1
|
Gazeri A, Aminzadeh A. Protective effects of deferoxamine on lead-induced cardiotoxicity in rats. Toxicol Ind Health 2020; 36:800-806. [PMID: 32812511 DOI: 10.1177/0748233720947231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of the numerous industrial applications of lead (Pb), Pb poisoning is an important public health threat in the world particularly in developing and industrialized countries. Oxidative stress is one of the important mechanisms of Pb-mediated toxicity. Deferoxamine (DFO) is an iron chelating agent that has recently shown antioxidant and antiapoptotic effects. This study investigated the protective capacity of DFO against Pb-induced cardiotoxicity in rats. We used five groups in this study: control, DFO (300 mg/kg), Pb (50 mg/kg), DFO (150 mg/kg) + Pb, DFO (300 mg/kg) + Pb. DFO was administered intraperitoneally 30 min before intraperitoneal injection of Pb for 5 days. After drug treatment, the levels of lactate dehydrogenase (LDH), lipid peroxidation (LPO), glutathione (GSH), and antioxidant enzymes were measured in serum and heart samples. The results showed that pretreatment with DFO reduced Pb-induced oxidative stress markers in serum and cardiac tissues. We found that LDH and LPO levels were significantly increased in Pb-treated rats and decreased with DFO pre-administration. Furthermore, the decreased activities of total antioxidant capacity, and GSH were observed after Pb treatment. However, DFO administration effectively prevented the Pb-induced alterations of these antioxidant enzymes activities. In conclusion, the results presented here indicate that DFO has protective effects in Pb-induced cardiotoxicity in rats, probably due to its antioxidant action and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Alireza Gazeri
- Student Research Committee, Faculty of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, 48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A, Zhang J. Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Front Cell Dev Biol 2020; 8:594. [PMID: 32760721 PMCID: PMC7373735 DOI: 10.3389/fcell.2020.00594] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Acute central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI) present a grave health care challenge worldwide due to high morbidity and mortality, as well as limited clinical therapeutic strategies. Established literature has shown that oxidative stress (OS), inflammation, excitotoxicity, and apoptosis play important roles in the pathophysiological processes of acute CNS injuries. Recently, there have been many studies on the topic of ferroptosis, a form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxidation. Some studies have revealed an emerging connection between acute CNS injuries and ferroptosis. Ferroptosis, induced by the abnormal metabolism of lipids, glutathione (GSH), and iron, can accelerate acute CNS injuries. However, pharmaceutical agents, such as iron chelators, ferrostatin-1 (Fer-1), and liproxstatin-1 (Lip-1), can inhibit ferroptosis and may have neuroprotective effects after acute CNS injuries. However, the specific mechanisms underlying this connection has not yet been clearly elucidated. In this paper, we discuss the general mechanisms of ferroptosis and its role in stroke, TBI, and SCI. We also summarize ferroptosis-related drugs and highlight the potential therapeutic strategies in treating various acute CNS injuries. Additionally, this paper suggests a testable hypothesis that ferroptosis may be a novel direction for further research of acute CNS injuries by providing corresponding evidence.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yuanbo Pan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Weilin Xu
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Tang G, Chen Y, Chen J, Chen Z, Jiang W. Deferoxamine Ameliorates Compressed Spinal Cord Injury by Promoting Neovascularization in Rats. J Mol Neurosci 2020; 70:1437-1444. [DOI: 10.1007/s12031-020-01564-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
|
4
|
Phosphatidylethanolamine-Binding Protein 1 Ameliorates Ischemia-Induced Inflammation and Neuronal Damage in the Rabbit Spinal Cord. Cells 2019; 8:cells8111370. [PMID: 31683736 PMCID: PMC6912576 DOI: 10.3390/cells8111370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/29/2023] Open
Abstract
In a previous study, we utilized a proteomic approach and found a significant reduction in phosphatidylethanolamine-binding protein 1 (PEBP1) protein level in the spinal cord at 3 h after ischemia. In the present study, we investigated the role of PEBP1 against oxidative stress in NSC34 cells in vitro, and ischemic damage in the rabbit spinal cord in vivo. We generated a PEP-1-PEBP1 fusion protein to facilitate the penetration of blood-brain barrier and intracellular delivery of PEBP1 protein. Treatment with PEP-1-PEBP1 significantly decreased cell death and the induction of oxidative stress in NSC34 cells. Furthermore, administering PEP-1-PEBP1 did not show any significant side effects immediately before and after ischemia/reperfusion. Administration of PEP-PEBP1 improved the Tarlov’s neurological score at 24 and 72 h after ischemia, and significantly improved neuronal survival at 72 h after ischemia based on neuronal nuclei (NeuN) immunohistochemistry, Flouro-Jade B staining, and western blot study for cleaved caspase 3. PEP-1-PEBP1 administration decreased oxidative stress based on malondialdehyde level, advanced oxidation protein products, and 8-iso-prostaglandin F2α in the spinal cord. In addition, inflammation based on myeloperoxidase level, tumor necrosis factor-α level, and high mobility group box 1 level was decreased by PEP-1-PEBP1 treatment at 72 h after ischemia. Thus, PEP-1-PEBP1 treatment, which decreases oxidative stress, inflammatory cytokines, and neuronal death, may be an effective therapeutic strategy for spinal cord ischemia.
