1
|
Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells 2021; 10:cells10081992. [PMID: 34440761 PMCID: PMC8391848 DOI: 10.3390/cells10081992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure and/or function of both neurons and glial cells, leading to different degrees of pathology and loss of cognition. The hypothesis of circuit reconstruction in the damaged brain via direct cell replacement has been pursued extensively so far. In this context, stem cells represent a useful option since they provide tissue restoration through the substitution of damaged neuronal cells with exogenous stem cells and create a neuro-protective environment through the release of bioactive molecules for healthy neurons, as well. These peculiar properties of stem cells are opening to potential therapeutic strategies for the treatment of severe neurodegenerative disorders, for which the absence of effective treatment options leads to an increasingly socio-economic burden. Currently, the introduction of new technologies in the field of stem cells and the implementation of alternative cell tissues sources are pointing to exciting frontiers in this area of research. Here, we provide an update of the current knowledge about source and administration routes of stem cells, and review light and shadows of cells replacement therapy for the treatment of the three main neurodegenerative disorders (Amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s disease).
Collapse
|
2
|
Federici T, Hardcastle N, Texakalidis P, Tora MS, Wetzel J, Riley JP, Boulis NM. A Stereotactic Device for Intraparenchymal Spinal Cord Injections: Latest Developments for Practical Clinical Use. Stereotact Funct Neurosurg 2021; 99:322-328. [PMID: 33657550 DOI: 10.1159/000512504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022]
Abstract
This manuscript introduces the latest generation of a patient-mounted platform designed for segmental injections of therapeutics direct into the spinal cord parenchyma. It emphasizes its importance and it presents the rationale for developing this delivery methodology. It compares the newest with the previous generations, detailing how the modifications can streamline transportation, assembly, sterilization, and utilization of the platform by different surgeons. Finally, the illustrations depict the main alterations, as well as a cadaveric assessment of the device prototype in the cervical and thoracolumbar regions.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA,
| | - Nathan Hardcastle
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Pavlos Texakalidis
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Wetzel
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jonathan P Riley
- Department of Neurosurgery, State University, Buffalo, New York, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
4
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
5
|
Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Rev Rep 2020; 16:1092-1104. [DOI: 10.1007/s12015-020-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|
6
|
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord. PHOTOACOUSTICS 2020; 18:100166. [PMID: 32211291 PMCID: PMC7082547 DOI: 10.1016/j.pacs.2020.100166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 05/16/2023]
Abstract
Translation of stem cell therapies to treat injuries and diseases of the spinal cord is hindered by lack of real-time monitoring techniques to guide regenerative therapies intra- and postoperatively. Thus, we developed an ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) imaging approach augmented with Prussian blue nanocubes (PBNCs) to guide stem cell injections intraoperatively and monitor stem cell therapies in the spinal cord postoperatively. Per the clinical procedure, a multi-level laminectomy was performed in rats ex vivo, and PBNC-labeled stem cells were injected directly into the spinal cord while US/PA images were acquired. US/PA/MR images were also acquired post-surgery. Several features of the imaging approach were demonstrated including detection of low stem cell concentrations, real-time needle guidance and feedback on stem cell delivery, and good agreement between US/PA/MR images. These benefits span intra- and postoperative environments to support future development of this imaging tool.
Collapse
Key Words
- AuNS, gold nanosphere
- DIUF, deionized ultra-filtered water
- IACUC, Institutional Animal Care and Use Committee
- LOD, limit of detection
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cell
- Magnetic resonance imaging
- Multimodal imaging
- Nanoparticles
- OR, operating room
- PA, photoacoustic
- PBNC, Prussian blue nanocube
- PBS, phosphate buffered saline
- Photoacoustic imaging
- SPION, superparamagnetic iron oxide nanoparticle
- Spinal cord
- Stem cells
- TE, echo time
- TEM, transmission electron microscopy
- TR, repetition time
- US, ultrasound
- Ultrasound
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Levi AD, Okonkwo DO, Park P, Jenkins AL, Kurpad SN, Parr AM, Ganju A, Aarabi B, Kim D, Casha S, Fehlings MG, Harrop JS, Anderson KD, Gage A, Hsieh J, Huhn S, Curt A, Guzman R. Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. Neurosurgery 2019; 82:562-575. [PMID: 28541431 DOI: 10.1093/neuros/nyx250] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human central nervous system stem cells (HuCNS-SC) are multipotent adult stem cells with successful engraftment, migration, and region-appropriate differentiation after spinal cord injury (SCI). OBJECTIVE To present data on the surgical safety profile and feasibility of multiple intramedullary perilesional injections of HuCNS-SC after SCI. METHODS Intramedullary free-hand (manual) transplantation of HuCNS-SC cells was performed in subjects with thoracic (n = 12) and cervical (n = 17) complete and sensory incomplete chronic traumatic SCI. RESULTS Intramedullary stem cell transplantation needle times in the thoracic cohort (20 M HuCNS-SC) were 19:30 min and total injection time was 42:15 min. The cervical cohort I (n = 6), demonstrated that escalating doses of HuCNS-SC up to 40 M range were well tolerated. In cohort II (40 M, n = 11), the intramedullary stem cell transplantation needle times and total injection time was 26:05 ± 1:08 and 58:14 ± 4:06 min, respectively. In the first year after injection, there were 4 serious adverse events in 4 of the 12 thoracic subjects and 15 serious adverse events in 9 of the 17 cervical patients. No safety concerns were considered related to the cells or the manual intramedullary injection. Cervical magnetic resonance images demonstrated mild increased T2 signal change in 8 of 17 transplanted subjects without motor decrements or emerging neuropathic pain. All T2 signal change resolved by 6 to 12 mo post-transplant. CONCLUSION A total cell dose of 20 M cells via 4 and up to 40 M cells via 8 perilesional intramedullary injections after thoracic and cervical SCI respectively proved safe and feasible using a manual injection technique.
