoyment (musicality) in those with moderate to moderately severe HL. Music enjoyment in NH controls (n = 20) was significantly greater across all measures compared to HA users. CONCLUSION Increased severity of HL is associated with decreased music enjoyment that can be enhanced with HA usage. Thus, HA usage can positively enhance both speech and music appreciation.
Collapse
Affiliation(s)
- Alexander Chern
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College and NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Michael W Denham
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Alexis S Leiderman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Rahul K Sharma
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Irene W Su
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Amanda J Ucci
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Jennifer M Jones
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Dean Mancuso
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Ilana P Cellum
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Jessica A Galatioto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons and Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York City, New York, USA
- Department of Mechanical Engineering, The Fu Foundation School of Engineering and Applied Science, Columbia University, New York City, New York, USA
| |
Collapse
|
6
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
7
|
Stahl P, Dang K, Vandersteen C, Guevara N, Clerc M, Gnansia D. Current distribution of distributed all-polar cochlear implant stimulation mode measured in-situ. PLoS One 2022; 17:e0275961. [PMID: 36315506 PMCID: PMC9621453 DOI: 10.1371/journal.pone.0275961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Oticon Medical cochlear implants use a stimulation mode called Distributed All-Polar (DAP) that connects all non-stimulating available intracochlear electrodes and an extracochlear reference electrode. It results in a complex distribution of current that is yet undescribed. The present study aims at providing a first characterization of this current distribution. A Neuro Zti was modified to allow the measurement of current returning to each electrode during a DAP stimulation and was implanted in an ex-vivo human head. Maps of distributed current were then created for different stimulation conditions with different charge levels. Results show that, on average, about 20% of current returns to the extracochlear reference electrode, while the remaining 80% is distributed between intracochlear electrodes. The position of the stimulating electrode changed this ratio, and about 10% more current to the extracochlear return in case of the first 3 basal electrodes than for apical and mid position electrodes was observed. Increasing the charge level led to small but significant change in the ratio, and about 4% more current to the extracochlear return was measured when increasing the charge level from 11.7 to 70 nC. Further research is needed to show if DAP yields better speech understanding than other stimulation modes.
Collapse
Affiliation(s)
- Pierre Stahl
- Department of Research and Technology, Oticon Medical, Vallauris, France
- * E-mail:
| | - Kai Dang
- Department of Research and Technology, Oticon Medical, Vallauris, France
- Athena Project Team, INRIA, Université Côte d’Azur, Nice, France
| | - Clair Vandersteen
- Head and Neck Surgery Institute, Nice University Hospital, Nice Cedex, France
| | - Nicolas Guevara
- Head and Neck Surgery Institute, Nice University Hospital, Nice Cedex, France
| | - Maureen Clerc
- Athena Project Team, INRIA, Université Côte d’Azur, Nice, France
| | - Dan Gnansia
- Department of Research and Technology, Oticon Medical, Vallauris, France
| |
Collapse
|
8
|
Arjmandi MK, Jahn KN, Arenberg JG. Single-Channel Focused Thresholds Relate to Vowel Identification in Pediatric and Adult Cochlear Implant Listeners. Trends Hear 2022; 26:23312165221095364. [PMID: 35505617 PMCID: PMC9073113 DOI: 10.1177/23312165221095364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Speech recognition outcomes are highly variable among pediatric and adult cochlear implant (CI) listeners. Although there is some evidence that the quality of the electrode-neuron interface (ENI) contributes to this large variability in auditory perception, its relationship with speech outcomes is not well understood. Single-channel auditory detection thresholds measured in response to focused electrical fields (i.e., focused thresholds) are sensitive to properties of ENI quality, including electrode-neuron distance, intracochlear resistance, and neural health. In the present study, focused thresholds and speech perception abilities were assessed in 15 children and 21 adult CI listeners. Focused thresholds were measured for all active electrodes using a fast sweep procedure. Speech perception performance was evaluated by assessing listeners’ ability to identify vowels presented in /h-vowel-d/ context. Consistent with prior literature, focused thresholds were lower for children than for adults, but vowel identification did not differ significantly across age groups. Higher across-array average focused thresholds, which may indicate a relatively poor ENI quality, were associated with poorer vowel identification scores in both children and adults. Adult CI listeners with longer durations of deafness had higher focused thresholds. Findings from this study demonstrate that poor-quality ENIs may contribute to reduced speech outcomes for pediatric and adult CI listeners. Estimates of ENI quality (e.g., focused thresholds) may assist in developing customized programming interventions that serve to improve the transmission of spectral cues that are important in vowel identification.
