1
|
Bernstein JGW, Voelker J, Phatak SA. Headphones over the cochlear-implant sound processor to replace direct audio input. JASA EXPRESS LETTERS 2024; 4:094406. [PMID: 39315944 DOI: 10.1121/10.0028737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Psychoacoustic stimulus presentation to the cochlear implant via direct audio input (DAI) is no longer possible for many newer sound processors (SPs). This study assessed the feasibility of placing circumaural headphones over the SP. Calibration spectra for loudspeaker, DAI, and headphone modalities were estimated by measuring cochlear-implant electrical output levels for tones presented to SPs on an acoustic manikin. Differences in calibration spectra between modalities arose mainly from microphone-response characteristics (high-frequency differences between DAI and the other modalities) or a proximity effect (low-frequency differences between headphones and loudspeaker). Calibration tables are provided to adjust for differences between the three modalities.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, , ,
| | - Julianna Voelker
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, , ,
| | - Sandeep A Phatak
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, , ,
| |
Collapse
|
2
|
Valzolgher C, Bouzaid S, Grenouillet S, Gatel J, Ratenet L, Murenu F, Verdelet G, Salemme R, Gaveau V, Coudert A, Hermann R, Truy E, Farnè A, Pavani F. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality. Eur Arch Otorhinolaryngol 2023; 280:3661-3672. [PMID: 36905419 PMCID: PMC10313844 DOI: 10.1007/s00405-023-07886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND AND PURPOSE Use of unilateral cochlear implant (UCI) is associated with limited spatial hearing skills. Evidence that training these abilities in UCI user is possible remains limited. In this study, we assessed whether a Spatial training based on hand-reaching to sounds performed in virtual reality improves spatial hearing abilities in UCI users METHODS: Using a crossover randomized clinical trial, we compared the effects of a Spatial training protocol with those of a Non-Spatial control training. We tested 17 UCI users in a head-pointing to sound task and in an audio-visual attention orienting task, before and after each training. Study is recorded in clinicaltrials.gov (NCT04183348). RESULTS During the Spatial VR training, sound localization errors in azimuth decreased. Moreover, when comparing head-pointing to sounds before vs. after training, localization errors decreased after the Spatial more than the control training. No training effects emerged in the audio-visual attention orienting task. CONCLUSIONS Our results showed that sound localization in UCI users improves during a Spatial training, with benefits that extend also to a non-trained sound localization task (generalization). These findings have potentials for novel rehabilitation procedures in clinical contexts.
Collapse
Affiliation(s)
- Chiara Valzolgher
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini, 31 Rovereto, Trento, Italy.
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France.
| | - Sabrina Bouzaid
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
| | - Solene Grenouillet
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
| | | | | | - Francesca Murenu
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
| | - Grégoire Verdelet
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
- Neuroimmersion, Lyon, France
| | - Romeo Salemme
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
- Neuroimmersion, Lyon, France
| | - Valérie Gaveau
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
| | | | | | - Eric Truy
- Hospices Civils de Lyon, Lyon, France
| | - Alessandro Farnè
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
- Neuroimmersion, Lyon, France
| | - Francesco Pavani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini, 31 Rovereto, Trento, Italy
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, University of Lyon 1, Lyon, France
- Centro Interuniversitario di Ricerca "Cognizione, Linguaggio e Sordità" (CIRCLeS), Trento, Italy
| |
Collapse
|
3
|
McLachlan G, Majdak P, Reijniers J, Mihocic M, Peremans H. Dynamic spectral cues do not affect human sound localization during small head movements. Front Neurosci 2023; 17:1027827. [PMID: 36816108 PMCID: PMC9936143 DOI: 10.3389/fnins.2023.1027827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.
Collapse
Affiliation(s)
- Glen McLachlan
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium,*Correspondence: Glen McLachlan ✉
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Jonas Reijniers
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Michael Mihocic
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Intensive Training of Spatial Hearing Promotes Auditory Abilities of Bilateral Cochlear Implant Adults: A Pilot Study. Ear Hear 2023; 44:61-76. [PMID: 35943235 DOI: 10.1097/aud.0000000000001256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility of a virtual reality-based spatial hearing training protocol in bilateral cochlear implant (CI) users and to provide pilot data on the impact of this training on different qualities of hearing. DESIGN Twelve bilateral CI adults aged between 19 and 69 followed an intensive 10-week rehabilitation program comprised eight virtual reality training sessions (two per week) interspersed with several evaluation sessions (2 weeks before training started, after four and eight training sessions, and 1 month after the end of training). During each 45-minute training session, participants localized a sound source whose position varied in azimuth and/or in elevation. At the start of each trial, CI users received no information about sound location, but after each response, feedback was given to enable error correction. Participants were divided into two groups: a multisensory feedback group (audiovisual spatial cue) and an unisensory group (visual spatial cue) who only received feedback in a wholly intact sensory modality. Training benefits were measured at each evaluation point using three tests: 3D sound localization in virtual reality, the French Matrix test, and the Speech, Spatial and other Qualities of Hearing questionnaire. RESULTS The training was well accepted and all participants attended the whole rehabilitation program. Four training sessions spread across 2 weeks were insufficient to induce significant performance changes, whereas performance on all three tests improved after eight training sessions. Front-back confusions decreased from 32% to 14.1% ( p = 0.017); speech recognition threshold score from 1.5 dB to -0.7 dB signal-to-noise ratio ( p = 0.029) and eight CI users successfully achieved a negative signal-to-noise ratio. One month after the end of structured training, these performance improvements were still present, and quality of life was significantly improved for both self-reports of sound localization (from 5.3 to 6.7, p = 0.015) and speech understanding (from 5.2 to 5.9, p = 0.048). CONCLUSIONS This pilot study shows the feasibility and potential clinical relevance of this type of intervention involving a sensorial immersive environment and could pave the way for more systematic rehabilitation programs after cochlear implantation.
Collapse
|
5
|
Gaveau V, Coudert A, Salemme R, Koun E, Desoche C, Truy E, Farnè A, Pavani F. Benefits of active listening during 3D sound localization. Exp Brain Res 2022; 240:2817-2833. [PMID: 36071210 PMCID: PMC9587935 DOI: 10.1007/s00221-022-06456-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
In everyday life, sound localization entails more than just the extraction and processing of auditory cues. When determining sound position in three dimensions, the brain also considers the available visual information (e.g., visual cues to sound position) and resolves perceptual ambiguities through active listening behavior (e.g., spontaneous head movements while listening). Here, we examined to what extent spontaneous head movements improve sound localization in 3D—azimuth, elevation, and depth—by comparing static vs. active listening postures. To this aim, we developed a novel approach to sound localization based on sounds delivered in the environment, brought into alignment thanks to a VR system. Our system proved effective for the delivery of sounds at predetermined and repeatable positions in 3D space, without imposing a physically constrained posture, and with minimal training. In addition, it allowed measuring participant behavior (hand, head and eye position) in real time. We report that active listening improved 3D sound localization, primarily by ameliorating accuracy and variability of responses in azimuth and elevation. The more participants made spontaneous head movements, the better was their 3D sound localization performance. Thus, we provide proof of concept of a novel approach to the study of spatial hearing, with potentials for clinical and industrial applications.
