1
|
Torén L, Lagerstrand K, Waldenberg C, Brisby H, Hebelka H. Different Load-Induced Alterations in Intervertebral Discs Between Low Back Pain Patients and Controls: A T2-map Study. Spine (Phila Pa 1976) 2024; 49:E239-E248. [PMID: 38751239 DOI: 10.1097/brs.0000000000005028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 07/11/2024]
Abstract
STUDY DESIGN Prospective cohort study. OBJECTIVE Investigate load-induced effects in lumbar intervertebral discs (IVDs) and differences between low back pain (LBP) patients and controls. SUMMARY OF BACKGROUND DATA T2-map values, obtained from quantitative MRI sequences, reflect IVD tissue composition and integrity. Feasibility studies with T2-mapping indicate different load-induced effects in entire IVDs and posterior IVD parts between LBP patients and controls. Larger studies are required to confirm these findings and increase the understanding of specific characteristics distinguishing IVD changes in LBP patients compared with controls. MATERIALS AND METHODS Lumbar IVDs of 178 patients (mean age: 43.8 yr; range: 20-60 yr) with >3 months of LBP and 74 controls (mean age: 40.3 yr; range: 20-60 yr) were imaged with T2-map sequence in a 3T scanner in supine position without axial load, immediately followed by a repeated examination, using the same sequence, with axial load. On both examinations, mean T2-map values were obtained from entire IVDs and from central/posterior IVD parts on the three midsagittal slices in 855 patient IVDs and 366 control IVDs. Load-induced effect was compared with Fold-change ratio and adjusted for IVD-degeneration grade. RESULTS Loading induced an increase in T2-map values in both patients and controls. Excluding most extreme values, the ranges varied between -15% and +35% in patients and -11% and +36% in controls (first to 99th percentile). Compared with controls, the T2-map value increase in patients was 2% smaller in entire IVDs (Fold-change: 0.98, P =0.031), and for central and posterior IVD parts 3% (Fold-change: 0.98, P =0.005), respectively, 2% (Fold-change: 0.9, P =0.015) smaller. CONCLUSIONS This quantitative study confirmed diverse load-induced behaviors between LBP patients and controls, suggesting deviant biomechanical characteristics between IVDs in patients and controls not only attributed to the global grade of degeneration. These findings are an important step in the continuous work of identifying specific IVD phenotypes for LBP patients. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Leif Torén
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Lagerstrand
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christian Waldenberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Brisby
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Hebelka
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Climent-Peris VJ, Martí-Bonmatí L, Rodríguez-Ortega A, Doménech-Fernández J. Predictive value of texture analysis on lumbar MRI in patients with chronic low back pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:4428-4436. [PMID: 37715790 DOI: 10.1007/s00586-023-07936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE The aim of this study was to determine whether MRI texture analysis could predict the prognosis of patients with non-specific chronic low back pain. METHODS A prospective observational study was conducted on 100 patients with non-specific chronic low back pain, who underwent a conventional MRI, followed by rehabilitation treatment, and revisited after 6 months. Sociodemographic variables, numeric pain scale (NPS) value, and the degree of disability as measured by the Roland-Morris disability questionnaire (RMDQ), were collected. The MRI analysis included segmentation of regions of interest (vertebral endplates and intervertebral disks from L3-L4 to L5-S1, paravertebral musculature at the L4-L5 space) to extract texture variables (PyRadiomics software). The classification random forest algorithm was applied to identify individuals who would improve less than 30% in the NPS or would score more than 4 in the RMDQ at the end of the follow-up. Sensitivity, specificity, and the area under the ROC curve were calculated. RESULTS The final series included 94 patients. The predictive model for classifying patients whose pain did not improve by 30% or more offered a sensitivity of 0.86, specificity 0.57, and area under the ROC curve 0.71. The predictive model for classifying patients with a RMDQ score 4 or more offered a sensitivity of 0.83, specificity of 0.20, and area under the ROC curve of 0.52. CONCLUSION The texture analysis of lumbar MRI could help identify patients who are more likely to improve their non-specific chronic low back pain through rehabilitation programs, allowing a personalized therapeutic plan to be established.