Collapse
Affiliation(s)
- Meisam K Arjmandi
- Department of Otolaryngology - Head and Neck Surgery, 1811Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, 1866Massachusetts Eye and Ear, Boston, MA, USA.,Audiology Division, 1866Massachusetts Eye and Ear, Boston, MA, USA
| | - Kelly N Jahn
- Department of Otolaryngology - Head and Neck Surgery, 1811Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, 1866Massachusetts Eye and Ear, Boston, MA, USA.,Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, USA
| | - Julie G Arenberg
- Department of Otolaryngology - Head and Neck Surgery, 1811Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, 1866Massachusetts Eye and Ear, Boston, MA, USA.,Audiology Division, 1866Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
9
|
Heshmat A, Sajedi S, Schrott-Fischer A, Rattay F. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array. Front Neurosci 2021; 15:751599. [PMID: 34955717 PMCID: PMC8692583 DOI: 10.3389/fnins.2021.751599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
10
|
Navntoft CA, Landsberger DM, Barkat TR, Marozeau J. The Perception of Ramped Pulse Shapes in Cochlear Implant Users. Trends Hear 2021; 25:23312165211061116. [PMID: 34935552 PMCID: PMC8724057 DOI: 10.1177/23312165211061116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The electric stimulation provided by current cochlear implants (CI) is not power
efficient. One underlying problem is the poor efficiency by which information
from electric pulses is transformed into auditory nerve responses. A novel
stimulation paradigm using ramped pulse shapes has recently been proposed to
remedy this inefficiency. The primary motivation is a better biophysical fit to
spiral ganglion neurons with ramped pulses compared to the rectangular pulses
used in most contemporary CIs. Here, we tested the hypotheses that ramped pulses
provide more efficient stimulation compared to rectangular pulses and that a
rising ramp is more efficient than a declining ramp. Rectangular, rising ramped
and declining ramped pulse shapes were compared in terms of charge efficiency
and discriminability, and threshold variability in seven CI listeners. The tasks
included single-channel threshold detection, loudness-balancing, discrimination
of pulse shapes, and threshold measurement across the electrode array. Results
showed that reduced charge, but increased peak current amplitudes, was required
at threshold and most comfortable levels with ramped pulses relative to
rectangular pulses. Furthermore, only one subject could reliably discriminate
between equally-loud ramped and rectangular pulses, suggesting variations in
neural activation patterns between pulse shapes in that participant. No
significant difference was found between rising and declining ramped pulses
across all tests. In summary, the present findings show some benefits of charge
efficiency with ramped pulses relative to rectangular pulses, that the direction
of a ramped slope is of less importance, and that most participants could not
perceive a difference between pulse shapes.
Collapse
Affiliation(s)
- Charlotte Amalie Navntoft
- Hearing Systems Group, Department of Health Technology, 5205Technical University of Denmark, Kgs. Lyngby, Denmark.,Brain and Sound Lab, Department of Biomedicine, 27209Basel University, Basel, Switzerland
| | - David M Landsberger
- Department of Otolaryngology, 12296New York University School of Medicine, New York, USA
| | - Tania Rinaldi Barkat
- Brain and Sound Lab, Department of Biomedicine, 27209Basel University, Basel, Switzerland
| | - Jeremy Marozeau
- Hearing Systems Group, Department of Health Technology, 5205Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Jahn KN, Arenberg JG. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential. Ear Hear 2021; 41:961-973. [PMID: 31972772 PMCID: PMC10443089 DOI: 10.1097/aud.0000000000000844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The primary objective of this study was to quantify local (within ear) and global (between ear) variation in the cochlear implant (CI) electrode-neuron interface (ENI) using the electrically evoked compound action potential (ECAP). We tested the hypothesis that, within an ear, ECAP measures can be used to identify channels with presumed good and poor ENIs, which may be influenced by a combination of spiral ganglion neuron (SGN) density, electrode position, and cochlear resistivity. We also hypothesized that ECAP responses would reflect age-related differences in the global quality of the ENI between younger and older listeners who theoretically differ in SGN density. DESIGN Data were obtained from 18 implanted ears (13 individuals) with Advanced Bionics HiRes 90K devices. Six participants (8 ears) were adolescents or young adults (age range: 14-32 years), and 7 participants (10 ears) were older adults (age range: 54-88 years). In each ear, single-channel auditory detection thresholds were measured on channels 2 through 15 in response to a spatially focused electrode configuration (steered quadrupolar; focusing coefficient = 0.9). ECAP amplitudes, amplitude growth function (AGF) slopes, and thresholds were assessed on a subset of channels in each ear in response to three interphase gaps (0, 7, and 30 µs). ECAP peak amplitudes were assessed on all channels between 2 and 15. AGFs and ECAP thresholds were measured on the two nonadjacent channels with the lowest and highest focused behavioral thresholds in each ear. ECAP responses were compared across low- and high-threshold channels and between younger and older CI listeners. RESULTS Channels that were estimated to interface poorly with the auditory nerve (i.e., high-focused-threshold channels) had steeper ECAP AGF slopes, smaller dynamic ranges, and higher ECAP thresholds than channels with low focused thresholds. Younger listeners had steeper ECAP AGF slopes and larger ECAP peak amplitudes than older listeners. Moreover, younger listeners showed greater interphase gap sensitivity for ECAP amplitude than older listeners. CONCLUSIONS ECAP responses may be used to quantify both local (within ear) and global (between ear) variation in the quality of the ENI. Results of this study support future investigation into the use of ECAP responses in site-selection CI programming strategies. The present results also support a growing body of evidence suggesting that adolescents and young adults with CIs may have denser populations of functional SGNs relative to older adults. Potential differences in global SGN integrity between younger and older listeners warrant investigation of optimal CI programming interventions based on their divergent hearing histories.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| |
