1
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
3
|
Sex-based Differences in Hearing Loss: Perspectives From Non-clinical Research to Clinical Outcomess. Otol Neurotol 2021; 41:290-298. [PMID: 31789968 DOI: 10.1097/mao.0000000000002507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION It is estimated over 466 million people worldwide have disabling hearing loss, and untreated hearing loss is associated with poorer health outcomes. The influence of sex as a biological variable on hearing loss is not well understood, especially for differences in underlying mechanisms which are typically elucidated through non-clinical research. Although the inclusion of sex as a biological variable in clinical studies has been required since 1993, sex reporting has only been recently mandated in National Institutes of Health funded non-clinical studies. OBJECTIVE This article reviews the literature on recent non-clinical and clinical research concerning sex-based differences in hearing loss primarily since 1993, and discusses implications for knowledge gaps in the translation from non-clinical to clinical realms. CONCLUSIONS The disparity between sex-based requirements for non-clinical versus clinical research may inhibit a comprehensive understanding of sex-based mechanistic differences. Such disparities may play a role in understanding and explaining clinically significant sex differences and are likely necessary for developing robust clinical treatment options.
Collapse
|
4
|
Miyata S, Kakizaki T, Fujihara K, Obinata H, Hirano T, Nakai J, Tanaka M, Itohara S, Watanabe M, Tanaka KF, Abe M, Sakimura K, Yanagawa Y. Global knockdown of glutamate decarboxylase 67 elicits emotional abnormality in mice. Mol Brain 2021; 14:5. [PMID: 33413507 PMCID: PMC7789591 DOI: 10.1186/s13041-020-00713-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022] Open
Abstract
Reduced expression of glutamate decarboxylase 67 (GAD67), encoded by the Gad1 gene, is a consistent finding in postmortem brains of patients with several psychiatric disorders, including schizophrenia, bipolar disorder and major depressive disorder. The dysfunction of GAD67 in the brain is implicated in the pathophysiology of these psychiatric disorders; however, the neurobiological consequences of GAD67 dysfunction in mature brains are not fully understood because the homozygous Gad1 knockout is lethal in newborn mice. We hypothesized that the tetracycline-controlled gene expression/suppression system could be applied to develop global GAD67 knockdown mice that would survive into adulthood. In addition, GAD67 knockdown mice would provide new insights into the neurobiological impact of GAD67 dysfunction. Here, we developed Gad1tTA/STOP−tetO biallelic knock-in mice using Gad1STOP−tetO and Gad1tTA knock-in mice, and compared them with Gad1+/+ mice. The expression level of GAD67 protein in brains of Gad1tTA/STOP−tetO mice treated with doxycycline (Dox) was decreased by approximately 90%. The GABA content was also decreased in the brains of Dox-treated Gad1tTA/STOP−tetO mice. In the open-field test, Dox-treated Gad1tTA/STOP−tetO mice exhibited hyper-locomotor activity and decreased duration spent in the center region. In addition, acoustic startle responses were impaired in Dox-treated Gad1tTA/STOP−tetO mice. These results suggest that global reduction in GAD67 elicits emotional abnormalities in mice. These GAD67 knockdown mice will be useful for elucidating the neurobiological mechanisms of emotional abnormalities, such as anxiety symptoms associated with psychiatric disorders.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Hideru Obinata
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Touko Hirano
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Mika Tanaka
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| |
Collapse
|
5
|
Turner JG. Noise and Vibration in the Vivarium: Recommendations for Developing a Measurement Plan. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:665-672. [PMID: 32928338 DOI: 10.30802/aalas-jaalas-19-000131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Noise and vibration are present in every room of laboratory animal vivaria, with great variability from room-to-room and facility-to-facility. Such stimuli are rarely measured. As a result, the many stakeholders involved in biomedical research, (for example, funding agencies, construction personnel, equipment manufacturers, animal facility administrators, veterinarians, technicians, and scientists) have little awareness of the effects such stimuli may have on their research animals. Noise and vibration present a potential source of unrecognized animal distress, and a significant, uncontrolled and confounding variable in scientific studies. Unmeasured and unrecognized noise and vibration can therefore undermine the fundamental goals of the 3R's to refine animal models and reduce the number of animals used in biomedical and behavioral research. This overview serves to highlight the scope of this problem and proposes a series of recommended practices to limit its negative effects on research animals and the scientific data derived from them. These practices consist of developing a written plan for managing noise and vibration concerns, assessment of noise and vibration both annually and whenever unexpected changes in the facility or animals are observed, and for maintaining levels of chronic noise below thresholds that might cause animal welfare concerns or disruptions in ongoing studies.