Collapse
Affiliation(s)
- V Gaveau
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France. .,University of Lyon 1, Lyon, France.
| | - A Coudert
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,ENT Departments, Hôpital Femme-Mère-Enfant and Edouard Herriot University Hospitals, Lyon, France
| | - R Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,Neuro-immersion, Lyon, France
| | - E Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France
| | - C Desoche
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,Neuro-immersion, Lyon, France
| | - E Truy
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,ENT Departments, Hôpital Femme-Mère-Enfant and Edouard Herriot University Hospitals, Lyon, France
| | - A Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,Neuro-immersion, Lyon, France
| | - F Pavani
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Av. Doyen Lépine, BRON cedex, 69500, Lyon, France.,University of Lyon 1, Lyon, France.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
6
|
A Modelling Study on the Comparison of Predicted Auditory Nerve Firing Rates for the Personalized Indication of Cochlear Implantation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decision of whether to perform cochlear implantation is crucial because implantation cannot be reversed without harm. The aim of the study was to compare model-predicted time–place representations of auditory nerve (AN) firing rates for normal hearing and impaired hearing with a view towards personalized indication of cochlear implantation. AN firing rates of 1024 virtual subjects with a wide variety of different types and degrees of hearing impairment were predicted. A normal hearing reference was compared to four hearing prosthesis options, which were unaided hearing, sole acoustic amplification, sole electrical stimulation, and a combination of the latter two. The comparisons and the fitting of the prostheses were based on a ‘loss of action potentials’ (LAP) score. Single-parameter threshold analysis suggested that cochlear implantation is indicated when more than approximately two-thirds of the inner hair cells (IHCs) are damaged. Second, cochlear implantation is also indicated when more than an average of approximately 12 synapses per IHC are damaged due to cochlear synaptopathy (CS). Cochlear gain loss (CGL) appeared to shift these thresholds only slightly. Finally, a support vector machine predicted the indication of a cochlear implantation from hearing loss parameters with a 10-fold cross-validated accuracy of 99.2%.
Collapse
|
7
|
Fernandez J, Sivonen V, Pulkki V. Investigating Bilateral Cochlear Implant Users' Localization of Amplitude- and Time-Panned Stimuli Produced Over a Limited Loudspeaker Arrangement. Am J Audiol 2022; 31:143-154. [PMID: 35130033 DOI: 10.1044/2021_aja-21-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the localization ability of bilateral cochlear implant (BiCI) users for virtual sound sources produced over a limited loudspeaker arrangement. DESIGN Ten BiCI users and 10 normal-hearing subjects participated in listening tests in which amplitude- and time-panned virtual sound sources were produced over a limited loudspeaker setup with varying azimuth angles. Three stimuli were utilized: speech, bandpassed pink noise between 20 Hz and 1 kHz, and bandpassed pink noise between 1 kHz and 8 kHz. The data were collected via a two-alternative forced-choice procedure and used to calculate the minimum audible angle (MAA) of each subject, which was subsequently compared to the results of previous studies in which real sound sources were employed. RESULT The median MAAs of the amplitude-panned speech, low-frequency pink noise, and high-frequency pink noise stimuli for the BiCI group were calculated to be 20°, 38°, and 12°, respectively. For the time-panned stimuli, the MAAs of the BiCI group for all three stimuli were calculated to be close to the upper limit of the listening test. CONCLUSIONS The computed MAAs of the BiCI group for amplitude-panned speech were marginally larger than BiCI users' previously reported MAAs for real sound sources, whereas their computed MAAs for the time-panned stimuli were significantly larger. Subsequent statistical analysis indicated a statistically significant difference in the performances of the BiCI group in localizing the amplitude-panned sources and the time-panned sources. It follows that time-panning over limited loudspeaker arrangements may not be a useful clinical tool, whereas amplitude-panning utilizing such a setup may be further explored as such. Additionally, a comparison with the patient demographics indicated correlations between the results and the patients' age at time of diagnoses and the time passed between date of diagnosis and their implant surgeries.
Collapse
Affiliation(s)
- Janani Fernandez
- Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
| | - Ville Sivonen
- Head and Neck Center, Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Finland
| | - Ville Pulkki
- Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
| |
Collapse
|
8
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
The Impact of Synchronized Cochlear Implant Sampling and Stimulation on Free-Field Spatial Hearing Outcomes: Comparing the ciPDA Research Processor to Clinical Processors. Ear Hear 2022; 43:1262-1272. [PMID: 34882619 PMCID: PMC9174346 DOI: 10.1097/aud.0000000000001179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Bilateral cochlear implant (BiCI) listeners use independent processors in each ear. This independence and lack of shared hardware prevents control of the timing of sampling and stimulation across ears, which precludes the development of bilaterally-coordinated signal processing strategies. As a result, these devices potentially reduce access to binaural cues and introduce disruptive artifacts. For example, measurements from two clinical processors demonstrate that independently-running processors introduce interaural incoherence. These issues are typically avoided in the laboratory by using research processors with bilaterally-synchronized hardware. However, these research processors do not typically run in real-time and are difficult to take out into the real-world due to their benchtop nature. Hence, the question of whether just applying hardware synchronization to reduce bilateral stimulation artifacts (and thereby potentially improve functional spatial hearing performance) has been difficult to answer. The CI personal digital assistant (ciPDA) research processor, which uses one clock to drive two processors, presented an opportunity to examine whether synchronization of hardware can have an impact on spatial hearing performance. DESIGN Free-field sound localization and spatial release from masking (SRM) were assessed in 10 BiCI listeners using both their clinical processors and the synchronized ciPDA processor. For sound localization, localization accuracy was compared within-subject for the two processor types. For SRM, speech reception thresholds were compared for spatially separated and co-located configurations, and the amount of unmasking was compared for synchronized and unsynchronized hardware. There were no deliberate changes of the sound processing strategy on the ciPDA to restore or improve binaural cues. RESULTS There was no significant difference in localization accuracy between unsynchronized and synchronized hardware (p = 0.62). Speech reception thresholds were higher with the ciPDA. In addition, although five of eight participants demonstrated improved SRM with synchronized hardware, there was no significant difference in the amount of unmasking due to spatial separation between synchronized and unsynchronized hardware (p = 0.21). CONCLUSIONS Using processors with synchronized hardware did not yield an improvement in sound localization or SRM for all individuals, suggesting that mere synchronization of hardware is not sufficient for improving spatial hearing outcomes. Further work is needed to improve sound coding strategies to facilitate access to spatial hearing cues. This study provides a benchmark for spatial hearing performance with real-time, bilaterally-synchronized research processors.
Collapse
|
10
|
Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants. Ear Hear 2022; 43:101-114. [PMID: 34133400 PMCID: PMC8671563 DOI: 10.1097/aud.0000000000001080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To investigate the role of auditory cues for spatial release from masking (SRM) in children with bilateral cochlear implants (BiCIs) and compare their performance with children with normal hearing (NH). To quantify the contribution to speech intelligibility benefits from individual auditory cues: head shadow, binaural redundancy, and interaural differences; as well as from multiple cues: SRM and binaural squelch. To assess SRM using a novel approach of adaptive target-masker angular separation, which provides a more functionally relevant assessment in realistic complex auditory environments. DESIGN Children fitted with BiCIs (N = 11) and with NH (N = 18) were tested in virtual acoustic space that was simulated using head-related transfer functions measured from individual children with BiCIs behind the ear and from a standard head and torso simulator for all NH children. In experiment I, by comparing speech reception thresholds across 4 test conditions that varied in target-masker spatial separation (colocated versus separated at 180°) and listening conditions (monaural versus binaural/bilateral listening), intelligibility benefits were derived for individual auditory cues for SRM. In experiment II, SRM was quantified using a novel measure to find the minimum angular separation (MAS) between the target and masker to achieve a fixed 20% intelligibility improvement. Target speech was fixed at either +90 or -90° azimuth on the side closer to the better ear (+90° for all NH children) and masker locations were adaptively varied. RESULTS In experiment I, children with BiCIs as a group had smaller intelligibility benefits from head shadow than NH children. No group difference was observed in benefits from binaural redundancy or interaural difference cues. In both groups of children, individuals who gained a larger benefit from interaural differences relied less on monaural head shadow, and vice versa. In experiment II, all children with BiCIs demonstrated measurable MAS thresholds <180° and on average larger than that from NH children. Eight of 11 children with BiCIs and all NH children had a MAS threshold <90°, requiring interaural differences only to gain the target intelligibility benefit; whereas the other 3 children with BiCIs had a MAS between 120° and 137°, requiring monaural head shadow for SRM. CONCLUSIONS When target and maskers were separated at 180° on opposing hemifields, children with BiCIs demonstrated greater intelligibility benefits from head shadow and interaural differences than previous literature showed with a smaller separation. Children with BiCIs demonstrated individual differences in using auditory cues for SRM. From the MAS thresholds, more than half of the children with BiCIs demonstrated robust access to interaural differences without needing additional monaural head shadow for SRM. Both experiments led to the conclusion that individualized fitting strategies in the bilateral devices may be warranted to maximize spatial hearing for children with BiCIs in complex auditory environments.
