1
|
Xu W, Ran B, Aizawa T, Liu W, Zhao J, Niu R, Liu Z, Gu R. The Hedgehog-GLI1 Pathway Regulates Osteogenic Differentiation of Human Cervical Posterior Longitudinal Ligament Cells by BMP Signalling Pathway. J Cell Mol Med 2025; 29:e70393. [PMID: 39910703 PMCID: PMC11798735 DOI: 10.1111/jcmm.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Cervical ossification of the posterior longitudinal ligament (OPLL) is an ectopic ossification disorder characterised by endochondral ossification. Its aetiology remains to be fully elucidated. This study aimed to clarify its pathogenesis through RNA sequencing of primary cells cultured from patients without cervical OPLL (control, PLL) and patients with cervical OPLL (disease, OPLL). We revealed for the first time the role of GLI1 within OPLL cells. Functional experiments indicated that GLI1, acting as a pivotal mediator between the upstream Hedgehog pathway and downstream BMP pathway, influences the pathogenesis of OPLL. The positive/negative effects on osteogenic differentiation following activation/inhibition of the Hedgehog pathway can be rescued by manipulating GLI1 expression. Overexpression of GLI1 activates BMP signalling, enhancing osteogenic capacity in PLL cells, while GLI1 knockdown suppresses BMP signal transduction, attenuating osteogenic differentiation in OPLL cells. Our findings highlight the significant role of the canonical Hedgehog signalling pathway and its interaction with the BMP pathway in the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Bingbing Ran
- Department of UltrasoundThe First Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Toshimi Aizawa
- Department of Orthopaedic SurgeryTohoku University School of MedicineSendaiJapan
| | - Wanguo Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Renrui Niu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Zeping Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Rui Gu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| |
Collapse
|
2
|
Liu Y, Li Y, Liu Y, Gao Z, Zhang J, Qiu Y, Wang C, Lu X, Yang J. Investigation of the Shared Biomarkers in Heterotopic Ossification Between Ossification of the Ligamentum Flavum and Ankylosing Spondylitis. Global Spine J 2025; 15:161-174. [PMID: 38757696 PMCID: PMC11571366 DOI: 10.1177/21925682241255894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
STUDY DESIGN Bioinformatics analysis of Gene Expression Omnibus (GEO). OBJECTIVE Ossification of the ligamentum flavum (OLF) and ankylosing spondylitis (AS) represent intricate conditions marked by the gradual progression of endochondral ossification. This investigation endeavors to unveil common biomarkers associated with heterotopic ossification and explore the potential molecular regulatory mechanisms. METHODS Microarray and RNA-sequencing datasets retrieved from the Gene Expression Omnibus (GEO) repository were harnessed to discern differentially expressed genes (DEGs) within the OLF and AS datasets. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was implemented to pinpoint co-expression modules linked to OLF and AS. Common genes were further subjected to an examination of functional pathway enrichment. Moreover, hub intersection genes were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by an evaluation of diagnostic performance in external OLF and AS cohorts. Lastly, an analysis of immune cell infiltration was conducted to scrutinize the correlation of immune cell presence with shared biomarkers in OLF and AS. RESULTS A total of 1353 and 91 Differentially Expressed Genes (DEGs) were identified in OLF and AS, respectively. Using the Weighted Gene Co-expression Network Analysis (WGCNA), 2 modules were found to be notably significant for OLF and AS. The integrative bioinformatic analysis revealed 3 hub genes (MAB21L2, MEGF10, ISLR) as shared risk biomarkers, with MAB21L2 being the central focus. Receiver Operating Characteristic (ROC) analysis exhibited a strong diagnostic potential for these hub genes. Gene Ontology (GO) analysis indicated their involvement in the positive regulation of myoblast proliferation. Notably, MAB21L2 was singled out as the optimal common biomarker for OLF and AS. Furthermore, an analysis of immune infiltration demonstrated a correlation between MAB21L2 expression and changes in immune cells. Activated CD8 T cells were identified as shared differential immune infiltrating cells significantly linked to MAB21L2 in both OLF and AS. CONCLUSION This study represents the first instance of identifying MAB21L2 as a prospective diagnostic marker for patients contending with OLF associated with AS. The research results indicate that the ECM-receptor interaction and the cell-cell adhesion may play a role in both disease processes. This newfound knowledge not only enhances our understanding of the pathogenesis behind spinal ligament ossification but also uncovers potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yishan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| | - Yang Li
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yixuan Liu
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Zhongya Gao
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianjun Zhang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Youcai Qiu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Xuhua Lu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiandong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| |
Collapse
|
3
|
Geng X, Tang Y, Gu C, Zeng J, Zhao Y, Zhou Q, Jia L, Zhou S, Chen X. Integrin αVβ3 antagonist-c(RGDyk) peptide attenuates the progression of ossification of the posterior longitudinal ligament by inhibiting osteogenesis and angiogenesis. Mol Med 2024; 30:57. [PMID: 38698308 PMCID: PMC11067224 DOI: 10.1186/s10020-024-00822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVβ3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVβ3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVβ3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVβ3. Integrin αVβ3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVβ3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVβ3 and regulating the FAK/ERK pathway. CONCLUSIONS Therefore, the integrin αVβ3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.