Collapse
|
12
|
Jahn KN, DeVries L, Arenberg JG. Recovery from forward masking in cochlear implant listeners: Effects of age and the electrode-neuron interface. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1633. [PMID: 33765782 PMCID: PMC8267874 DOI: 10.1121/10.0003623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Older adults exhibit deficits in auditory temporal processing relative to younger listeners. These age-related temporal processing difficulties may be further exacerbated in older adults with cochlear implant (CIs) when CI electrodes poorly interface with their target auditory neurons. The aim of this study was to evaluate the potential interaction between chronological age and the estimated quality of the electrode-neuron interface (ENI) on psychophysical forward masking recovery, a measure that reflects single-channel temporal processing abilities. Fourteen CI listeners (age 15 to 88 years) with Advanced Bionics devices participated. Forward masking recovery was assessed on two channels in each ear (i.e., the channels with the lowest and highest signal detection thresholds). Results indicated that the rate of forward masking recovery declined with advancing age, and that the effect of age was more pronounced on channels estimated to interface poorly with the auditory nerve. These findings indicate that the quality of the ENI can influence the time course of forward masking recovery for older CI listeners. Channel-to-channel variability in the ENI likely interacts with central temporal processing deficits secondary to auditory aging, warranting further study of programming and rehabilitative approaches tailored to older listeners.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Lindsay DeVries
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
13
|
Shader MJ, Gordon-Salant S, Goupell MJ. Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Amplitude-Modulation Detection Thresholds. Trends Hear 2020; 24:2331216520936160. [PMID: 32833587 PMCID: PMC7448135 DOI: 10.1177/2331216520936160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).
Collapse
Affiliation(s)
- Maureen J Shader
- Department of Hearing and Speech Sciences, University of Maryland
| | | | | |
Collapse
|
14
|
Anderson SR, Easter K, Goupell MJ. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3232. [PMID: 31795662 PMCID: PMC6948219 DOI: 10.1121/1.5130384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kyle Easter
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
15
|
Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports. Otol Neurotol 2019; 39:e325-e331. [PMID: 29738386 DOI: 10.1097/mao.0000000000001818] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. STUDY DESIGN Retrospective. SETTING Academic Medical Center. METHODS Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. RESULTS 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. CONCLUSIONS Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.
Collapse
|
16
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope encoding: Implications for within- and across-ear envelope comparison. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1189. [PMID: 31472559 PMCID: PMC7051005 DOI: 10.1121/1.5121423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 05/17/2023]
Abstract
Separating sound sources in acoustic environments relies on making ongoing, highly accurate spectro-temporal comparisons. However, listeners with hearing impairment may have varying quality of temporal encoding within or across ears, which may limit the listeners' ability to make spectro-temporal comparisons between places-of-stimulation. In this study in normal hearing listeners, depth of amplitude modulation (AM) for sinusoidally amplitude modulated (SAM) tones was manipulated in an effort to reduce the coding of periodicity in the auditory nerve. The ability to judge differences in AM rates was studied for stimuli presented to different cochlear places-of-stimulation, within- or across-ears. It was hypothesized that if temporal encoding was poorer for one tone in a pair, then sensitivity to differences in AM rate of the pair would decrease. Results indicated that when the depth of AM was reduced from 50% to 20% for one SAM tone in a pair, sensitivity to differences in AM rate decreased. Sensitivity was greatest for AM rates near 90 Hz and depended upon the places-of-stimulation being compared. These results suggest that degraded temporal representations in the auditory nerve for one place-of-stimulation could lead to deficits comparing that temporal information with other places-of-stimulation.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
17
|
Goupell MJ, Fong S, Stakhovskaya O. The effect of envelope modulations on binaural processing. Hear Res 2019; 379:117-127. [PMID: 31154164 DOI: 10.1016/j.heares.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