Collapse
|
11
|
Gray WO, Mayo PG, Goupell MJ, Brown AD. Transmission of Binaural Cues by Bilateral Cochlear Implants: Examining the Impacts of Bilaterally Independent Spectral Peak-Picking, Pulse Timing, and Compression. Trends Hear 2021; 25:23312165211030411. [PMID: 34293981 PMCID: PMC8785329 DOI: 10.1177/23312165211030411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acoustic hearing listeners use binaural cues—interaural time differences (ITDs) and interaural level differences (ILDs)—for localization and segregation of sound sources in the horizontal plane. Cochlear implant users now often receive two implants (bilateral cochlear implants [BiCIs]) rather than one, with the goal to provide access to these cues. However, BiCI listeners often experience difficulty with binaural tasks. Most BiCIs use independent sound processors at each ear; it has often been suggested that such independence may degrade the transmission of binaural cues, particularly ITDs. Here, we report empirical measurements of binaural cue transmission via BiCIs implementing a common “n-of-m” spectral peak-picking stimulation strategy. Measurements were completed for speech and nonspeech stimuli presented to an acoustic manikin “fitted” with BiCI sound processors. Electric outputs from the BiCIs and acoustic outputs from the manikin’s in-ear microphones were recorded simultaneously, enabling comparison of electric and acoustic binaural cues. For source locations away from the midline, BiCI binaural cues, particularly envelope ITD cues, were found to be degraded by asymmetric spectral peak-picking. In addition, pulse amplitude saturation due to nonlinear level mapping yielded smaller ILDs at higher presentation levels. Finally, while individual pulses conveyed a spurious “drifting” ITD, consistent with independent left and right processor clocks, such variation was not evident in transmitted envelope ITDs. Results point to avenues for improvement of BiCI technology and may prove useful in the interpretation of BiCI spatial hearing outcomes reported in prior and future studies.
Collapse
Affiliation(s)
- William O Gray
- Department of Speech and Hearing Sciences, 7284University of Washington, University of Washington, Seattle, United States
| | - Paul G Mayo
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, 7284University of Washington, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| |
Collapse
|
12
|
Fischer T, Schmid C, Kompis M, Mantokoudis G, Caversaccio M, Wimmer W. Effects of temporal fine structure preservation on spatial hearing in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:673. [PMID: 34470279 DOI: 10.1121/10.0005732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Typically, the coding strategies of cochlear implant audio processors discard acoustic temporal fine structure information (TFS), which may be related to the poor perception of interaural time differences (ITDs) and the resulting reduced spatial hearing capabilities compared to normal-hearing individuals. This study aimed to investigate to what extent bilateral cochlear implant (BiCI) recipients can exploit ITD cues provided by a TFS preserving coding strategy (FS4) in a series of sound field spatial hearing tests. As a baseline, we assessed the sensitivity to ITDs and binaural beats of 12 BiCI subjects with a coding strategy disregarding fine structure (HDCIS) and the FS4 strategy. For 250 Hz pure-tone stimuli but not for broadband noise, the BiCI users had significantly improved ITD discrimination using the FS4 strategy. In the binaural beat detection task and the broadband sound localization, spatial discrimination, and tracking tasks, no significant differences between the two tested coding strategies were observed. These results suggest that ITD sensitivity did not generalize to broadband stimuli or sound field spatial hearing tests, suggesting that it would not be useful for real-world listening.
Collapse
Affiliation(s)
- T Fischer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - C Schmid
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - M Kompis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - G Mantokoudis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - M Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - W Wimmer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| |
Collapse
|
13
|
Gajecki T, Nogueira W. Enhancement of interaural level differences for bilateral cochlear implant users. Hear Res 2021; 409:108313. [PMID: 34340023 DOI: 10.1016/j.heares.2021.108313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
Bilateral cochlear implant (BiCI) users do not localize sounds as well as normal hearing (NH) listeners do. NH listeners rely on two binaural cues to localize sounds in the horizontal plane, namely interaural level differences (ILDs) and interaural time differences. BiCI systems, however, convey these cues poorly. In this work, we investigated two methods to improve the coding of ILDs in BiCIs. The first method enhances ILDs by applying an artificial current-versus-angle function to the clinical levels delivered by the basal electrodes of the CI contralateral to the target sound. The second method enhances ILDs by using bilaterally linked N-of-M band selection. Results indicate that the participants were able to discriminate the location of the sound more accurately at narrow azimuths when the ILD enhancement was applied, compared to when they were using natural ILDs. Also, the results show that linking the band selection had a positive effect on left/right discrimination accuracy at larger azimuths for three out of the 10 tested participants, when compared to unlinked band selection. Based on these results, we conclude that ILD enhancement besides linked N-of-M band selection can help some BiCI participants to discriminate sound sources on the frontal horizontal plane.
Collapse
Affiliation(s)
- Tom Gajecki
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| | - Waldo Nogueira
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| |
Collapse
|
14
|
Pinna-Imitating Microphone Directionality Improves Sound Localization and Discrimination in Bilateral Cochlear Implant Users. Ear Hear 2020; 42:214-222. [PMID: 32701730 PMCID: PMC7757747 DOI: 10.1097/aud.0000000000000912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To compare the sound-source localization, discrimination, and tracking performance of bilateral cochlear implant users with omnidirectional (OMNI) and pinna-imitating (PI) microphone directionality modes. DESIGN Twelve experienced bilateral cochlear implant users participated in the study. Their audio processors were fitted with two different programs featuring either the OMNI or PI mode. Each subject performed static and dynamic sound field spatial hearing tests in the horizontal plane. The static tests consisted of an absolute sound localization test and a minimum audible angle test, which was measured at eight azimuth directions. Dynamic sound tracking ability was evaluated by the subject correctly indicating the direction of a moving stimulus along two circular paths around the subject. RESULTS PI mode led to statistically significant sound localization and discrimination improvements. For static sound localization, the greatest benefit was a reduction in the number of front-back confusions. The front-back confusion rate was reduced from 47% with OMNI mode to 35% with PI mode (p = 0.03). The ability to discriminate sound sources straight to the sides (90° and 270° angle) was only possible with PI mode. The averaged minimum audible angle value for the 90° and 270° angle positions decreased from a 75.5° to a 37.7° angle when PI mode was used (p < 0.001). Furthermore, a non-significant trend towards an improvement in the ability to track moving sound sources was observed for both trajectories tested (p = 0.34 and p = 0.27). CONCLUSIONS Our results demonstrate that PI mode can lead to improved spatial hearing performance in bilateral cochlear implant users, mainly as a consequence of improved front-back discrimination with PI mode.
Collapse
|
15
|
Ausili SA, Backus B, Agterberg MJH, van Opstal AJ, van Wanrooij MM. Sound Localization in Real-Time Vocoded Cochlear-Implant Simulations With Normal-Hearing Listeners. Trends Hear 2019; 23:2331216519847332. [PMID: 31088265 PMCID: PMC6535744 DOI: 10.1177/2331216519847332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bilateral cochlear-implant (CI) users and single-sided deaf listeners with a CI are less effective at localizing sounds than normal-hearing (NH) listeners. This performance gap is due to the degradation of binaural and monaural sound localization cues, caused by a combination of device-related and patient-related issues. In this study, we targeted the device-related issues by measuring sound localization performance of 11 NH listeners, listening to free-field stimuli processed by a real-time CI vocoder. The use of a real-time vocoder is a new approach, which enables testing in a free-field environment. For the NH listening condition, all listeners accurately and precisely localized sounds according to a linear stimulus–response relationship with an optimal gain and a minimal bias both in the azimuth and in the elevation directions. In contrast, when listening with bilateral real-time vocoders, listeners tended to orient either to the left or to the right in azimuth and were unable to determine sound source elevation. When listening with an NH ear and a unilateral vocoder, localization was impoverished on the vocoder side but improved toward the NH side. Localization performance was also reflected by systematic variations in reaction times across listening conditions. We conclude that perturbation of interaural temporal cues, reduction of interaural level cues, and removal of spectral pinna cues by the vocoder impairs sound localization. Listeners seem to ignore cues that were made unreliable by the vocoder, leading to acute reweighting of available localization cues. We discuss how current CI processors prevent CI users from localizing sounds in everyday environments.