Collapse
Affiliation(s)
| | - Luís Martí-Bonmatí
- Medical Imaging Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | |
Collapse
|
3
|
Hebelka H, Erkmar A, Brisby H, Lagerstrand K. Coexistence of Vertebral and Intervertebral Disc Changes in Low Back Pain Patients-In Depth Characterization with Same Day MRI and CT Discography. Diagnostics (Basel) 2023; 13:3528. [PMID: 38066769 PMCID: PMC10706685 DOI: 10.3390/diagnostics13233528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 04/01/2025] Open
Abstract
The aim of this study was to investigate to what extent annular fissures, vertebral and endplate changes, and Modic changes (MCs), coexist in low back pain (LBP) patients by using multiple imaging modalities. Sixty-two LBP patients (mean age 45 years, range 24-63, 53% men) were examined with same-day CT-discography and MRI. Intervertebral discs punctured for discography (n = 204) were evaluated on MRI [Pfirrmann grade, High-Intensity Zone (HIZ)] and on CT-discograms [Modified Dallas Discogram Score (DDS)]. DDS≥ 1, i.e., disc fissures involving the outer annulus were further digitomized into delimitable fissuring (<50% of annulus affected) or non-delimitable annular fissuring. Using both MRI and CT, adjacent vertebrae and endplates were assessed for MC, vertebral sclerosis, and a modified endplate defect score (EPS). In 194 discs the contrast agent was adequately injected during discography, of which 160 (83%) displayed outer annular fissures, with 91 (47%) of the latter being delimitable fissures. Most discs with delimitable fissures were moderately degenerated; 68% Pfirrmann grade ≤3, 71% EPS ≤ 2, and 12% displayed MC. The majority (76%) of MCs were associated with advanced adjacent disc degeneration; 84% Pfirrmann grade ≥4, 76% with non-delimitable annular fissuring, 59% EPS≥ 4, and 34% EPS of 3. A total 95 HIZ (47%) were found, of which 54 had delimitable fissuring, while the remainder displayed non-delimitable fissuring. Vertebral sclerosis was commonly observed (26%), both with MCs (73%) and without MCs (27%), and not specifically linked to MC type 3. A total of 97% of segments with vertebral sclerosis displayed outer annular fissures. These findings were significant (0.046 > p > 0.0001), except between HIZ and adjacent sclerosis (p = 0.303). To conclude, the present study confirmed a close interplay between the disc and adjacent vertebra and endplates. The fact that a majority of discs with delimitable annular fissures did not coexist with pronounced endplate changes and/or MCs, however, supports the theory that disc fissuring is an early event in the degenerative cascade. This was further supported by the fact that MCs were strongly linked to extensive disc fissuring and to advanced endplate damage. Further, vertebral sclerosis was common also in vertebra without MCs and strongly associated to annular fissuring, indicating that sclerosis is a previously underestimated feature of a general degenerative process.
Collapse
Affiliation(s)
- Hanna Hebelka
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.E.); (H.B.); (K.L.)
- Department of Radiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Alfred Erkmar
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.E.); (H.B.); (K.L.)
- Department of Orthopaedics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Helena Brisby
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.E.); (H.B.); (K.L.)