Collapse
Affiliation(s)
- Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Quanwei Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Lianshun Jia
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| |
Collapse
|
4
|
Tang T, Zhu Z, He Z, Wang F, Chen H, Liu S, Zhan M, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. DLX5 regulates the osteogenic differentiation of spinal ligaments cells derived from ossification of the posterior longitudinal ligament patients via NOTCH signaling. JOR Spine 2023; 6:e1247. [PMID: 37361333 PMCID: PMC10285757 DOI: 10.1002/jsp2.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 01/30/2023] Open
Abstract
Background Ossification of the posterior longitudinal ligaments (OPLL) is common disorder characterized by heterotopic ossification of the spinal ligaments. Mechanical stimulation (MS) plays an important role in OPLL. DLX5 is an essential transcription factor required for osteoblast differentiation. However, the role of DLX5 during in OPLL is unclear. This study aims to investigate whether DLX5 is associated with OPLL progression under MS. Methods Stretch stimulation was applied to spinal ligaments cells derived from OPLL (OPLL cells) and non-OPLL (non-OPLL cells) patients. Expression of DLX5 and osteogenesis-related genes were determined by quantitative real-time polymerase chain reaction and Western blot. The osteogenic differentiation ability of the cells was measured using alkaline phosphatase (ALP) staining and alizarin red staining. The protein expression of DLX5 in the tissues and the nuclear translocation of NOTCH intracellular domain (NICD) was examined by immunofluorescence. Results Compared with non-OPLL cells, OPLL cells expressed higher levels of DLX5 in vitro and vivo (p < 0.01). Upregulated expression of DLX5 and osteogenesis-related genes (OSX, RUNX2, and OCN) were observed in OPLL cells induced with stretch stimulation and osteogenic medium, whereas there was no change in the non-OPLL cells (p < 0.01). Cytoplasmic NICD protein translocated from the cytoplasm to the nucleus inducing DLX5 under stretch stimulation, which was reduced by the NOTCH signaling inhibitors (DAPT) (p < 0.01). Conclusions These data suggest that DLX5 play a critical role in MS-induced progression of OPLL through NOTCH signaling, which provides a new insight into the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shengkai Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Mingbin Zhan
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical MaterialsBeijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan HospitalBeijingChina
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
6
|
Liu J, Chen Y, Shan X, Wang H. Investigation of the biomarkers involved in ectopic ossification: The shared mechanism in ossification of the spinal ligament. Front Genet 2022; 13:991834. [PMID: 36276940 PMCID: PMC9585156 DOI: 10.3389/fgene.2022.991834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ossification of the posterior longitudinal ligament (OPLL) and ossification of the ligamentum flavum (OLF) are multifactor diseases characterized by progressively ectopic ossification in the spinal ligament. However, the shared ossification mechanism of OPLL and OLF remains to be elucidated. The study aims to investigate the common biomarkers related to ectopic ossification and the potential molecular regulatory mechanism.Methods: Microarray and RNA-seq datasets were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) from OPLL and OLF were identified to construct the protein-protein interaction (PPI) network. Furthermore, the hub intersection genes were screened and the diagnostic performance was assessed in the external OLF and OPLL cohorts. We also depicted the landscape of immune cell infiltration and m6A modification meanwhile further estimating the relationship with BMP4.Results: A total of nine up-regulated DEGs and 11 down-regulated DEGs were identified to construct the PPI networks. The integrative bioinformatic analysis defined five hub genes (BMP4, ADAMTS4, HBEGF, IL11, and HAS2) as the common risk biomarkers. Among them, BMP4 was the core target. ROC analysis demonstrated a high diagnostic value of the hub genes. Moreover, activated B cells were recognized as shared differential immune infiltrating cells and significantly associated with BMP4 in OPLL and OLF. Meanwhile, a strong correlation was detected between the expression pattern of the m6A regulator METTL3 and BMP4.Conclusion: This study first identified BMP4 as the shared core biomarker in the development of OPLL and OLF. Activated B cells and m6A writer METTL3 might be involved in the osteogenesis process mediated by BMP4. Our findings provide insights into the pathogenesis in the ossification of the spinal ligament and unveil the potential therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxia Chen
- Department of Endocrinology, Cangzhou People’s Hospital, Cangzhou, China