Collapse
Affiliation(s)
- Sebastian A Ausili
- 1 Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | | | - Martijn J H Agterberg
- 1 Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,3 Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, the Netherlands
| | - A John van Opstal
- 1 Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marc M van Wanrooij
- 1 Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Zaleski-King A, Goupell MJ, Barac-Cikoja D, Bakke M. Bimodal Cochlear Implant Listeners' Ability to Perceive Minimal Audible Angle Differences. J Am Acad Audiol 2019; 30:659-671. [PMID: 30417825 PMCID: PMC6561832 DOI: 10.3766/jaaa.17012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Bilateral inputs should ideally improve sound localization and speech understanding in noise. However, for many bimodal listeners [i.e., individuals using a cochlear implant (CI) with a contralateral hearing aid (HA)], such bilateral benefits are at best, inconsistent. The degree to which clinically available HA and CI devices can function together to preserve interaural time and level differences (ITDs and ILDs, respectively) enough to support the localization of sound sources is a question with important ramifications for speech understanding in complex acoustic environments. PURPOSE To determine if bimodal listeners are sensitive to changes in spatial location in a minimum audible angle (MAA) task. RESEARCH DESIGN Repeated-measures design. STUDY SAMPLE Seven adult bimodal CI users (28-62 years). All listeners reported regular use of digital HA technology in the nonimplanted ear. DATA COLLECTION AND ANALYSIS Seven bimodal listeners were asked to balance the loudness of prerecorded single syllable utterances. The loudness-balanced stimuli were then presented via direct audio inputs of the two devices with an ITD applied. The task of the listener was to determine the perceived difference in processing delay (the interdevice delay [IDD]) between the CI and HA devices. Finally, virtual free-field MAA performance was measured for different spatial locations both with and without inclusion of the IDD correction, which was added with the intent to perceptually synchronize the devices. RESULTS During the loudness-balancing task, all listeners required increased acoustic input to the HA relative to the CI most comfortable level to achieve equal interaural loudness. During the ITD task, three listeners could perceive changes in intracranial position by distinguishing sounds coming from the left or from the right hemifield; when the CI was delayed by 0.73, 0.67, or 1.7 msec, the signal lateralized from one side to the other. When MAA localization performance was assessed, only three of the seven listeners consistently achieved above-chance performance, even when an IDD correction was included. It is not clear whether the listeners who were able to consistently complete the MAA task did so via binaural comparison or by extracting monaural loudness cues. Four listeners could not perform the MAA task, even though they could have used a monaural loudness cue strategy. CONCLUSIONS These data suggest that sound localization is extremely difficult for most bimodal listeners. This difficulty does not seem to be caused by large loudness imbalances and IDDs. Sound localization is best when performed via a binaural comparison, where frequency-matched inputs convey ITD and ILD information. Although low-frequency acoustic amplification with a HA when combined with a CI may produce an overlapping region of frequency-matched inputs and thus provide an opportunity for binaural comparisons for some bimodal listeners, our study showed that this may not be beneficial or useful for spatial location discrimination tasks. The inability of our listeners to use monaural-level cues to perform the MAA task highlights the difficulty of using a HA and CI together to glean information on the direction of a sound source.
Collapse
Affiliation(s)
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland College Park, MD 20742
| | | | | |
Collapse
|
17
|
Kan A, Goupell MJ, Litovsky RY. Effect of channel separation and interaural mismatch on fusion and lateralization in normal-hearing and cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1448. [PMID: 31472555 PMCID: PMC6713556 DOI: 10.1121/1.5123464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 05/29/2023]
Abstract
Bilateral cochlear implantation has provided access to some of the benefits of binaural hearing enjoyed by normal-hearing (NH) listeners. However, a gap in performance still exists between the two populations. Single-channel stimulation studies have shown that interaural place-of-stimulation mismatch (IPM) due to differences in implantation depth leads to decreased binaural fusion and lateralization of interaural time and level differences (ITDs and ILDs, respectively). While single-channel studies are informative, multi-channel stimulation is needed for good speech understanding with cochlear implants (CIs). Some multi-channel studies have shown that channel interaction due to current spread can affect ITD sensitivity. In this work, we studied the effect of IPM and channel spacing, along with their potential interaction, on binaural fusion and ITD/ILD lateralization. Experiments were conducted in adult NH listeners and CI listeners with a history of acoustic hearing. Results showed that IPM reduced the range of lateralization for ITDs but not ILDs. CI listeners were more likely to report a fused percept in the presence of IPM with multi-channel stimulation than NH listeners. However, no effect of channel spacing was found. These results suggest that IPM should be accounted for in clinical mapping practices in order to maximize bilateral CI benefits.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
18
|
Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Stohl JS, Schatzer R, Nopp P, Wolford RD, Gorospe JM, Polo R, Revilla AG, Wilson BS. Lateralization of virtual sound sources with a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hear Res 2019; 379:103-116. [DOI: 10.1016/j.heares.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
19
|
Pastore MT, Natale S, Yost W, Dorman MF. Head Movements Allow Listeners Bilaterally Implanted With Cochlear Implants to Resolve Front-Back Confusions. Ear Hear 2019; 39:1224-1231. [PMID: 29664750 PMCID: PMC6191386 DOI: 10.1097/aud.0000000000000581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We report on the ability of patients fit with bilateral cochlear implants (CIs) to distinguish the front-back location of sound sources both with and without head movements. At issue was (i) whether CI patients are more prone to front-back confusions than normal hearing listeners for wideband, high-frequency stimuli; and (ii) if CI patients can utilize dynamic binaural difference cues, in tandem with their own head rotation, to resolve these front-back confusions. Front-back confusions offer a binary metric to gain insight into CI patients' ability to localize sound sources under dynamic conditions not generally measured in laboratory settings where both the sound source and patient are static. DESIGN Three-second duration Gaussian noise samples were bandpass filtered to 2 to 8 kHz and presented from one of six loudspeaker locations located 60° apart, surrounding the listener. Perceived sound source localization for seven listeners bilaterally implanted with CIs, was tested under conditions where the patient faced forward and did not move their head and under conditions where they were encouraged to moderately rotate their head. The same conditions were repeated for 5 of the patients with one implant turned off (the implant at the better ear remained on). A control group of normal hearing listeners was also tested for a baseline of comparison. RESULTS All seven CI patients demonstrated a high rate of front-back confusions when their head was stationary (41.9%). The proportion of front-back confusions was reduced to 6.7% when these patients were allowed to rotate their head within a range of approximately ± 30°. When only one implant was turned on, listeners' localization acuity suffered greatly. In these conditions, head movement or the lack thereof made little difference to listeners' performance. CONCLUSIONS Bilateral implantation can offer CI listeners the ability to track dynamic auditory spatial difference cues and compare these changes to changes in their own head position, resulting in a reduced rate of front-back confusions. This suggests that, for these patients, estimates of auditory acuity based solely on static laboratory settings may underestimate their real-world localization abilities.