- Department of Orthopaedics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Kerstin Lagerstrand
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.E.); (H.B.); (K.L.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Ren X, Liu H, Hui S, Wang X, Zhang H. Forecast of pain degree of lumbar disc herniation based on back propagation neural network. Open Life Sci 2023; 18:20220673. [PMID: 37724118 PMCID: PMC10505347 DOI: 10.1515/biol-2022-0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 09/20/2023] Open
Abstract
To further explore the pathogenic mechanism of lumbar disc herniation (LDH) pain, this study screens important imaging features that are significantly correlated with the pain score of LDH. The features with significant correlation imaging were included into a back propagation (BP) neural network model for training, including Pfirrmann classification, Michigan State University (MSU) regional localization (MSU protrusion size classification and MSU protrusion location classification), sagittal diameter index, sagittal diameter/transverse diameter index, transverse diameter index, and AN angle (angle between nerve root and protrusion). The BP neural network training model results showed that the specificity was 95 ± 2%, sensitivity was 91 ± 2%, and accuracy was 91 ± 2% of the model. The results show that the degree of intraspinal occupation of the intervertebral disc herniation and the degree of intervertebral disc degeneration are related to LDH pain. The innovation of this study is that the BP neural network model constructed in this study shows good performance in the accuracy experiment and receiver operating characteristic experiment, which completes the prediction task of lumbar Magnetic Resonance Imaging features for the pain degree of LDH for the first time, and provides a basis for subsequent clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Ren
- College of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanwen Liu
- College of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiji Hui
- College of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Wang
- College of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglai Zhang
- College of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Waldenberg C, Brisby H, Hebelka H, Lagerstrand KM. Associations between Vertebral Localized Contrast Changes and Adjacent Annular Fissures in Patients with Low Back Pain: A Radiomics Approach. J Clin Med 2023; 12:4891. [PMID: 37568293 PMCID: PMC10420134 DOI: 10.3390/jcm12154891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Low back pain (LBP) is multifactorial and associated with various spinal tissue changes, including intervertebral disc fissures, vertebral pathology, and damaged endplates. However, current radiological markers lack specificity and individualized diagnostic capability, and the interactions between the various markers are not fully clear. Radiomics, a data-driven analysis of radiological images, offers a promising approach to improve evaluation and deepen the understanding of spinal changes related to LBP. This study investigated possible associations between vertebral changes and annular fissures using radiomics. A dataset of 61 LBP patients who underwent conventional magnetic resonance imaging followed by discography was analyzed. Radiomics features were extracted from segmented vertebrae and carefully reduced to identify the most relevant features associated with annular fissures. The results revealed three important texture features that display concentrated high-intensity gray levels, extensive regions with elevated gray levels, and localized areas with reduced gray levels within the vertebrae. These features highlight patterns within vertebrae that conventional classification systems cannot reflect on distinguishing between vertebrae adjacent to an intervertebral disc with or without an annular fissure. As such, the present study reveals associations that contribute to the understanding of pathophysiology and may provide improved diagnostics of LBP.
Collapse
Affiliation(s)
- Christian Waldenberg
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.B.); (H.H.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Helena Brisby
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.B.); (H.H.)
- Department of Orthopaedics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Hanna Hebelka
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.B.); (H.H.)
- Department of Radiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Kerstin Magdalena Lagerstrand
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.B.); (H.H.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Waldenberg C, Eriksson S, Brisby H, Hebelka H, Lagerstrand KM. Detection of Imperceptible Intervertebral Disc Fissures in Conventional MRI-An AI Strategy for Improved Diagnostics. J Clin Med 2022; 12:jcm12010011. [PMID: 36614812 PMCID: PMC9821245 DOI: 10.3390/jcm12010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Annular fissures in the intervertebral discs are believed to be closely related to back pain. However, no sensitive non-invasive method exists to detect annular fissures. This study aimed to propose and test a method capable of detecting the presence and position of annular fissures in conventional magnetic resonance (MR) images non-invasively. The method utilizes textural features calculated from conventional MR images combined with attention mapping and artificial intelligence (AI)-based classification models. As ground truth, reference standard computed tomography (CT) discography was used. One hundred twenty-three intervertebral discs in 43 patients were examined with MR imaging followed by discography and CT. The fissure classification model determined the presence of fissures with 100% sensitivity and 97% specificity. Moreover, the true position of the fissures was correctly determined in 90 (87%) of the analyzed discs. Additionally, the proposed method was significantly more accurate at identifying fissures than the conventional radiological high-intensity zone marker. In conclusion, the findings suggest that the proposed method is a promising diagnostic tool to detect annular fissures of importance for back pain and might aid in clinical practice and allow for new non-invasive research related to the presence and position of individual fissures.