| | - Xiuqi Shan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Huan Wang,
| |
Collapse
|
7
|
The Effect of the NFκB-USP9X-Cx43 Axis on the Dynamic Balance of Bone Formation/Degradation during Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1604932. [PMID: 35391932 PMCID: PMC8983240 DOI: 10.1155/2022/1604932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022]
Abstract
Connexin 43- (Cx43-) mediated nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling has been found involved in the ossification of the posterior longitudinal ligament (OPLL). However, the underlying mechanism how OPLL is regulated has not been elucidated. In the present study, primary ligament fibroblast were isolated; immunoprecipitation (IP) and liquid chromatography-mass spectrometry (LC-MS) assays were applied to identify potential binding proteins of Cx43. Protein interaction was then confirmed by co-IP assay. Alkaline phosphatase (ALP) activity and alizarin red staining were used to evaluate ossification. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to assess the binding between NF-κB p65 and target gene. Lipoxygenase inhibitor (5,8,11-eicosatriynoic acid, EPA) was applied to induce endoplasmic reticulum (ER) stress, and 4-phenylbutyrate (4-PBA) was used as an ER-stress inhibitor. Expression of USP9X, Cx43, and nuclei p65 in ligaments from patients and controls was detected by Western blotting. The results showed that ubiquitin-specific protease 9 X-chromosome (USP9X), a deubiquitylating enzyme, was a candidate of Cx43 binding proteins, and USP9X inhibited Cx43 ubiquitination. In vitro experiments showed that USP9X promoted ossification of primary ligament fibroblasts and nuclear translocation of NF-κB p65 by regulating Cx43 expression. Moreover, NF-κB can bind to the USP9X promoter to promote its transcription. When ER stress was inhibited by 4-PBA, USP9X levels, NF-κB nuclei translocation, and ALP activity were decreased. Reverse results were obtained when ER stress was induced by EPA. PDTC, an NF-κB inhibitor, could abolish the effects of EPA. Furthermore, USP9X, Cx43, and nuclei p65 were significantly upregulated in ligaments from OPLL patients than non-OPLL controls. USP9X was positively correlated with CX43 and nuclei p65 in OPLL samples. Overall, the findings suggest that the ER stress–NFκB-USP9X-Cx43 signaling pathway plays an important role in OPLL progression.
Collapse
|
8
|
Liu B, Li Q, Xie H, Hu X, Pan X. Evaluation of Vertebral Function and Long-Term Quality of Life after Percutaneous Minimally Invasive Surgery in Patients with Thoracolumbar Spine Fractures. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2723542. [PMID: 35251297 PMCID: PMC8890886 DOI: 10.1155/2022/2723542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the changes in vertebral function after minimally invasive surgery in patients with thoracolumbar spinal fractures and investigate the impact of percutaneous minimally invasive surgery on patients' quality of life by following up the patients in the long term. METHODS A retrospective analysis was performed to select 80 patients with thoracolumbar spinal fractures treated in our hospital from April 2013 to October 2018, and the patients were divided into a study group and a control group according to the difference in their choice of procedure. The two groups were compared in terms of perioperative wound pain, serum creatine kinase (CK) activity, and C-reactive protein (CRP) levels, and the two groups were followed up for 2 years to compare the changes in anterior vertebral body height and Cobb's angle during the follow-up period and to compare the differences in quality of life between the two groups. RESULTS (1) The pain level of patients in the study group was significantly lower than that of the control group at the 1st and 3rd postoperative days (p < 0.05). (2) The CK activity and CPR level of patients in the study group were significantly lower than that of the control group at the 1st and 3rd postoperative days (p < 0.05). (3) Compared with the preoperative period, the height of the anterior border of the vertebral body and the Cobb's angle in both groups showed significant changes at 7 d, 6 months, one year, and two years after surgery (p < 0.05), suggesting that both procedures can significantly restore the height of the injured vertebra and improve the function of the vertebral body. (4) The somatic, physical, and psychological functions of patients in the study group were significantly greater than those in the control group at 6 months postoperatively (p > 0.05). CONCLUSION Compared to traditional open surgery, minimally invasive percutaneous surgery for thoracolumbar fractures can significantly reduce perioperative pain and improve perioperative stress in patients, while achieving better surgical outcomes and a significantly improved quality of life in patients at long-term follow-up.