Collapse
|
20
|
Rana B, Buchholz JM, Morgan C, Sharma M, Weller T, Konganda SA, Shirai K, Kawano A. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization. Trends Hear 2018; 21:2331216517722106. [PMID: 28752811 PMCID: PMC5536376 DOI: 10.1177/2331216517722106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Binaural hearing helps normal-hearing listeners localize sound sources and understand speech in noise. However, it is not fully understood how far this is the case for bilateral cochlear implant (CI) users. To determine the potential benefits of bilateral over unilateral CIs, speech comprehension thresholds (SCTs) were measured in seven Japanese bilateral CI recipients using Helen test sentences (translated into Japanese) in a two-talker speech interferer presented from the front (co-located with the target speech), ipsilateral to the first-implanted ear (at +90° or -90°), and spatially symmetric at ±90°. Spatial release from masking was calculated as the difference between co-located and spatially separated SCTs. Localization was assessed in the horizontal plane by presenting either male or female speech or both simultaneously. All measurements were performed bilaterally and unilaterally (with the first implanted ear) inside a loudspeaker array. Both SCTs and spatial release from masking were improved with bilateral CIs, demonstrating mean bilateral benefits of 7.5 dB in spatially asymmetric and 3 dB in spatially symmetric speech mixture. Localization performance varied strongly between subjects but was clearly improved with bilateral over unilateral CIs with the mean localization error reduced by 27°. Surprisingly, adding a second talker had only a negligible effect on localization.
Collapse
Affiliation(s)
- Baljeet Rana
- 1 National Acoustic Laboratories, Australian Hearing Hub, Macquarie University, Sydney, NSW, Australia.,2 Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | - Jörg M Buchholz
- 1 National Acoustic Laboratories, Australian Hearing Hub, Macquarie University, Sydney, NSW, Australia.,2 Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | | | - Mridula Sharma
- 2 Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | - Tobias Weller
- 1 National Acoustic Laboratories, Australian Hearing Hub, Macquarie University, Sydney, NSW, Australia.,2 Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | | | - Kyoko Shirai
- 4 Department of Otolaryngology, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Kawano
- 4 Department of Otolaryngology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Thakkar T, Kan A, Jones HG, Litovsky RY. Mixed stimulation rates to improve sensitivity of interaural timing differences in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1428. [PMID: 29604701 PMCID: PMC5851783 DOI: 10.1121/1.5026618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 05/29/2023]
Abstract
Normal hearing listeners extract small interaural time differences (ITDs) and interaural level differences (ILDs) to locate sounds and segregate targets from noise. Bilateral cochlear implant listeners show poor sensitivity to ITDs when using clinical processors. This is because common clinical stimulation approaches use high rates [∼1000 pulses per-second (pps)] for each electrode in order to provide good speech representation, but sensitivity to ITDs is best at low rates of stimulation (∼100-300 pps). Mixing rates of stimulation across the array is a potential solution. Here, ITD sensitivity for a number of mixed-rate configurations that were designed to preserve speech envelope cues using high-rate stimulation and spatial hearing using low rate stimulation was examined. Results showed that ITD sensitivity in mixed-rate configurations when only one low rate electrode was included generally yielded ITD thresholds comparable to a configuration with low rates only. Low rate stimulation at basal or middle regions on the electrode array yielded the best sensitivity to ITDs. This work provides critical evidence that supports the use of mixed-rate strategies for improving ITD sensitivity in bilateral cochlear implant users.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Heath G Jones
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
22
|
Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners. Ear Hear 2018; 38:e22-e38. [PMID: 27579987 DOI: 10.1097/aud.0000000000000360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE There is currently no accepted method of mapping bilateral cochlear-implant (BiCI) users to maximize binaural performance, but the current approach of mapping one ear at a time could produce spatial perceptions that are not consistent with a sound's physical location in space. The goal of this study was to investigate the perceived intracranial lateralization of bilaterally synchronized electrical stimulation with a range of interaural level differences (ILDs) and to determine a method to produce relatively more centered auditory images when provided multielectrode stimulation. DESIGN Using direct stimulation, lateralization curves were measured in nine BiCI listeners using 1000-pulses per second (pps), 500-msec constant-amplitude pulse trains with ILDs that ranged from -20 to +20 clinical current units (CUs). The stimuli were presented bilaterally at 70 to 80% of the dynamic range on single or multiple electrode pairs. For the multielectrode pairs, the ILD was applied consistently across all the pairs. The lateralization response range and the bias magnitude at 0 CU ILD (i.e., the number of CUs needed to produce a centered auditory image) were computed. Then the levels that elicit a centered auditory image with single-electrode stimulation were used with multielectrode stimulation to determine if this produced fewer significant biases at 0 CU ILD. Lastly, a multichannel ILD processing model was used to predict lateralization for the multielectrode stimulation from the single-electrode stimulation. RESULTS BiCI listeners often perceived both single- and multielectrode stimulation at 0-CU ILD as not intracranially centered. For single-electrode stimulation, 44% of the lateralization curves had relatively large (≥5 CU) bias magnitudes. For the multielectrode stimulation, 25% of the lateralization curves had large bias magnitudes. After centering the single-electrode pairs, the percentage of multielectrode combinations that produced large biases significantly decreased to only 4% (p < 0.001, McNemar's test). The lateralization with multielectrode stimulation was well predicted by a model that used unweighted or weighted average single-electrode lateralization percepts across electrode pairs (87 or 90%, respectively). CONCLUSION Current BiCI mapping procedures can produce an inconsistent association between a physical ILD and the perceived location across electrodes for both single- and multielectrode stimulation. Explicit centering of single-electrode pairs using the perceived centered intracranial location almost entirely corrects this problem and such an approach is supported by our understanding and model of across-frequency ILD processing. Such adjustments might be achieved by clinicians using single-electrode binaural comparisons. Binaural abilities, like sound localization and understanding speech in noise, may be improved if these across-electrode perceptual inconsistencies are removed.
Collapse
|
23
|
The Effect of Microphone Placement on Interaural Level Differences and Sound Localization Across the Horizontal Plane in Bilateral Cochlear Implant Users. Ear Hear 2018; 37:e341-5. [PMID: 27054512 DOI: 10.1097/aud.0000000000000297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study examined the effect of microphone placement on the interaural level differences (ILDs) available to bilateral cochlear implant (BiCI) users, and the subsequent effects on horizontal-plane sound localization. DESIGN Virtual acoustic stimuli for sound localization testing were created individually for eight BiCI users by making acoustic transfer function measurements for microphones placed in the ear (ITE), behind the ear (BTE), and on the shoulders (SHD). The ILDs across source locations were calculated for each placement to analyze their effect on sound localization performance. Sound localization was tested using a repeated-measures, within-participant design for the three microphone placements. RESULTS The ITE microphone placement provided significantly larger ILDs compared to BTE and SHD placements, which correlated with overall localization errors. However, differences in localization errors across the microphone conditions were small. CONCLUSIONS The BTE microphones worn by many BiCI users in everyday life do not capture the full range of acoustic ILDs available, and also reduce the change in cue magnitudes for sound sources across the horizontal plane. Acute testing with an ITE placement reduced sound localization errors along the horizontal plane compared to the other placements in some patients. Larger improvements may be observed if patients had more experience with the new ILD cues provided by an ITE placement.
Collapse
|
24
|
Laback B, Dietz M, Joris P. Temporal effects in interaural and sequential level difference perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3267. [PMID: 29195428 DOI: 10.1121/1.5009563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Temporal effects in interaural level difference (ILD) perception are not well understood. While it is often assumed that ILD sensitivity is independent of the temporal stimulus properties, a reduction of ILD sensitivity for stimuli with a high modulation rate has been reported (known under the term binaural adaptation). Experiment 1 compared ILD thresholds and sequential-level-difference (SLD) thresholds using 300-ms bandpass-filtered pulse trains (centered at 4 kHz) with rates of 100, 400, and 800 pulses per second (pps). In contrast to the SLD thresholds, ILD thresholds were elevated at 800 pps, consistent with literature data that had previously been attributed to binaural adaptation. Experiment 2 showed better ILD sensitivity for pulse trains than for pure tones, suggesting that amplitude modulation enhances ILD sensitivity. The present ILD data and binaural adaptation data from the literature were predicted by a model combining well-established auditory periphery front-ends with an interaural comparison stage. The model also accounted for other published ILD data, including target ILD thresholds in diotic forward and backward fringes and ILD thresholds with different amounts of interaural correlation. Overall, a variety of temporal effects in ILD perception, including binaural adaptation, appear to be largely attributable to monaural peripheral auditory processing.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, Vienna, A-1040, Austria
| | - Mathias Dietz
- Medizinische Physik, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg, 26111, Germany
| | - Philip Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
25
|
Suneel D, Staisloff H, Shayman CS, Stelmach J, Aronoff JM. Localization performance correlates with binaural fusion for interaurally mismatched vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:EL276. [PMID: 28964063 PMCID: PMC5724736 DOI: 10.1121/1.5001903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bilateral cochlear implant users often have difficulty fusing sounds from the two ears into a single percept. However, measuring fusion can be difficult, particularly with cochlear implant users who may have no reference for a fully fused percept. As a first step to address this, this study examined how localization performance of normal hearing subjects relates to binaural fusion. The stimuli were vocoded speech tokens with various interaural mismatches. The results reveal that the percentage of stimuli perceived as fused was correlated with localization performance, suggesting that changes in localization performance can serve as an indicator for binaural fusion changes.