Collapse
|
5
|
Wu D, Zheng C, Wu J, Xue J, Huang R, Wu D, Song Y. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits. Spine J 2017; 17:1665-1673. [PMID: 28662993 DOI: 10.1016/j.spinee.2017.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND CONTEXT A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. PURPOSE The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. STUDY DESIGN This is an animal laboratory study. METHODS Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. RESULTS With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. CONCLUSIONS Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic, Da Lian Medical University, No. 9 Lushun South Rd, Liaoning 116044, China; Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China
| | - Chao Zheng
- Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China
| | - Ji Wu
- Department of Orthopedic, Da Lian Medical University, No. 9 Lushun South Rd, Liaoning 116044, China; Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China.
| | - Jing Xue
- Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China
| | - Rongrong Huang
- Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China
| | - Di Wu
- Department of Orthopedic, Air Force General Hospital of Chinese People's Liberation Army, Da Lian Medical University, No. 30 Fucheng Rd, Beijing 100142, China
| | - Yueming Song
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Dopamine D1 Receptor Agonist A-68930 Inhibits NLRP3 Inflammasome Activation, Controls Inflammation, and Alleviates Histopathology in a Rat Model of Spinal Cord Injury. Spine (Phila Pa 1976) 2016; 41:E330-4. [PMID: 26966979 DOI: 10.1097/brs.0000000000001287] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A randomized experimental study. OBJECTIVE The aim of this study was to investigate the therapeutic efficacy and molecular mechanisms of dopamine D1 receptor agonist A-68930 in spinal cord injury (SCI) rats. SUMMARY OF BACKGROUND DATA The inflammation induced by SCI includes maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 mediated by nucleotide-binding domain -like receptor protein 3 (NLRP3) inflammasome. Dopamine D1 receptor agonist A-68930 has been reported to exert neuroprotective effect via suppressing NLRP3 inflammasome activation in some central nervous injury models. However, whether A-68930 can exert nueroprotection in rat SCI models through inhibition of NLRP3 inflammasome activation has yet to be investigated. METHODS Eighty female Sprague-Dawley rats were randomly divided into 4 groups: sham group, SCI group, SCI + Vehicle (Veh) group, SCI + A-68930 group. The influences of A-68930 on the proinflammatory cytokines levels, histological changes, and locomotion scale were estimated. RESULTS SCI significantly promoted NLRP3 inflammasome activation and increased proinflammatory cytokines productions in SCI group as compared with sham group. A-68930 administration significantly inhibited NLRP3 inflammasome activation and reduced inflammatory cytokines levels. Moreover, A-68930 administration attenuated histopathology and promoted locomotion recovery. CONCLUSION A-68930 can attenuate tissue damage and improve neurological function recovery, and the mechanism may be related to the inhibition of NLRP3 inflammasome activation.
Collapse
|
7
|
Lv R, Mao N, Wu J, Lu C, Ding M, Gu X, Wu Y, Shi Z. Neuroprotective effect of allicin in a rat model of acute spinal cord injury. Life Sci 2015; 143:114-23. [PMID: 26546416 DOI: 10.1016/j.lfs.2015.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/12/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
AIMS This study aims to investigate the effect of allicin on motor functions and histopathologic changes after spinal cord injury and the mechanism underlying its neuroprotective effects. MAIN METHODS The motor function of rats was evaluated with the Basso, Beattie, and Bresna test. Histopathologic changes were evaluated by hematoxylin and eosin and Nissl staining. Spinal cord oxidative stress markers were determined by measuring glutathione and malondialdehyde content and superoxide dismutase activity using commercial kits. Inflammatory factors were determined by measuring tumor necrosis factor-α, interleukin-1β and interleukin-6 using ELISA assay. Apoptosis was examined using TUNEL staining. The effect of allicin on Nrf2 protein levels and localization was assessed using immunofluorescence staining and Western blotting analysis. KEY FINDINGS Results demonstrated that allicin accelerated the motor functional recovery and protected neuron damage against spinal cord injury (SCI). SCI-induced oxidative stress, inflammatory response and cell apoptosis in the spinal cord were also prevented by allicin. In addition, we observed that SCI increased Nrf2 nuclear expression, and allicin treatment further increased Nrf2 nuclear translocation in neurons and astrocytes. siRNA-mediated Nrf2 gene knockdown completely blocked the effect of allicin on spinal cord tissue. SIGNIFICANCE Our finding suggests that allicin promotes the recovery of motor function after SCI in rats, and this effect may be related to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Allicin mediated Nrf2 nuclear translocation may be involved in the protective effect as well.