Collapse
Affiliation(s)
- Bin Liu
- Department of Emergency Trauma Surgery, First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - QiaoHong Li
- Department of Emergency Trauma Surgery, First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Hui Xie
- Department of Emergency Trauma Surgery, First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - XinPan Hu
- Department of Emergency Trauma Surgery, First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - XueKun Pan
- Department of Emergency Trauma Surgery, First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| |
Collapse
|
9
|
Kaito T. The Essence of Clinical Practice Guidelines for Ossification of Spinal Ligaments, 2019: 2. Pathology of OPLL. Spine Surg Relat Res 2021; 5:322-324. [PMID: 34708165 PMCID: PMC8502512 DOI: 10.22603/ssrr.2021-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Yao W, Gong Y, Zhao B, Li R. Combined effects of cyclic stretch and TNF-α on the osteogenic differentiation in MC3T3-E1 cells. Arch Oral Biol 2021; 130:105222. [PMID: 34358809 DOI: 10.1016/j.archoralbio.2021.105222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The study aimed to investigate the combined effects of cyclic stretch and tumor necrosis factor-alpha (TNF-α) on the osteogenic differentiation of MC3T3-E1 cells and the role of the nuclear factor-kappaB (NF-κB) signaling pathway in this process. DESIGN MC3T3-E1 cells were treated with TNF-α (0.5 and 10 ng/mL) and cyclically stretched using the Flexcell tension system 4000 with 12 % elongation for 12 h. Furthermore, to explore which cytokines might be regulated by the NF-κB signaling pathway in osteogenic differentiation, the cells were pre-treated with NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), and then cyclically stretched for 12 h in the presence of 10 ng/mL of TNF-α. RT-PCR and western blot were utilized to detect the expression of type Ⅰ collagen (COL1), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), NF-κB, and phosphorylated NF-κB (p-NF-κB) at gene and protein levels. RESULTS Cyclic stretch alone increased the expression of COL1, OCN, Runx2, ALP, and OPG, decreasing the expression of RANKL and the RANKL/OPG ratio. The upregulation or downregulation induced by cyclic stretch were restrained in the presence of TNF-α. The p-NF-κB/NF-κB ratio increased at any stimulation. Inhibition of NF-κB signaling pathway restrained the expression variations of COL1, OCN, ALP, OPG, and RANKL induced by TNF-α combined with cyclic stretch. CONCLUSION The results indicated that TNF-α inhibited the osteogenic differentiation of MC3T3-E1 cells induced by cyclic stretch and NF-κB signaling pathway might play a role in this process.