Collapse
Affiliation(s)
- Deepa Suneel
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Hannah Staisloff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Corey S Shayman
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Julia Stelmach
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| |
Collapse
|
26
|
Pavani F, Venturini M, Baruffaldi F, Artesini L, Bonfioli F, Frau GN, van Zoest W. Spatial and non-spatial multisensory cueing in unilateral cochlear implant users. Hear Res 2017; 344:24-37. [DOI: 10.1016/j.heares.2016.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
|
27
|
Bilateral Loudness Balancing and Distorted Spatial Perception in Recipients of Bilateral Cochlear Implants. Ear Hear 2016; 36:e225-36. [PMID: 25985017 DOI: 10.1097/aud.0000000000000174] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether bilateral loudness balancing during mapping of bilateral cochlear implants (CIs) produces fused, punctate, and centered auditory images that facilitate lateralization with stimulation on single-electrode pairs. DESIGN Adopting procedures similar to those that are practiced clinically, direct stimulation was used to obtain most-comfortable levels (C levels) in recipients of bilateral CIs. Three pairs of electrodes, located in the base, middle, and apex of the electrode array, were tested. These electrode pairs were loudness-balanced by playing right-left electrode pairs sequentially. In experiment 1, the authors measured the location, number, and compactness of auditory images in 11 participants in a subjective fusion experiment. In experiment 2, the authors measured the location and number of the auditory images while imposing a range of interaural level differences (ILDs) in 13 participants in a lateralization experiment. Six of these participants repeated the mapping process and lateralization experiment over three separate days to determine the variability in the procedure. RESULTS In approximately 80% of instances, bilateral loudness balancing was achieved from relatively small adjustments to the C levels (≤3 clinical current units). More important, however, was the observation that in 4 of 11 participants, simultaneous bilateral stimulation regularly elicited percepts that were not fused into a single auditory object. Across all participants, approximately 23% of percepts were not perceived as fused; this contrasts with the 1 to 2% incidence of diplacusis observed with normal-hearing individuals. In addition to the unfused images, the perceived location was often offset from the physical ILD. On the whole, only 45% of percepts presented with an ILD of 0 clinical current units were perceived as fused and heard in the center of the head. Taken together, these results suggest that distortions to the spatial map remain common in bilateral CI recipients even after careful bilateral loudness balancing. CONCLUSIONS The primary conclusion from these experiments is that, even after bilateral loudness balancing, bilateral CI recipients still regularly perceive stimuli that are unfused, offset from the assumed zero ILD, or both. Thus, while current clinical mapping procedures for bilateral CIs are sufficient to enable many of the benefits of bilateral hearing, they may not elicit percepts that are thought to be optimal for sound-source location. As a result, in the absence of new developments in signal processing for CIs, new mapping procedures may need to be developed for bilateral CI recipients to maximize the benefits of bilateral hearing.
Collapse
|
28
|
Hu H, Kollmeier B, Dietz M. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 894:57-64. [PMID: 27080646 DOI: 10.1007/978-3-319-25474-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic brainstem processing.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik, Universität Oldenburg, Cluster of Excellence "Hearing4all", 26111, Oldenburg, Germany.
| | - Birger Kollmeier
- Medizinische Physik, Universität Oldenburg, Cluster of Excellence "Hearing4all", 26111, Oldenburg, Germany
| | - Mathias Dietz
- Medizinische Physik, Universität Oldenburg, Cluster of Excellence "Hearing4all", 26111, Oldenburg, Germany
| |
Collapse
|
29
|
Kan A, Jones HG, Litovsky RY. Effect of multi-electrode configuration on sensitivity to interaural timing differences in bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3826-33. [PMID: 26723337 PMCID: PMC4691256 DOI: 10.1121/1.4937754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent psychophysical studies in bilateral cochlear implant users have shown that interaural timing difference (ITD) sensitivity with electrical stimulation varies depending on the place of stimulation along the cochlear array. While these studies have measured ITD sensitivity at single electrode places separately, it is important to understand how ITD sensitivity is affected when multiple electrodes are stimulated together because multi-electrode stimulation is required for representation of complex sounds. Multi-electrode stimulation may lead to poorer overall performance due to interference from places with poor ITD sensitivity, or from channel interaction due to electrical current spread. Alternatively, multi-electrode stimulation might result in overall good sensitivity if listeners can extract the most reliable ITD cues available. ITD just noticeable differences (JNDs) were measured for different multi-electrode configurations. Results showed that multi-electrode ITD JNDs were poorer than ITD JNDs for the best single-electrode pair. However, presenting ITD information along the whole array appeared to produce better sensitivity compared with restricting stimulation to the ends of the array, where ITD JNDs were comparable to the poorest single-electrode pair. These findings suggest that presenting ITDs in one cochlear region only may not be optimal for maximizing ITD sensitivity in multi-electrode stimulation.
Collapse
Affiliation(s)
- Alan Kan
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Heath G Jones
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
30
|
Kelvasa D, Dietz M. Auditory Model-Based Sound Direction Estimation With Bilateral Cochlear Implants. Trends Hear 2015; 19:19/0/2331216515616378. [PMID: 26631106 PMCID: PMC4771030 DOI: 10.1177/2331216515616378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Users of bilateral cochlear implants (CIs) show above-chance performance in localizing the source of a sound in the azimuthal (horizontal) plane; although localization errors are far worse than for normal-hearing listeners, they are considerably better than for CI listeners with only one implant. In most previous studies, subjects had access to interaural level differences and to interaural time differences conveyed in the temporal envelope. Here, we present a binaural model that predicts the azimuthal direction of sound arrival from a two-channel input signal as it is received at the left and right CI processor. The model includes a replication of a clinical speech-coding strategy, a model of the electrode-nerve interface and binaural brainstem neurons, and three different prediction stages that are trained to map the neural response rate to an azimuthal angle. The model is trained and tested with various noise and speech stimuli created by means of virtual acoustics. Localization error patterns of the model match experimental data and are explicable largely in terms of the nonmonotonic relationship between interaural level difference and azimuthal angle.