Collapse
Affiliation(s)
- Christian Waldenberg
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Correspondence:
| | - Stefanie Eriksson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Helena Brisby
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Hanna Hebelka
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Kerstin Magdalena Lagerstrand
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
7
|
Papalini EI, Polte CL, Bobbio E, Lagerstrand KM. Diagnosis of Acute Myocarditis Using Texture-Based Cardiac Magnetic Resonance, with CINE Imaging as a Novel Tissue Characterization Technique. Diagnostics (Basel) 2022; 12:diagnostics12123187. [PMID: 36553194 PMCID: PMC9777125 DOI: 10.3390/diagnostics12123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiac magnetic resonance (CMR) has emerged as a useful tool in the diagnostic work-up of patients with clinically suspected acute myocarditis (AM), yet the diagnosis remains challenging. The purpose of this proof-of-concept study was to evaluate if data-driven texture analysis has the feasibility to automatically distinguish between patients with and without CMR-verified AM using T2-weighted, late gadolinium enhancement, and CINE imaging. In particular, the present study investigated if functional CINE imaging could be used as a novel tissue characterization technique. Twenty patients with clinically suspected AM, separated into CMR-verified (n = 10) and non CMR-verified (n = 10) AM according to the Lake Louise criteria, were retrospectively included. Texture features were extracted from the images, compared on a group level, and correlated to the diagnostic outcome (CMR-verified versus non CMR-verified AM). Several features showed good to excellent reproducibility with very large differences between the groups, and moderate to strong correlation with the diagnostic outcome, suggesting that CMR texture analysis is a promising diagnostic tool for patients with clinically suspected AM. Furthermore, findings indicate that CINE imaging, which is currently used for the evaluation of cardiac function, might be a useful non-contrast-based technique for tissue characterization in patients with clinically suspected AM.
Collapse
Affiliation(s)
- Evin I. Papalini
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: ; Tel.: +46-73-080-6717
| | - Christian L. Polte
- Department of Clinical Physiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emanuele Bobbio
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Kerstin M. Lagerstrand
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
8
|
McCormick ZL, Conger A, Smuck M, Lotz JC, Hirsch JA, Hickman C, Harper K, Burnham TR. Magnetic Resonance Imaging Characteristics Associated with Treatment Success from Basivertebral Nerve Ablation: An Aggregated Cohort Study of Multicenter Prospective Clinical Trials Data. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:S34-S49. [PMID: 35856328 PMCID: PMC9297152 DOI: 10.1093/pm/pnac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Investigate associations between endplate and motion segment magnetic resonance imaging (MRI) characteristics and treatment outcomes following basivertebral nerve radiofrequency ablation (BVN RFA) in patients with clinically suspected vertebral endplate pain (VEP). DESIGN Aggregated cohort study of 296 participants treated with BVN RFA from three prospective clinical trials. METHODS Baseline MRI characteristics were analyzed using stepwise logistic regression to identify factors associated with treatment success. Predictive models used three definitions of treatment success: (1) ≥50% low back pain (LBP) visual analog scale (VAS), (2) ≥15-point Oswestry Disability Index (ODI), and (3) ≥50% VAS or ≥15-point ODI improvements at 3-months post-BVN RFA. RESULTS The presence of lumbar facet joint fluid (odds ratio [OR] 0.586) reduced the odds of BVN RFA treatment success in individuals with clinically suspected VEP. In patients with a less advanced degenerative disc disease (DDD) profile, a > 50% area of the endplate with bone marrow intensity changes (BMIC) was predictive of treatment success (OR 4.689). Both regressions areas under the curve (AUCs) were under 70%, indicating low predictive value. All other vertebral endplate, intervertebral disc, nerve roots facet joint, spinal segmental alignment, neuroforamina, lateral recesses, and central canal MRI characteristics were not associated with BVN RFA success. CONCLUSIONS In patients with vertebrogenic low back pain with Modic changes, the presence of degenerative findings of the anterior and posterior column was not associated with a clinically important impact on BVN RFA treatment success. None of the models demonstrated strong predictive value, indicating that the use of objective imaging biomarkers (Type 1 and/or 2 Modic changes) and a correlating presentation of pain remain the most useful patient selection factors for BVN RFA.
Collapse
Affiliation(s)
- Zachary L McCormick
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Aaron Conger
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Matthew Smuck
- Department of Orthopedics, Stanford University, Palo Alto, California, USA
| | - Jeffrey C Lotz
- Department of Orthopedics, University of California San Francisco, San Francisco, California, USA
| | - Joshua A Hirsch
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colton Hickman
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | - Taylor R Burnham
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|