Collapse
Affiliation(s)
- Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Yuqing Gong
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ran Li
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
11
|
Non-coding RNAs in ossification of spinal ligament. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:801-808. [PMID: 33387048 DOI: 10.1007/s00586-020-06687-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Ossification of the spinal ligament (OSL) is a disease characterized by progressive ectopic ossification or calcification in the tissues of spinal ligament. The molecular pathogenesis of OSL has not been clearly elucidated. Recently, ncRNAs was found to functionally participate in OSL development. This review summarized current knowledge regarding the deregulation and function of ncRNAs in OSL METHODS: Relevant studies on deregulation and function of ncRNAs in OSL were retrieved from the PubMed databases. Then, studies were manually selected for inclusion based on predefined criteria. RESULT 14 studies were reviewed, with 4 studies about high throughput sequencing and microarray of ncRNAs, 8 studies relevant to the function of ncRNAs and 2 studies regarding the ncRNAs as the biomarker of OSL. CONCLUSION ncRNA play a vital role in the ossification of spinal ligament fibrocyte, including cell osteogenesis and inflammation. ncRNAs also have potential clinical utilities as therapeutic targets, risk predication and early detection in the management of OSL. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
12
|
Jiang N, Zhang K, Shang J, Wang B, Zhong J, Wu B, Li H, Xu X, Lu H. The integrated analysis of circRNAs, miRNAs and mRNAs revealed the potential role in the TGF-β and TNF-α signaling pathways of OPLL. Mol Omics 2021; 17:607-619. [PMID: 34136894 DOI: 10.1039/d1mo00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL), one of spinal disease causing myelopathy, is characterized by the ectopic ossification and narrowing of the spinal cord. However, the pathogenesis of OPLL is largely unclear. In this study, transcriptome expression profiles (circRNAs, lncRNAs, and mRNAs) were identified via high-throughput sequencing using peripheral blood mononuclear cells (PBMCs) from OPLL and non-OPLL patients. We found that 1150 mRNAs, 331 circRNAs, and 1429 lncRNAs were significantly differentially expressed in the PBMCs of OPLL patients. GO and KEGG enrichment analyses revealed that most mRNAs were associated with inflammation. The co-expression networks indicated that circRNAs and lncRNAs could regulate the mRNAs through influencing the inflammation of OPLL. The circRNA-miRNA-mRNA integrated network showed that circRNA-regulated mRNAs associated with TGF-β and TNF-α signaling pathways. These analyses indicate that circRNAs, lncRNAs, and mRNAs from PBMCs might contribute to inflammation in OPLL.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Kuibo Zhang
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Jie Shang
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Bin Wang
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Junlong Zhong
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Biao Wu
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Huizi Li
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Xianghe Xu
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
13
|
Yang Y, Lin Z, Chen J, Ding S, Mao W, Shi S, Liang B. Autophagy in spinal ligament fibroblasts: evidence and possible implications for ossification of the posterior longitudinal ligament. J Orthop Surg Res 2020; 15:490. [PMID: 33092625 PMCID: PMC7579890 DOI: 10.1186/s13018-020-02017-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background The molecular mechanisms of ossification of the posterior longitudinal ligament (OPLL) remain to be elucidated. The aim of the present study was to investigate the autophagy of spinal ligament fibroblasts derived from patients with OPLL and to examine whether autophagy-associated gene expression was correlated with the expression of osteogenic differentiation genes. Methods Expression of autophagy-associated genes was detected in 37 samples from 21 OPLL patients and 16 non-OPLL patients. The correlation of autophagy-associated gene expression and the expression of osteogenic differentiation genes was analyzed by Pearson’s correlation. The expression of autophagy-associated genes of ligament fibroblasts was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunofluorescence. The incidence of autophagy was assessed by flow cytometry. After knockdown using small interfering RNA targeting Beclin1, the expression of osteogenic differentiation genes were compared in spinal ligament fibroblasts. Results In clinical specimens, mRNA expression levels of microtubule-associated protein 1 light chain 3 and Beclin1 were higher in the OPLL group compared with the non-OPLL group. Pearson correlation analysis demonstrated that Beclin1 expression was positively correlated with expression of osteocalcin (OCN) (r = 0.8233, P < 0.001), alkaline phosphatase, biomineralization associated (ALP) (r = 0.7821, P < 0.001), and collagen type 1 (COL 1) (r = 0.6078, P = 0.001). Consistently, the upregulation of autophagy-associated genes in ligament fibroblasts from patients with OPLL were further confirmed by western blotting and immunofluorescence. The incidence of autophagy was also increased in ligament fibroblasts from patients with OPLL. Furthermore, knockdown of Beclin1 led to a decrease in the expression of OCN, ALP, and COL 1 by 63.2% (P < 0.01), 52% (P < 0.01), and 53.2% (P < 0.01) in ligament fibroblasts from patients with OPLL, respectively. Conclusions Beclin1-mediated autophagy was involved in the osteogenic differentiation of ligament fibroblasts and promoted the development of OPLL.