Collapse
|
31
|
Hu H, Dietz M. Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants. Trends Hear 2015; 19:19/0/2331216515617143. [PMID: 26631108 PMCID: PMC4771032 DOI: 10.1177/2331216515617143] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In patients with bilateral cochlear implants (CIs), pairing matched interaural electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, and spatial release from masking. Because clinical procedures typically do not include patient-specific interaural electrode pairing, it remains the case that each electrode is allocated to a generic frequency range, based simply on the electrode number. Two psychoacoustic techniques for determining interaurally paired electrodes have been demonstrated in several studies: interaural pitch comparison and interaural time difference (ITD) sensitivity. However, these two methods are rarely, if ever, compared directly. A third, more objective method is to assess the amplitude of the binaural interaction component (BIC) derived from electrically evoked auditory brainstem responses for different electrode pairings; a method has been demonstrated to be a potential candidate for bilateral CI users. Here, we tested all three measures in the same eight CI users. We found good correspondence between the electrode pair producing the largest BIC and the electrode pair producing the maximum ITD sensitivity. The correspondence between the pairs producing the largest BIC and the pitch-matched electrode pairs was considerably weaker, supporting the previously proposed hypothesis that whilst place pitch might adapt over time to accommodate mismatched inputs, sensitivity to ITDs does not adapt to the same degree.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik, Universität Oldenburg and Cluster of Excellence "Hearing4all", Germany
| | - Mathias Dietz
- Medizinische Physik, Universität Oldenburg and Cluster of Excellence "Hearing4all", Germany
| |
Collapse
|
32
|
Egger K, Majdak P, Laback B. Channel Interaction and Current Level Affect Across-Electrode Integration of Interaural Time Differences in Bilateral Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2015; 17:55-67. [PMID: 26377826 DOI: 10.1007/s10162-015-0542-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/30/2015] [Indexed: 11/26/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) is important for sound localization. Normal-hearing listeners benefit from across-frequency processing, as seen with improved ITD thresholds when consistent ITD cues are presented over a range of frequency channels compared with when ITD information is only presented in a single frequency channel. This study aimed to clarify whether cochlear-implant (CI) listeners can make use of similar processing when being stimulated with multiple interaural electrode pairs transmitting consistent ITD information. ITD thresholds for unmodulated, 100-pulse-per-second pulse trains were measured in seven bilateral CI listeners using research interfaces. Consistent ITDs were presented at either one or two electrode pairs at different current levels, allowing for comparisons at either constant level per component electrode or equal overall loudness. Different tonotopic distances between the pairs were tested in order to clarify the potential influence of channel interaction. Comparison of ITD thresholds between double pairs and the respective single pairs revealed systematic effects of tonotopic separation and current level. At constant levels, performance with double-pair stimulation improved compared with single-pair stimulation but only for large tonotopic separation. Comparisons at equal overall loudness revealed no benefit from presenting ITD information at two electrode pairs for any tonotopic spacing. Irrespective of electrode-pair configuration, ITD sensitivity improved with increasing current level. Hence, the improved ITD sensitivity for double pairs found for a large tonotopic separation and constant current levels seems to be due to increased loudness. The overall data suggest that CI listeners can benefit from combining consistent ITD information across multiple electrodes, provided sufficient stimulus levels and that stimulating electrode pairs are widely spaced.
Collapse
Affiliation(s)
- Katharina Egger
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| |
Collapse
|
33
|
Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 2015; 322:138-50. [DOI: 10.1016/j.heares.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/21/2022]
|
34
|
Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci 2014; 34:11119-30. [PMID: 25122908 DOI: 10.1523/jneurosci.4767-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) partially restore hearing to the deaf by directly stimulating the inner ear. In individuals fitted with CIs, lack of auditory experience due to loss of hearing before language acquisition can adversely impact outcomes. For example, adults with early-onset hearing loss generally do not integrate inputs from both ears effectively when fitted with bilateral CIs (BiCIs). Here, we used an animal model to investigate the effects of long-term deafness on auditory localization with BiCIs and approaches for promoting the use of binaural spatial cues. Ferrets were deafened either at the age of hearing onset or as adults. All animals were implanted in adulthood, either unilaterally or bilaterally, and were subsequently assessed for their ability to localize sound in the horizontal plane. The unilaterally implanted animals were unable to perform this task, regardless of the duration of deafness. Among animals with BiCIs, early-onset hearing loss was associated with poor auditory localization performance, compared with late-onset hearing loss. However, performance in the early-deafened group with BiCIs improved significantly after multisensory training with interleaved auditory and visual stimuli. We demonstrate a possible neural substrate for this by showing a training-induced improvement in the responsiveness of auditory cortical neurons and in their sensitivity to interaural level differences, the principal localization cue available to BiCI users. Importantly, our behavioral and physiological evidence demonstrates a facilitative role for vision in restoring auditory spatial processing following potential cross-modal reorganization. These findings support investigation of a similar training paradigm in human CI users.
Collapse
|
35
|
Jones H, Kan A, Litovsky RY. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners. Trends Hear 2014; 18:18/0/2331216514554574. [PMID: 25385244 PMCID: PMC4271768 DOI: 10.1177/2331216514554574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech processors and neural degradation of auditory pathways associated with a patient's hearing loss. To exclusively investigate the effect of CI speech encoding on horizontal-plane sound localization, the present study measured sound localization performance in NH subjects listening to vocoder processed and nonvocoded virtual acoustic space (VAS) stimuli. Various aspects of BiCI stimulation such as independently functioning devices, variable across-ear channel selection, and pulsatile stimulation were simulated using uncorrelated noise (Nu), correlated noise (N0), or Gaussian-enveloped tone (GET) carriers during vocoder processing. Additionally, FF sound localization in BiCI users was measured in the same testing environment for comparison. Distinct response patterns across azimuthal locations were evident for both listener groups and were analyzed using a multilevel regression analysis. Simulated implant speech encoding, regardless of carrier, was detrimental to NH localization and the GET vocoder best simulated BiCI FF performance in NH listeners. Overall, the detrimental effect of vocoder processing on NH performance suggests that sound localization deficits may persist even for BiCI patients who have minimal neural degradation associated with their hearing loss and indicates that CI speech encoding plays a significant role in the sound localization deficits experienced by BiCI users.
Collapse
Affiliation(s)
- Heath Jones
- Waisman Center, University of Wisconsin-Madison, WI, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
36
|
Thakkar T, Goupell MJ. Internalized elevation perception of simple stimuli in cochlear-implant and normal-hearing listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:841-852. [PMID: 25096117 PMCID: PMC4144177 DOI: 10.1121/1.4884770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
In normal-hearing (NH) listeners, elevation perception is produced by the spectral cues imposed by the pinna, head, and torso. Elevation perception in cochlear-implant (CI) listeners appears to be non-existent; this may be a result of poorly encoded spectral cues. In this study, an analog of elevation perception was investigated by having 15 CI and 8 NH listeners report the intracranial location of spectrally simple signals (single-electrode or bandlimited acoustic stimuli, respectively) in both horizontal and vertical dimensions. Thirteen CI listeners and all of the NH listeners showed an association between place of stimulation (i.e., stimulus frequency) and perceived elevation, generally responding with higher elevations for more basal stimulation. This association persisted in the presence of a randomized temporal pitch, suggesting that listeners were not associating pitch with elevation. These data provide evidence that CI listeners might perceive changes in elevation if they were presented stimuli with sufficiently salient elevation cues.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
37
|
Agterberg MJH, Hol MKS, Van Wanrooij MM, Van Opstal AJ, Snik AFM. Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear. Front Neurosci 2014; 8:188. [PMID: 25071433 PMCID: PMC4082092 DOI: 10.3389/fnins.2014.00188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/13/2014] [Indexed: 11/23/2022] Open
Abstract
Direction-specific interactions of sound waves with the head, torso, and pinna provide unique spectral-shape cues that are used for the localization of sounds in the vertical plane, whereas horizontal sound localization is based primarily on the processing of binaural acoustic differences in arrival time (interaural time differences, or ITDs) and sound level (interaural level differences, or ILDs). Because the binaural sound-localization cues are absent in listeners with total single-sided deafness (SSD), their ability to localize sound is heavily impaired. However, some studies have reported that SSD listeners are able, to some extent, to localize sound sources in azimuth, although the underlying mechanisms used for localization are unclear. To investigate whether SSD listeners rely on monaural pinna-induced spectral-shape cues of their hearing ear for directional hearing, we investigated localization performance for low-pass filtered (LP, <1.5 kHz), high-pass filtered (HP, >3kHz), and broadband (BB, 0.5–20 kHz) noises in the two-dimensional frontal hemifield. We tested whether localization performance of SSD listeners further deteriorated when the pinna cavities of their hearing ear were filled with a mold that disrupted their spectral-shape cues. To remove the potential use of perceived sound level as an invalid azimuth cue, we randomly varied stimulus presentation levels over a broad range (45–65 dB SPL). Several listeners with SSD could localize HP and BB sound sources in the horizontal plane, but inter-subject variability was considerable. Localization performance of these listeners strongly reduced after diminishing of their spectral pinna-cues. We further show that inter-subject variability of SSD can be explained to a large extent by the severity of high-frequency hearing loss in their hearing ear.