Collapse
Affiliation(s)
- Jeremy G Turner
- Department of Psychology, Illinois College, Jacksonville, Illinois; Turner Scientific, Jacksonville, Illinois; , ,
| |
Collapse
|
6
|
Lauer AM, Schrode KM. Sex bias in basic and preclinical noise-induced hearing loss research. Noise Health 2019; 19:207-212. [PMID: 28937014 PMCID: PMC5644379 DOI: 10.4103/nah.nah_12_17] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Sex differences in brain biochemistry, physiology, structure, and function have been gaining increasing attention in the scientific community. Males and females can have different responses to medications, diseases, and environmental variables. A small number of the approximately 7500 studies of noise-induced hearing loss (NIHL) have identified sex differences, but the mechanisms and characterization of these differences have not been thoroughly studied. The National Institutes of Health (NIH) issued a mandate in 2015 to include sex as a biological variable in all NIH-funded research beginning in January 2016. Materials and Methods: In the present study, the representation of sex as a biological variable in preclinical and basic studies of NIHL was quantified for a 5-year period from January 2011 to December 2015 prior to the implementation of the NIH mandate. Results: The analysis of 210 basic and preclinical studies showed that when sex is specified, experiments are predominantly performed on male animals. Discussion: This bias is present in studies completed in the United States and foreign institutions, and the proportion of studies using only male participants has actually increased over the 5-year period examined. Conclusion: These results underscore the need to invest resources in studying NIHL in both sexes to better understand how sex shapes the outcomes and to optimize treatment and prevention strategies.
Collapse
Affiliation(s)
- Amanda Marie Lauer
- Department of Otolaryngology-HNS and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States
| | - Katrina Marie Schrode
- Department of Otolaryngology-HNS and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Villavisanis DF, Schrode KM, Lauer AM. Sex bias in basic and preclinical age-related hearing loss research. Biol Sex Differ 2018; 9:23. [PMID: 29898787 PMCID: PMC6000973 DOI: 10.1186/s13293-018-0185-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aims to determine if there is sex bias in basic and preclinical research on age-related hearing loss for the 10-year period of 2006–2015, prior to the NIH mandate of including sex as a biological variable in 2016. Design Manuscripts were identified in PubMed for the query “age-related hearing loss” for the 10-year period of 2006 to 2015. Manuscripts were included if they were original research (not reviews or meta-analyses), written in English, contained an abstract, used animals, and were primarily on age-related hearing loss. These criteria yielded 231 unique manuscripts for inclusion in the study analysis. The text of each manuscript was screened for the sex of the animals, the number of male and female animals, the discussion of sex-based results, the study site (US or international), and the year of publication. Results Only two thirds of manuscripts reported the sex of animals used in the experiments, and of these, 54% used both sexes, 34% used males only, and 13% used females only. In papers reporting sex and number of animals used, 67% were males and 33% were females. Over twice as many internationally based studies used males only compared to US-based studies. Only 15% of all manuscripts discussed sex-based results. Conclusions Sex bias is present in basic and preclinical age-related hearing loss research for the manuscripts screened in the 10-year period. Equal inclusion of both males and females in basic and preclinical age-related hearing loss research is critical for understanding sex-based differences in mechanisms and for effective treatment options.
Collapse
Affiliation(s)
- Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Muca A, Standafer E, Apawu AK, Ahmad F, Ghoddoussi F, Hali M, Warila J, Berkowitz BA, Holt AG. Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Struct Funct 2018; 223:2343-2360. [PMID: 29488007 PMCID: PMC6129978 DOI: 10.1007/s00429-018-1635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn2+) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn2+ uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn2+ uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn2+ uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn2+ uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.
Collapse
Affiliation(s)
- Antonela Muca
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Emily Standafer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Aaron K Apawu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhan Ahmad
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirabela Hali
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - James Warila
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avril Genene Holt
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA.
- John D. Dingell VAMC, Detroit, MI, USA.
| |
Collapse
|
9
|
Hoppe U, Hesse G. Hearing aids: indications, technology, adaptation, and quality control. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2017; 16:Doc08. [PMID: 29279726 PMCID: PMC5738937 DOI: 10.3205/cto000147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hearing loss can be caused by a number of different pathological conditions. Some of them can be successfully treated, mainly by surgery, depending on the individual's disease process. However, the treatment of chronic sensorineural hearing loss with damaged cochlear structures usually needs hearing rehabilitation by means of technical amplification. During the last two decades tremendous improvements in hearing aid technology led to a higher quality of the hearing rehabilitation process. For example, due to sophisticated signal processing acoustic feedback could be reduced and hence open fitting options are available even for more subjects with higher degrees of hearing loss. In particular for high-frequency hearing loss, the use of open fitting is an option. Both the users' acceptance and the perceived sound quality were significantly increased by open fittings. However, we are still faced with a low level of readiness in many hearing impaired subjects to accept acoustic amplification. Since ENT specialists play a key-role in hearing aid provision, they should promote early hearing aid rehabilitation and include this in the counselling even in subjects with mild and moderate hearing loss. Recent investigations demonstrated the benefit of early hearing aid use in this group of patients since this may help to reduce subsequent damages as auditory deprivation, social isolation, development of dementia, and cognitive decline. For subjects with tinnitus, hearing aids may also support masking by environmental sounds and enhance cortical inhibition. The present paper describes the latest developments of hearing aid technology and the current state of the art for amplification modalities. Implications for both hearing aid indication and provision are discussed.