Collapse
Affiliation(s)
- Runxiao Lv
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Ningfang Mao
- Department of Spine Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinhui Wu
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunwen Lu
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Muchen Ding
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiaochuan Gu
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yungang Wu
- Unit of Graduate Students, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Zhicai Shi
- Department of Spine Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
8
|
Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, Ferraro L, Regan RF, Giunchedi P, Gavini E, Dalpiaz A. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release 2015; 201:68-77. [PMID: 25620068 PMCID: PMC4330128 DOI: 10.1016/j.jconrel.2015.01.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
We propose the formulation and characterization of solid microparticles as nasal drug delivery systems able to increase the nose-to-brain transport of deferoxamine mesylate (DFO), a neuroprotector unable to cross the blood brain barrier and inducing negative peripheral impacts. Spherical chitosan chloride and methyl-β-cyclodextrin microparticles loaded with DFO (DCH and MCD, respectively) were obtained by spray drying. Their volume-surface diameters ranged from 1.77 ± 0.06 μm (DCH) to 3.47 ± 0.05 μm (MCD); the aerodynamic diameters were about 1.1 μm and their drug content was about 30%. In comparison with DCH, MCD enhanced the in vitro DFO permeation across lipophilic membranes, similarly as shown by ex vivo permeation studies across porcine nasal mucosa. Moreover, MCD were able to promote the DFO permeation across monolayers of PC 12 cells (neuron-like), but like DCH, it did not modify the DFO permeation pattern across Caco-2 monolayers (epithelial-like). Nasal administration to rats of 200 μg DFO encapsulated in the microparticles resulted in its uptake into the cerebrospinal fluid (CSF) with peak values ranging from 3.83 ± 0.68 μg/mL (DCH) to 14.37 ± 1.69 μg/mL (MCD) 30 min after insufflation of microparticles. No drug CSF uptake was detected after nasal administration of a DFO water solution. The DFO systemic absolute bioavailabilities obtained by DCH and MCD nasal administration were 6% and 15%, respectively. Chitosan chloride and methyl-β-cyclodextrins appear therefore suitable to formulate solid microparticles able to promote the nose to brain uptake of DFO and to limit its systemic exposure.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Elena Soddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Massimo Cossu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Antonio Brundu
- Department of Natural and Territorial Sciences, University of Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Guido Cerri
- Department of Natural and Territorial Sciences, University of Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Nicola Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett 2015; 584:362-7. [DOI: 10.1016/j.neulet.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022]
|
10
|
Fagoe ND, van Heest J, Verhaagen J. Spinal cord injury and the neuron-intrinsic regeneration-associated gene program. Neuromolecular Med 2014; 16:799-813. [PMID: 25269879 DOI: 10.1007/s12017-014-8329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration.
Collapse
Affiliation(s)
- Nitish D Fagoe
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
11
|
Kahveci R, Gökçe EC, Gürer B, Gökçe A, Kisa U, Cemil DB, Sargon MF, Kahveci FO, Aksoy N, Erdoğan B. Neuroprotective effects of rosuvastatin against traumatic spinal cord injury in rats. Eur J Pharmacol 2014; 741:45-54. [PMID: 25084223 DOI: 10.1016/j.ejphar.2014.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
Rosuvastatin, which is a potent statin, has never been studied in traumatic spinal cord injury. The aim of this study was to investigate whether rosuvastatin treatment could protect the spinal cord after experimental spinal cord injury. Rats were randomized into the following five groups of eight animals each: control, sham, trauma, rosuvastatin, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analyzed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test.After traumatic spinal cord injury, increases in caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. In contrast, the superoxide dismutase levels were decreased. After the administration of rosuvastatin, decreases were observed in the tissue caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. In contrast, tissue superoxide dismutase levels were increased. Furthermore, rosuvastatin treatment showed improved results concerning the histopathological scores, the ultrastructural score and the functional tests. Biochemical, histopathological, ultrastructural analysis and functional tests revealed that rosuvastatin exhibits meaningful neuroprotective effects against spinal cord injury.
Collapse
Affiliation(s)
- Ramazan Kahveci
- Ministry of Health, Kirikkale Yüksek İhtisas Hospital, Department of Neurosurgery, Kirikkale, Turkey
| | - Emre Cemal Gökçe
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Beyin Cerrahi Servisi, 34752 Ataşehir, Istanbul, Turkey.
| | - Aysun Gökçe
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Uçler Kisa
- Kirikkale University, Faculty of Medicine, Department of Biochemistry, Kirikkale, Turkey
| | - Duran Berker Cemil
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Hacettepe University, Faculty of Medicine, Department of Anatomy, Ankara, Turkey
| | - Fatih Ozan Kahveci
- Bülent Ecevit University, Faculty of Medicine, Department of Emergency Medicine, Zonguldak, Turkey
| | - Nurkan Aksoy
- Kirikkale University, Faculty of Medicine, Department of Biochemistry, Kirikkale, Turkey
| | - Bülent Erdoğan
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| |
Collapse
|