Collapse
Affiliation(s)
- Martijn J H Agterberg
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Myrthe K S Hol
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Marc M Van Wanrooij
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - A John Van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Ad F M Snik
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
38
|
Kan A, Stoelb C, Litovsky RY, Goupell MJ. Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2923-36. [PMID: 24116428 PMCID: PMC3799729 DOI: 10.1121/1.4820889] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bilateral cochlear implants (CIs) have provided some success in improving spatial hearing abilities to patients, but with large variability in performance. One reason for the variability is that there may be a mismatch in the place-of-stimulation arising from electrode arrays being inserted at different depths in each cochlea. Goupell et al. [(2013b). J. Acoust. Soc. Am. 133(4), 2272-2287] showed that increasing interaural mismatch led to non-fused auditory images and poor lateralization of interaural time differences in normal hearing subjects listening to a vocoder. However, a greater bandwidth of activation helped mitigate these effects. In the present study, the same experiments were conducted in post-lingually deafened bilateral CI users with deliberate and controlled interaural mismatch of single electrode pairs. Results show that lateralization was still possible with up to 3 mm of interaural mismatch, even when off-center, or multiple, auditory images were perceived. However, mismatched inputs are not ideal since it leads to a distorted auditory spatial map. Comparison of CI and normal hearing listeners showed that the CI data were best modeled by a vocoder using Gaussian-pulsed tones with 1.5 mm bandwidth. These results suggest that interaural matching of electrodes is important for binaural cues to be maximally effective.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, 1500 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705
| | | | | | | |
Collapse
|
39
|
Majdak P, Walder T, Laback B. Effect of long-term training on sound localization performance with spectrally warped and band-limited head-related transfer functions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2148-2159. [PMID: 23967945 DOI: 10.1121/1.4816543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sound localization in the sagittal planes, including the ability to distinguish front from back, relies on spectral features caused by the filtering effects of the head, pinna, and torso. It is assumed that important spatial cues are encoded in the frequency range between 4 and 16 kHz. In this study, in a double-blind design and using audio-visual training covering the full 3-D space, normal-hearing listeners were trained 2 h per day over three weeks to localize sounds which were either band limited up to 8.5 kHz or spectrally warped from the range between 2.8 and 16 kHz to the range between 2.8 and 8.5 kHz. The training effect for the warped condition exceeded that for procedural task learning, suggesting a stable auditory recalibration due to the training. After the training, performance with band-limited sounds was better than that with warped ones. The results show that training can improve sound localization in cases where spectral cues have been reduced by band-limiting or remapped by warping. This suggests that hearing-impaired listeners, who have limited access to high frequencies, might also improve their localization ability when provided with spectrally warped or band-limited sounds and adequately trained on sound localization.
Collapse
Affiliation(s)
- Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | |
Collapse
|
40
|
Goupell MJ, Stoelb C, Kan A, Litovsky RY. Effect of mismatched place-of-stimulation on the salience of binaural cues in conditions that simulate bilateral cochlear-implant listening. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:2272-87. [PMID: 23556595 PMCID: PMC3631247 DOI: 10.1121/1.4792936] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although bilateral cochlear implantation has the potential to improve sound localization and speech understanding in noise, obstacles exist in presenting maximally useful binaural information to bilateral cochlear-implant (CI) users. One obstacle is that electrode arrays may differ in cochlear position by several millimeters, thereby stimulating different neural populations. Effects of interaural frequency mismatch on binaural processing were studied in normal-hearing (NH) listeners using band-limited pulse trains, thereby avoiding confounding factors that may occur in CI users. In experiment 1, binaural image fusion was measured to capture perceptual number, location, and compactness. Subjects heard a single, compact image on 73% of the trials. In experiment 2, intracranial image location was measured for different interaural time differences (ITDs) and interaural level differences (ILDs). For larger mismatch, locations perceptually shifted towards the ear with the higher carrier frequency. In experiment 3, ITD and ILD just-noticeable differences (JNDs) were measured. JNDs increased with decreasing bandwidth and increasing mismatch, but were always measurable up to 3 mm of mismatch. If binaural-hearing mechanisms are similar between NH and CI subjects, these results may explain reduced sensitivity of ITDs and ILDs in CI users. Large mismatches may lead to distorted spatial maps and reduced binaural image fusion.
Collapse
Affiliation(s)
- Matthew J Goupell
- Waisman Center, 1500 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | |
Collapse
|
41
|
Majdak P, Masiero B, Fels J. Sound localization in individualized and non-individualized crosstalk cancellation systems. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:2055-2068. [PMID: 23556576 DOI: 10.1121/1.4792355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The sound-source localization provided by a crosstalk cancellation (CTC) system depends on the head-related transfer functions (HRTFs) used for the CTC filter calculation. In this study, the horizontal- and sagittal-plane localization performance was investigated in humans listening to individualized matched, individualized but mismatched, and non-individualized CTC systems. The systems were simulated via headphones in a binaural virtual environment with two virtual loudspeakers spatialized in front of the listener. The individualized mismatched system was based on two different sets of listener-individual HRTFs. Both sets provided similar binaural localization performance in terms of quadrant, polar, and lateral errors. The individualized matched systems provided performance similar to that from the binaural listening. For the individualized mismatched systems, the performance deteriorated, and for the non-individualized mismatched systems (based on HRTFs from other listeners), the performance deteriorated even more. The direction-dependent analysis showed that mismatch and lack of individualization yielded a substantially degraded performance for targets placed outside of the loudspeaker span and behind the listeners, showing relevance of individualized CTC systems for those targets. Further, channel separation was calculated for different frequency ranges and is discussed in the light of its use as a predictor for the localization performance provided by a CTC system.
Collapse
Affiliation(s)
- Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, A-1040 Vienna, Austria.
| | | | | |
Collapse
|
42
|
Goupell MJ, Kan A, Litovsky RY. Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:EL101-7. [PMID: 23363188 PMCID: PMC3562277 DOI: 10.1121/1.4776772] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Good localization accuracy depends on an auditory spatial map that provides consistent binaural information across frequency and level. This study investigated whether mapping bilateral cochlear implants (CIs) independently contributes to distorted perceptual spatial maps. In a meta-analysis, interaural level differences necessary to perceptually center sound images were calculated for 127 pitch-matched pairs of electrodes; many needed large current adjustments to be perceptually centered. In a separate experiment, lateralization was also found to be inconsistent across levels. These findings suggest that auditory spatial maps are distorted in the mapping process, which likely reduces localization accuracy and target-noise separation in bilateral CIs.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
43
|
van Hoesel RJ. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 2012; 288:100-13. [DOI: 10.1016/j.heares.2011.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
44
|
Aronoff JM, Freed DJ, Fisher LM, Pal I, Soli SD. Cochlear implant patients' localization using interaural level differences exceeds that of untrained normal hearing listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:EL382-7. [PMID: 22559456 PMCID: PMC3338575 DOI: 10.1121/1.3699017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/12/2012] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant patients are unable to localize as well as normal hearing listeners. Although poor sensitivity to interaural time differences clearly contributes to this deficit, it is unclear whether deficits in terms of interaural level differences are also a contributing factor. In this study, localization was tested while manipulating interaural time and level cues using head-related transfer functions. The results indicate that bilateral cochlear implant users' ability to localize based on interaural level differences is actually greater than that of untrained normal hearing listeners.
Collapse
Affiliation(s)
- Justin M Aronoff
- Communication and Neuroscience Division, House Research Institute, 2100 West 3rd Street, Los Angeles, California 90057, USA.
| | | | | | | | | |
Collapse
|