An experiment was performed with 10 young normal-hearing listeners that attempted to determine if envelope modulations affected binaural processing in bandlimited pulse trains. Listeners detected an interaurally out-of-phase carrier pulse train in the presence of different amplitude modulations. The peaks of the pulses were constant (called "flat" or F), followed envelope modulations from an interaurally correlated 50-Hz bandwidth noise (called CM), or followed modulations from an interaurally uncorrelated noise (called UM). The pulse rate was varied from 50 to 500 pulses per second (pps) and the center frequency (CF) was 4 or 8 kHz. It was hypothesized that CM would cause no change or an increase in performance compared to F; UM would cause a decrease because of the blurring of the binaural detection cue. There was a small but significant decrease from F to CM (inconsistent with the hypothesis) and a further decrease from CM to UM (consistent with the hypothesis). Critically, there was a significant envelope by rate interaction caused by a decrease from F to CM for the 200-300 pps rates. The data can be explained by a subject-based factor, where some listeners experienced interaural envelope decorrelation when the sound was encoded by the auditory system that reduced performance when the modulations were present. Since the decrease in performance between F and CM conditions was small, it seems that most young normal-hearing listeners have very similar encoding of modulated stimuli across the ears. This type of task, when further optimized, may be able to assess if hearing-impaired populations experience interaural decorrelation from encoding modulated stimuli and therefore could help better understand the limited spatial hearing in populations like cochlear-implant users.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Stephen Fong
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Olga Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
18
|
Jahn KN, Arenberg JG. Evaluating Psychophysical Polarity Sensitivity as an Indirect Estimate of Neural Status in Cochlear Implant Listeners. J Assoc Res Otolaryngol 2019; 20:415-430. [PMID: 30949879 PMCID: PMC6646612 DOI: 10.1007/s10162-019-00718-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023] Open
Abstract
The physiological integrity of spiral ganglion neurons is presumed to influence cochlear implant (CI) outcomes, but it is difficult to measure neural health in CI listeners. Modeling data suggest that, when peripheral processes have degenerated, anodic stimulation may be a more effective neural stimulus than cathodic stimulation. The primary goal of the present study was to evaluate the emerging theory that polarity sensitivity reflects neural health in CI listeners. An ideal in vivo estimate of neural integrity should vary independently of other factors known to influence the CI electrode-neuron interface, such as electrode position and tissue impedances. Thus, the present analyses quantified the relationships between polarity sensitivity and (1) electrode position estimated via computed tomography imaging, (2) intracochlear resistance estimated via electrical field imaging, and (3) focused (steered quadrupolar) behavioral thresholds, which are believed to reflect a combination of local neural health, electrode position, and intracochlear resistance. Eleven adults with Advanced Bionics devices participated. To estimate polarity sensitivity, electrode-specific behavioral thresholds in response to monopolar, triphasic pulses where the central high-amplitude phase was either anodic (CAC) or cathodic (ACA) were measured. The polarity effect was defined as the difference in threshold response to the ACA compared to the CAC stimulus. Results indicated that the polarity effect was not related to electrode-to-modiolus distance, electrode scalar location, or intracochlear resistance. Large, positive polarity effects, which may indicate SGN degeneration, were associated with relatively high focused behavioral thresholds. The polarity effect explained a significant portion of the variation in focused thresholds, even after controlling for electrode position and intracochlear resistance. Overall, these results provide support for the theory that the polarity effect may reflect neural integrity in CI listeners. Evidence from this study supports further investigation into the use of polarity sensitivity for optimizing individual CI programming parameters.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Abstract
Supplemental Digital Content is available in the text. Objectives: The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Design: Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Results: Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. Conclusions: These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program.
Collapse
|
20
|
DiNino M, O'Brien G, Bierer SM, Jahn KN, Arenberg JG. The Estimated Electrode-Neuron Interface in Cochlear Implant Listeners Is Different for Early-Implanted Children and Late-Implanted Adults. J Assoc Res Otolaryngol 2019; 20:291-303. [PMID: 30911952 PMCID: PMC6513958 DOI: 10.1007/s10162-019-00716-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/03/2019] [Indexed: 12/01/2022] Open
Abstract
Cochlear implant (CI) programming is similar for all CI users despite limited understanding of the electrode-neuron interface (ENI). The ENI refers to the ability of each CI electrode to effectively stimulate target auditory neurons and is influenced by electrode position, neural health, cochlear geometry, and bone and tissue growth in the cochlea. Hearing history likely affects these variables, suggesting that the efficacy of each channel of stimulation differs between children who were implanted at young ages and adults who lost hearing and received a CI later in life. This study examined whether ENI quality differed between early-implanted children and late-implanted adults. Auditory detection thresholds and most comfortable levels (MCLs) were obtained with monopolar and focused electrode configurations. Channel-to-channel variability and dynamic range were calculated for both types of stimulation. Electrical field imaging data were also acquired to estimate levels of intracochlear resistance. Children exhibited lower average auditory perception thresholds and MCLs compared with adults, particularly with focused stimulation. However, neither dynamic range nor channel-to-channel threshold variability differed between groups, suggesting that children’s range of perceptible current was shifted downward. Children also demonstrated increased intracochlear resistance levels relative to the adult group, possibly reflecting greater ossification or tissue growth after CI surgery. These results illustrate physical and perceptual differences related to the ENI of early-implanted children compared with late-implanted adults. Evidence from this study demonstrates a need for further investigation of the ENI in CI users with varying hearing histories.