Collapse
Affiliation(s)
- Ulrich Hoppe
- Section of Audiology, Department of Otolaryngology, Head and Neck Surgery, University of Erlangen, Germany
| | - Gerhard Hesse
- Tinnitus Department, Hospital of Bad Arolsen, University of Witten-Herdecke, Germany
| |
Collapse
|
10
|
Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hear Res 2017; 352:12-22. [DOI: 10.1016/j.heares.2016.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
11
|
Brecht EJ, Barsz K, Gross B, Walton JP. Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neurons in aged mice. Neurobiol Aging 2017; 56:87-99. [PMID: 28532644 DOI: 10.1016/j.neurobiolaging.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
A key feature of age-related hearing loss is a reduction in the expression of inhibitory neurotransmitters in the central auditory system. This loss is partially responsible for changes in central auditory processing, as inhibitory receptive fields play a critical role in shaping neural responses to sound stimuli. Vigabatrin (VGB), an antiepileptic agent that irreversibly inhibits γ-amino butyric acid (GABA) transaminase, leads to increased availability of GABA throughout the brain. This study used multi-channel electrophysiology measurements to assess the excitatory frequency response areas in old CBA mice to which VGB had been administered. We found a significant post-VGB reduction in the proportion of V-type shapes, and an increase in primary-like excitatory frequency response areas. There was also a significant increase in the mean maximum driven spike rates across the tonotopic frequency range of all treated animals, consistent with observations that GABA buildup within the central auditory system increases spike counts of neural receptive fields. This increased spiking is also seen in the rate-level functions and seems to explain the improved low-frequency thresholds.
Collapse
Affiliation(s)
- Elliott J Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA
| | - Kathy Barsz
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Benjamin Gross
- Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Physics, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
Longenecker RJ, Galazyuk AV. Variable Effects of Acoustic Trauma on Behavioral and Neural Correlates of Tinnitus In Individual Animals. Front Behav Neurosci 2016; 10:207. [PMID: 27826232 PMCID: PMC5078752 DOI: 10.3389/fnbeh.2016.00207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
The etiology of tinnitus is known to be diverse in the human population. An appropriate animal model of tinnitus should incorporate this pathological diversity. Previous studies evaluating the effect of acoustic over exposure (AOE) have found that animals typically display increased spontaneous firing rates and bursting activity of auditory neurons, which often has been linked to behavioral evidence of tinnitus. However, only a subset of studies directly associated these neural correlates to individual animals. Furthermore, the vast majority of tinnitus studies were conducted on anesthetized animals. The goal of this study was to test for a possible relationship between tinnitus, hearing loss, hyperactivity and bursting activity in the auditory system of individual unanesthetized animals following AOE. Sixteen mice were unilaterally exposed to 116 dB SPL narrowband noise (centered at 12.5 kHz) for 1 h under ketamine/xylazine anesthesia. Gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) was used to assess behavioral evidence of tinnitus whereas hearing performance was evaluated by measurements of auditory brainstem response (ABR) thresholds and prepulse inhibition PPI audiometry. Following behavioral assessments, single neuron firing activity was recorded from the inferior colliculus (IC) of four awake animals and compared to recordings from four unexposed controls. We found that AOE increased spontaneous activity in all mice tested, independently of tinnitus behavior or severity of threshold shifts. Bursting activity did not increase in two animals identified as tinnitus positive (T+), but did so in a tinnitus negative (T−) animal with severe hearing loss (SHL). Hyperactivity does not appear to be a reliable biomarker of tinnitus. Our data suggest that multidisciplinary assessments on individual animals following AOE could offer a powerful experimental tool to investigate mechanisms of tinnitus.