Collapse
Affiliation(s)
- Yuehua Yang
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, No. 566 Congcheng Avenue, Conghua District, Guangzhou, 510900, People's Republic of China.
| | - Zunwen Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jiangwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Sheng Ding
- Department of Stomatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Weiwei Mao
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Sheng Shi
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Biru Liang
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, No. 566 Congcheng Avenue, Conghua District, Guangzhou, 510900, People's Republic of China
| |
Collapse
|
14
|
Angiotensin II induces RAW264.7 macrophage polarization to the M1‑type through the connexin 43/NF‑κB pathway. Mol Med Rep 2020; 21:2103-2112. [PMID: 32186758 PMCID: PMC7115186 DOI: 10.3892/mmr.2020.11023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (AngII) serves an important inflammatory role in cardiovascular disease; it can induce macrophages to differentiate into the M1-type, produce inflammatory cytokines and resist pathogen invasion, and can cause a certain degree of damage to the body. Previous studies have reported that connexin 43 (Cx43) and NF-κB (p65) are involved in the AngII-induced inflammatory pathways of macrophages; however, the mechanisms underlying the effects of Cx43 and NF-κB (p65) on AngII-induced macrophage polarization have not been determined. Thus, the present study aimed to investigate the effects of Cx43 and NF-κB (p65) on the polarization process of AngII-induced macrophages. The macrophage polarization-related proteins and mRNAs were examined by flow cytometry, western blotting, immunofluorescence, ELISA and reverse transcription-quantitative PCR analyses. RAW264.7 macrophages were treated with AngII to simulate chronic inflammation and it was subsequently found that AngII promoted RAW 264.7 macrophage polarization towards the M1-type by such effects as the release of inducible nitric oxide synthase (iNOS), tumour necrosis factor (TNF)-α, IL-1β, the secretion of IL-6, and the expression of M1-type indicators, such as CD86. Simultaneously, compared with the control group, the protein expression levels of Cx43 and phosphorylated (p)-p65 were significantly increased following AngII treatment. The M1-related phenotypic indicators, iNOS, TNF-α, IL-1β, IL-6 and CD86, were inhibited by the NF-κB (p65) signalling pathway inhibitor BAY117082. Similarly, the Cx43 inhibitors, Gap26 and Gap19, also inhibited the expression of M1-related factors, and the protein expression levels of p-p65 in the Gap26/Gap19 groups were significantly decreased compared with the AngII group. Altogether, these findings suggested that AngII may induce the polarization of RAW264.7 macrophages to the M1-type through the Cx43/NF-κB (p65) signalling pathway.
Collapse
|
15
|
Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament. Bone 2019; 127:305-314. [PMID: 31280017 DOI: 10.1016/j.bone.2019.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is the major cause for several deteriorate bone and joint diseases. Its development is a highly organized dynamic process as modulated by various physiological and pathophysiological factors. Both long non-coding RNAs (lncRNAs) and small non-coding RNAs (miRNAs) have been postulated to involve into almost all the biological conditions. Here, we applied high through-put transcriptome screening to unveil lncRNAs highly regulated under OPLL condition. siRNA assay in combination with western blot and quantitative PCR deciphered the lncRNA and miRNA functions in OPLL and their underlying mechanism. Here we identified an lncRNA, named Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) engaged into the development of OPLL by indirectly targeting Connexin 43 (Cx43) gene. As previously reported, Cx43 is one of the main proteins contributing to OPLL partially through enhancing inflammatory signaling. On top of that, we provided another regulatory layer that MALAT1 served as the upstream effector governing the transcription of Cx43 gene. Perturbation of MALAT1 significantly inhibited Cx43 expression, inflammation, and osteogenesis. Mechanistically, in silico analysis and experimental validation both confirmed that microRNA-1 (miR-1) was the mediator connecting MALAT1-Cx43 axis: overexpression of miR-1 diminished Cx43 expression and OPLL process; meanwhile, MALAT1 acted as miR-1 sponge to inhibit its suppressive transcription effect on downstream ossification related genes. Knock-down of MALAT1 released sequestered miR-1, which repressed Cx43 expression and associated OPLL. Likewise, induced OPLL caused by overexpression of MALAT1 can be ameliorated by enhanced miR-1 function, knock-down of Cx43 or inhibition of inflammation. More importantly, further validation using patient ligament samples from non-OPLL and OPLL individuals identified MALAT1-miR-1-Cx43 regulatory axis. Collectively, we found a novel mechanism through lncRNA-miRNA interaction that provides more insights into understanding the development of OPLL.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Dechun Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yibin Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
16
|
Inflammatory and Infectious Disorders of the Spine. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-61423-6_80-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Wolf M, Weber MA. Inflammatory and Infectious Disorders of the Spine. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|