Collapse
Affiliation(s)
- Mishaela DiNino
- Department of Psychology, Carnegie Mellon University, 5000 Forbes, Ave., Pittsburgh, PA, 15213, USA.
| | - Gabrielle O'Brien
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Steven M Bierer
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Kelly N Jahn
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Julie G Arenberg
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St., Boston, MA, 02114, USA
| |
Collapse
|
21
|
Interaural Pitch-Discrimination Range Effects for Bilateral and Single-Sided-Deafness Cochlear-Implant Users. J Assoc Res Otolaryngol 2019; 20:187-203. [PMID: 30623318 DOI: 10.1007/s10162-018-00707-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022] Open
Abstract
By allowing bilateral access to sound, bilateral cochlear implants (BI-CIs) or unilateral CIs for individuals with single-sided deafness (SSD; i.e., normal or near-normal hearing in one ear) can improve sound localization and speech understanding in noise. Spatial hearing in the horizontal plane is primarily conveyed by interaural time and level differences computed from neurons in the superior olivary complex that receive frequency-matched inputs. Because BI-CIs and SSD-CIs do not necessarily convey frequency-matched information, it is critical to understand how to align the inputs to CI users. Previous studies show that interaural pitch discrimination for SSD-CI listeners is highly susceptible to contextual biases, questioning its utility for establishing interaural frequency alignment. Here, we replicate this finding for SSD-CI listeners and show that these biases also extend to BI-CI listeners. To assess the testing-range bias, three ranges of comparison electrodes (BI-CI) or pure-tone frequencies (SSD-CI) were tested: full range, apical/lower half, or basal/upper half. To assess the reference bias, the reference electrode was either held fixed throughout a testing block or randomly chosen from three electrodes (basal end, middle, or apical end of the array). Results showed no effect of reference electrode randomization, but a large testing range bias; changing the center of the testing-range shifted the pitch match by an average 63 % (BI-CI) or 43 % (SSD-CI) of the change magnitude. This bias diminished pitch-match accuracy, with a change in reference electrode shifting the pitch match only an average 34 % (BI-CI) or 40 % (SSD-CI) of the expected amount. Because these effects extended to the relatively more symmetric BI-CI listeners, the results suggest that the bias cannot be attributed to interaural asymmetry. Unless the range effect can be minimized or accounted for, a pitch-discrimination task will produce interaural place-of-stimulation estimates that are highly influenced by the conditions tested, rather than reflecting a true interaural place-pitch comparison.
Collapse
|
22
|
Kim SY, Jeon SK, Oh SH, Lee JH, Suh MW, Lee SY, Lim HJ, Park MK. Electrical dynamic range is only weakly associated with auditory performance and speech recognition in long-term users of cochlear implants. Int J Pediatr Otorhinolaryngol 2018; 111:170-173. [PMID: 29958604 DOI: 10.1016/j.ijporl.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The electrical dynamic range (EDR) has been suggested to be related to auditory performance in cochlear implant (CI) users. However, few reports have evaluated postlingual CI users who have used CIs for long periods in comparison with prelingual CI users. Here, we evaluated auditory perception and speech performance in terms of the EDR in long-term CI users. The EDR, and auditory and speech performances, were compared between pre- and post-lingual CI users. METHODS We enrolled all patients who received CIs from April 2000 to December 2010 at Seoul National University Hospital, and who had ≥5 years of experience with CIs. The EDRs affording subjective responses at the threshold level (T-level) and comfortable level (C-level) were analyzed in terms of their relationships with pure tone audiometry levels, speech evaluation scores, including those on the Phonetically Balanced (PB) Word List test, vowel and consonant tests, a sentence test, and the Korean version of the Central Institute for the Deaf (K-CID) test; we also calculated Category in Auditory Performance (CAP) scores. RESULTS We found no significant difference in the average EDR, CAP, K-CID, PB word, consonant, or vowel scores between pre- and post-lingual CI users. The EDR was weakly associated with the PB word (P = 0.003, r = 0.462) and consonant scores (P = 0.005, r = 0.438). Other speech evaluations, such as the CAP, K-CID, and vowel scores, were not significantly associated with the EDR T-level. We found no association between pure tone thresholds at 0.5, 1, or 2 kHz, and the speech evaluation scores or EDRs of low-, middle-, or high-frequency channels. CONCLUSIONS The EDR was only weakly associated with speech performance, such as scores on consonant and PB word tests in long-term CI users, irrespective of pre- or post-lingual deafness status.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology- Head & Neck Surgery, CHA University College of Medicine, Republic of Korea
| | - Seul-Ki Jeon
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Sang-Yub Lee
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Hyun-Jung Lim
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology- Head & Neck Surgery, Seoul National University College of Medicine, Republic of Korea.