Collapse
Affiliation(s)
- Ryan J Longenecker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Alexander V Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
13
|
Gourévitch B, Edeline JM, Occelli F, Eggermont JJ. Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nat Rev Neurosci 2014; 15:483-91. [DOI: 10.1038/nrn3744] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Manipulations of the sensory environment typically induce greater changes to the developing nervous system than they do in adulthood. The relevance of these neural changes can be evaluated by examining the age-dependent effects of sensory experience on quantitative measures of perception. Here, we measured frequency modulation (FM) detection thresholds in adult gerbils and investigated whether diminished auditory experience during development or in adulthood influenced perceptual performance. Bilateral conductive hearing loss (CHL) of ≈30 dB was induced either at postnatal day 10 or after sexual maturation. All animals were then trained as adults to detect a 5 Hz FM embedded in a continuous 4 kHz tone. FM detection thresholds were defined as the minimum deviation from the carrier frequency that the animal could reliably detect. Normal-hearing animals displayed FM thresholds of 25 Hz. Inducing CHL, either in juvenile or adult animals, led to a deficit in FM detection. However, this deficit was greater for juvenile onset hearing loss (89 Hz) relative to adult onset hearing loss (64 Hz). The effects could not be attributed to sensation level, nor were they correlated with proxies for attention. The thresholds displayed by CHL animals were correlated with shallower psychometric function slopes, suggesting that hearing loss was associated with greater variance of the decision variable, consistent with increased internal noise. The results show that decreased auditory experience has a greater impact on perceptual skills when initiated at an early age and raises the possibility that altered development of CNS synapses may play a causative role.
Collapse
|
15
|
Anderson S, White-Schwoch T, Choi HJ, Kraus N. Training changes processing of speech cues in older adults with hearing loss. Front Syst Neurosci 2013; 7:97. [PMID: 24348347 PMCID: PMC3842592 DOI: 10.3389/fnsys.2013.00097] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/11/2013] [Indexed: 01/29/2023] Open
Abstract
Aging results in a loss of sensory function, and the effects of hearing impairment can be especially devastating due to reduced communication ability. Older adults with hearing loss report that speech, especially in noisy backgrounds, is uncomfortably loud yet unclear. Hearing loss results in an unbalanced neural representation of speech: the slowly-varying envelope is enhanced, dominating representation in the auditory pathway and perceptual salience at the cost of the rapidly-varying fine structure. We hypothesized that older adults with hearing loss can be trained to compensate for these changes in central auditory processing through directed attention to behaviorally-relevant speech sounds. To that end, we evaluated the effects of auditory-cognitive training in older adults (ages 55-79) with normal hearing and hearing loss. After training, the auditory training group with hearing loss experienced a reduction in the neural representation of the speech envelope presented in noise, approaching levels observed in normal hearing older adults. No changes were noted in the control group. Importantly, changes in speech processing were accompanied by improvements in speech perception. Thus, central processing deficits associated with hearing loss may be partially remediated with training, resulting in real-life benefits for everyday communication.
Collapse
Affiliation(s)
- Samira Anderson
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA
| | - Hee Jae Choi
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA ; Institute for Neuroscience, Northwestern University Evanston, IL, USA ; Department of Neurobiology and Physiology, Northwestern University Evanston, IL, USA ; Department of Otolaryngology, Northwestern University Evanston, IL, USA
| |
Collapse
|
16
|
Campbell J, Sharma A. Compensatory changes in cortical resource allocation in adults with hearing loss. Front Syst Neurosci 2013; 7:71. [PMID: 24478637 PMCID: PMC3905471 DOI: 10.3389/fnsys.2013.00071] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022] Open
Abstract
Hearing loss has been linked to many types of cognitive decline in adults, including an association between hearing loss severity and dementia. However, it remains unclear whether cortical re-organization associated with hearing loss occurs in early stages of hearing decline and in early stages of auditory processing. In this study, we examined compensatory plasticity in adults with mild-moderate hearing loss using obligatory, passively-elicited, cortical auditory evoked potentials (CAEP). High-density EEG elicited by speech stimuli was recorded in adults with hearing loss and age-matched normal hearing controls. Latency, amplitude and source localization of the P1, N1, P2 components of the CAEP were analyzed. Adults with mild-moderate hearing loss showed increases in latency and amplitude of the P2 CAEP relative to control subjects. Current density reconstructions revealed decreased activation in temporal cortex and increased activation in frontal cortical areas for hearing-impaired listeners relative to normal hearing listeners. Participants' behavioral performance on a clinical test of speech perception in noise was significantly correlated with the increases in P2 latency. Our results indicate that changes in cortical resource allocation are apparent in early stages of adult hearing loss, and that these passively-elicited cortical changes are related to behavioral speech perception outcome.
Collapse
Affiliation(s)
- Julia Campbell
- Department of Speech, Language and Hearing Sciences, University of Colorado at Boulder Boulder, CO, USA
| | - Anu Sharma
- Department of Speech, Language and Hearing Sciences, University of Colorado at Boulder Boulder, CO, USA ; Institute of Cognitive Science, University of Colorado at Boulder Boulder, CO, USA
| |
Collapse
|