| |
Collapse
|
23
|
Zhou N, Dong L. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection. Trends Hear 2018; 21:2331216517690108. [PMID: 28150534 PMCID: PMC5308440 DOI: 10.1177/2331216517690108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In electrical hearing, multipulse integration (MPI) describes the rate at which detection threshold decreases with increasing stimulation rate in a fixed-duration pulse train. In human subjects, MPI has been shown to be dependent on the psychophysically estimated spread of neural excitation at a high stimulation rate, with broader spread predicting greater integration. The first aim of the present study was to replicate this finding using alternative methods for measuring MPI and spread of neural excitation. The second aim was to test the hypothesis that MPI is related to the slope of the psychometric function for detection. Specifically, a steep d' versus stimulus level function would predict shallow MPI since the amount of current reduction necessary to compensate for an increase in stimulation rate to maintain threshold would be small. The MPI function was measured by obtaining adaptive detection thresholds at 160 and 640 pulses per second. Spread of neural excitation was measured by forward-masked psychophysical tuning curves. All psychophysical testing was performed in a monopolar stimulation mode (MP 1 + 2). Results showed that MPI was correlated with the slopes of the tuning curves, with broader tuning predicting steeper MPI, confirming the earlier finding. However, there was no relationship between MPI and the slopes of the psychometric functions. These results suggest that a broad stimulation of the cochlea facilitates MPI. MPI however is not related to the estimated neural excitation growth with current level near the behavioral threshold, at least in monopolar stimulation.
Collapse
Affiliation(s)
- Ning Zhou
- 1 Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Lixue Dong
- 1 Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| |
Collapse
|
24
|
Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners. Ear Hear 2018; 38:e22-e38. [PMID: 27579987 DOI: 10.1097/aud.0000000000000360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE There is currently no accepted method of mapping bilateral cochlear-implant (BiCI) users to maximize binaural performance, but the current approach of mapping one ear at a time could produce spatial perceptions that are not consistent with a sound's physical location in space. The goal of this study was to investigate the perceived intracranial lateralization of bilaterally synchronized electrical stimulation with a range of interaural level differences (ILDs) and to determine a method to produce relatively more centered auditory images when provided multielectrode stimulation. DESIGN Using direct stimulation, lateralization curves were measured in nine BiCI listeners using 1000-pulses per second (pps), 500-msec constant-amplitude pulse trains with ILDs that ranged from -20 to +20 clinical current units (CUs). The stimuli were presented bilaterally at 70 to 80% of the dynamic range on single or multiple electrode pairs. For the multielectrode pairs, the ILD was applied consistently across all the pairs. The lateralization response range and the bias magnitude at 0 CU ILD (i.e., the number of CUs needed to produce a centered auditory image) were computed. Then the levels that elicit a centered auditory image with single-electrode stimulation were used with multielectrode stimulation to determine if this produced fewer significant biases at 0 CU ILD. Lastly, a multichannel ILD processing model was used to predict lateralization for the multielectrode stimulation from the single-electrode stimulation. RESULTS BiCI listeners often perceived both single- and multielectrode stimulation at 0-CU ILD as not intracranially centered. For single-electrode stimulation, 44% of the lateralization curves had relatively large (≥5 CU) bias magnitudes. For the multielectrode stimulation, 25% of the lateralization curves had large bias magnitudes. After centering the single-electrode pairs, the percentage of multielectrode combinations that produced large biases significantly decreased to only 4% (p < 0.001, McNemar's test). The lateralization with multielectrode stimulation was well predicted by a model that used unweighted or weighted average single-electrode lateralization percepts across electrode pairs (87 or 90%, respectively). CONCLUSION Current BiCI mapping procedures can produce an inconsistent association between a physical ILD and the perceived location across electrodes for both single- and multielectrode stimulation. Explicit centering of single-electrode pairs using the perceived centered intracranial location almost entirely corrects this problem and such an approach is supported by our understanding and model of across-frequency ILD processing. Such adjustments might be achieved by clinicians using single-electrode binaural comparisons. Binaural abilities, like sound localization and understanding speech in noise, may be improved if these across-electrode perceptual inconsistencies are removed.
Collapse
|
25
|
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants. Ear Hear 2018; 38:e128-e141. [PMID: 27787393 DOI: 10.1097/aud.0000000000000382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. DESIGN Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. RESULTS Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. CONCLUSIONS The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.
Collapse
|
26
|
Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear Implant Users: Effects of Stimulation Mode. J Assoc Res Otolaryngol 2017; 19:99-111. [PMID: 29086155 DOI: 10.1007/s10162-017-0643-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/09/2017] [Indexed: 01/04/2023] Open
Abstract
Previous psychophysical studies have shown that a steep detection-threshold-versus-stimulation-rate function (multipulse integration; MPI) is associated with laterally positioned electrodes producing a broad neural excitation pattern. These findings are consistent with steep MPI depending on either a certain width of neural excitation allowing a large population of neurons operating at a low point on their dynamic range to respond to an increase in stimulation rate or a certain slope of excitation pattern that allows recruitment of neurons at the excitation periphery. Results of the current study provide additional support for these mechanisms by demonstrating significantly flattened MPI functions in narrow bipolar than monopolar stimulation. The study further examined the relationship between the steepness of the psychometric functions for detection (d' versus log current level) and MPI. In contrast to findings in monopolar stimulation, current data measured in bipolar stimulation suggest that steepness of the psychometric functions explained a moderate amount of the across-site variance in MPI. Steepness of the psychometric functions, however, cannot explain why MPI flattened in bipolar stimulation, since slopes of the psychometric functions were comparable in the two stimulation modes. Lastly, our results show that across-site mean MPI measured in monopolar and bipolar stimulation correlated with speech recognition in opposite signs, with steeper monopolar MPI being associated with poorer performance but steeper bipolar MPI being associated with better performance. If steeper MPI requires broad stimulation of the cochlea, the correlation between monopolar MPI and speech recognition can be interpreted as the detrimental effect of poor spectral resolution on speech recognition. Assuming bipolar stimulation produces narrow excitation, and MPI measured in bipolar stimulation reflects primarily responses of the on-site neurons, the correlation between bipolar MPI and speech recognition can be understood in light of the importance of neural survival for speech recognition.
Collapse
|
27
|
Bosen AK, Chatterjee M. Band importance functions of listeners with cochlear implants using clinical maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3718. [PMID: 27908046 PMCID: PMC5392084 DOI: 10.1121/1.4967298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Band importance functions estimate the relative contribution of individual acoustic frequency bands to speech intelligibility. Previous studies of band importance in listeners with cochlear implants have used experimental maps and direct stimulation. Here, band importance was estimated for clinical maps with acoustic stimulation. Listeners with cochlear implants had band importance functions that relied more heavily on lower frequencies and showed less cross-listener consistency than in listeners with normal hearing. The intersubject variability observed here indicates that averaging band importance functions across listeners with cochlear implants, as has been done in previous studies, may not be meaningful. Additionally, band importance functions of listeners with normal hearing for vocoded speech that either did or did not simulate spread of excitation were not different from one another, suggesting that additional factors beyond spread of excitation are necessary to account for changes in band importance in listeners with cochlear implants.
Collapse
Affiliation(s)
- Adam K Bosen
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Monita Chatterjee
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
28
|
Langner F, Jürgens T. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm. Trends Hear 2016; 20:20/0/2331216516659632. [PMID: 27604785 PMCID: PMC5017570 DOI: 10.1177/2331216516659632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequency selectivity can be quantified using masking paradigms, such as psychophysical tuning curves (PTCs). Normal-hearing (NH) listeners show sharp PTCs that are level- and frequency-dependent, whereas frequency selectivity is strongly reduced in cochlear implant (CI) users. This study aims at (a) assessing individual shapes of PTCs in CI users, (b) comparing these shapes to those of simulated CI listeners (NH listeners hearing through a CI simulation), and (c) increasing the sharpness of PTCs using a biologically inspired dynamic compression algorithm, BioAid, which has been shown to sharpen the PTC shape in hearing-impaired listeners. A three-alternative-forced-choice forward-masking technique was used to assess PTCs in 8 CI users (with their own speech processor) and 11 NH listeners (with and without listening through a vocoder to simulate electric hearing). CI users showed flat PTCs with large interindividual variability in shape, whereas simulated CI listeners had PTCs of the same average flatness, but more homogeneous shapes across listeners. The algorithm BioAid was used to process the stimuli before entering the CI users’ speech processor or the vocoder simulation. This algorithm was able to partially restore frequency selectivity in both groups, particularly in seven out of eight CI users, meaning significantly sharper PTCs than in the unprocessed condition. The results indicate that algorithms can improve the large-scale sharpness of frequency selectivity in some CI users. This finding may be useful for the design of sound coding strategies particularly for situations in which high frequency selectivity is desired, such as for music perception.
Collapse
Affiliation(s)
- Florian Langner
- Medizinische Physik, Cluster of Excellence "Hearing4all," Carl von Ossietzky University, Oldenburg, Germany Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg, Germany Department of Otolaryngology, Medical University Hannover, Hannover, Germany
| | - Tim Jürgens
- Medizinische Physik, Cluster of Excellence "Hearing4all," Carl von Ossietzky University, Oldenburg, Germany Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
29
|
Bierer JA, Litvak L. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation. Trends Hear 2016; 20:20/0/2331216516653389. [PMID: 27317668 PMCID: PMC4948253 DOI: 10.1177/2331216516653389] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Speech perception among cochlear implant (CI) listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a) focused stimulation will improve phoneme recognition and (b) speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects’ threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a) 14-channel partial tripolar (pTP) and (b) 14-channel monopolar (MP), and four variable-channel programs, derived from these two base programs, (c) pTP with high- and (d) low-threshold channels deactivated, and (e) MP with high- and (f) low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring < 62% correct on vowel identification) tended to perform better with the all-channel pTP than with the MP program (1 > 2). These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6). Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners.
Collapse
|
30
|
Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures. Hear Res 2016; 335:193-206. [PMID: 27021590 DOI: 10.1016/j.heares.2016.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/22/2022]
Abstract
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to "work around" abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether "balanced" or "centered" perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. "Balanced bilateral levels" were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.
Collapse
|
31
|
DeVries L, Scheperle R, Bierer JA. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds. J Assoc Res Otolaryngol 2016; 17:237-52. [PMID: 26926152 DOI: 10.1007/s10162-016-0557-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/04/2016] [Indexed: 11/26/2022] Open
Abstract
Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.
Collapse
Affiliation(s)
- Lindsay DeVries
- Department of Speech and Hearing Sciences, University of Washington, 4131 15th Ave NE, Seattle, WA, 98105, USA.
| | - Rachel Scheperle
- Department of Communication Sciences and Disorders, Wendell Johnson Speech and Hearing Center, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Julie Arenberg Bierer
- Department of Speech and Hearing Sciences, University of Washington, 4131 15th Ave NE, Seattle, WA, 98105, USA
| |
Collapse
|
32
|
Bierer JA, Bierer SM, Kreft HA, Oxenham AJ. A fast method for measuring psychophysical thresholds across the cochlear implant array. Trends Hear 2015; 19:19/0/2331216515569792. [PMID: 25656797 PMCID: PMC4324086 DOI: 10.1177/2331216515569792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A rapid threshold measurement procedure, based on Bekesy tracking, is proposed and evaluated for use with cochlear implants (CIs). Fifteen postlingually deafened adult CI users participated. Absolute thresholds for 200-ms trains of biphasic pulses were measured using the new tracking procedure and were compared with thresholds obtained with a traditional forced-choice adaptive procedure under both monopolar and quadrupolar stimulation. Virtual spectral sweeps across the electrode array were implemented in the tracking procedure via current steering, which divides the current between two adjacent electrodes and varies the proportion of current directed to each electrode. Overall, no systematic differences were found between threshold estimates with the new channel sweep procedure and estimates using the adaptive forced-choice procedure. Test–retest reliability for the thresholds from the sweep procedure was somewhat poorer than for thresholds from the forced-choice procedure. However, the new method was about 4 times faster for the same number of repetitions. Overall the reliability and speed of the new tracking procedure provides it with the potential to estimate thresholds in a clinical setting. Rapid methods for estimating thresholds could be of particular clinical importance in combination with focused stimulation techniques that result in larger threshold variations between electrodes.
Collapse
Affiliation(s)
- Julie A Bierer
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Steven M Bierer
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Heather A Kreft
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew J Oxenham
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
Comparison of signal and gap-detection thresholds for focused and broad cochlear implant electrode configurations. J Assoc Res Otolaryngol 2015; 16:273-84. [PMID: 25644786 PMCID: PMC4368655 DOI: 10.1007/s10162-015-0507-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/23/2014] [Indexed: 01/04/2023] Open
Abstract
Cochlear implant (CI) users usually exhibit marked across-electrode differences in detection thresholds with "focused" modes of stimulation, such as partial-tripolar (pTP) mode. This may reflect differences either in local neural survival or in the distance of the electrodes from the modiolus. To shed light on these two explanations, we compared stimulus-detection thresholds and gap-detection thresholds (GDTs) at comfortably loud levels for at least four electrodes in each of ten Advanced Bionics CI users, using 1031-pps pulse trains. The electrodes selected for each user had a wide range of stimulus-detection thresholds in pTP mode. We also measured across-electrode variations in both stimulus-detection and gap-detection tasks in monopolar (MP) mode. Both stimulus-detection and gap-detection thresholds correlated across modes. However, there was no significant correlation between stimulus-detection and gap-detection thresholds in either mode. Hence, gap-detection thresholds likely tap a source of across-electrode variation additional to, or different from, that revealed by stimulus-detection thresholds. Stimulus-detection thresholds were significantly lower for apical than for basal electrodes in both modes; this was only true for gap detection in pTP mode. Finally, although the across-electrode standard deviation in stimulus-detection thresholds was greater in pTP than in MP mode, the reliability of these differences--assessed by dividing the across-electrode standard deviation by the standard deviation across adaptive runs for each electrode--was similar for the two modes; this metric was also similar across modes for gap detection. Hence across-electrode differences can be revealed using clinically available MP stimulation, with a reliability comparable to that observed with focused stimulation.
Collapse
|