Collapse
Affiliation(s)
- Allan D Levi
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Park
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Arthur L Jenkins
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Aruna Ganju
- Department of Neurological Surgery, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland, College Park, Maryland
| | - Dong Kim
- Department of Neurosurgery, University of Texas Health Science Center, Austin, Texas
| | - Steven Casha
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Fehlings
- Division of Neurosurgery and Spinal Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - James S Harrop
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kim D Anderson
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | - Armin Curt
- Spinal Cord Injury Unit, Balgrist University Hospital, Zürich, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Chen KS, McGinley LM, Kashlan ON, Hayes JM, Bruno ES, Chang JS, Mendelson FE, Tabbey MA, Johe K, Sakowski SA, Feldman EL. Targeted intraspinal injections to assess therapies in rodent models of neurological disorders. Nat Protoc 2019; 14:331-349. [PMID: 30610242 DOI: 10.1038/s41596-018-0095-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite decades of research, pharmacological therapies for spinal cord motor pathologies are limited. Alternatives using macromolecular, viral, or cell-based therapies show early promise. However, introducing these substances into the spinal cord, past the blood-brain barrier, without causing injury is challenging. We describe a technique for intraspinal injection targeting the lumbar ventral horn in rodents. This technique preserves motor performance and has a proven track record of translation into phase 1 and 2 clinical trials in amyotrophic lateral sclerosis (ALS) patients. The procedure, in brief, involves exposure of the thoracolumbar spine and dissection of paraspinous muscles over the target vertebrae. Following laminectomy, the spine is affixed to a stereotactic frame, permitting precise and reproducible injection throughout the lumbar spine. We have used this protocol to inject various stem cell types, primarily human spinal stem cells (HSSCs); however, the injection is adaptable to any candidate therapeutic cell, virus, or macromolecule product. In addition to a detailed procedure, we provide stereotactic coordinates that assist in targeting of the lumbar spine and instructional videos. The protocol takes ~2 h per animal.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Josh S Chang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Maegan A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, Aarabi B, Hsieh J, Gant K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma 2018; 36:891-902. [PMID: 30180779 DOI: 10.1089/neu.2018.5843] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human neural stem cell transplantation (HuCNS-SC®) is a promising central nervous system (CNS) tissue repair strategy in patients with stable neurological deficits from chronic spinal cord injury (SCI). These immature human neural cells have been demonstrated to survive when transplanted in vivo, extend neural processes, form synaptic contacts, and improve functional outcomes after experimental SCI. A phase II single blind, randomized proof-of-concept study of the safety and efficacy of HuCNS-SC transplantation into the cervical spinal cord was undertaken in patients with chronic C5-7 tetraplegia, 4-24 months post-injury. In Cohort I (n = 6) dose escalation from 15,000,000 to 40,000,000 cells was performed to determine the optimum dose. In Cohort II an additional six participants were transplanted at target dose (40,000,000) and compared with four untreated controls. Within the transplant group, there were nine American Spinal Injury Association Impairment Scale (AIS) B and three AIS A participants with a median age at transplant of 28 years with an average time to transplant post-injury of 1 year. Immunosuppression was continued for 6 months post-transplant, and immunosuppressive blood levels of tacrolimus were achieved and well tolerated. At 1 year post-transplantation, there was no evidence of additional spinal cord damage, new lesions, or syrinx formation on magnetic resonance (MR) imaging. In summary, the incremental dose escalation design established surgical safety, tolerability, and feasibility in Cohort I. Interim analysis of Cohorts I and II demonstrated a trend toward Upper Extremity Motor Score (UEMS) and Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) motor gains in the treated participants, but at a magnitude below the required clinical efficacy threshold set by the sponsor to support further development resulting in early study termination.
Collapse
Affiliation(s)
- Allan D Levi
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Kim D Anderson
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David O Okonkwo
- 2 Department of Neurosurgery, University of Pittsburgh, Pennsylvania
| | - Paul Park
- 3 Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Thomas N Bryce
- 4 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shekar N Kurpad
- 5 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bizhan Aarabi
- 6 Department of Neurosurgery, University of Maryland, Baltimore, Maryland
| | | | - Katie Gant
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Goutman SA, Brown MB, Glass JD, Boulis NM, Johe K, Hazel T, Cudkowicz M, Atassi N, Borges L, Patil PG, Sakowski SA, Feldman EL. Long-term Phase 1/2 intraspinal stem cell transplantation outcomes in ALS. Ann Clin Transl Neurol 2018; 5:730-740. [PMID: 29928656 PMCID: PMC5989736 DOI: 10.1002/acn3.567] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Intraspinal human spinal cord‐derived neural stem cell (HSSC) transplantation is a potential therapy for amyotrophic lateral sclerosis (ALS); however, previous trials lack controls. This post hoc analysis compared ambulatory limb‐onset ALS participants in Phase 1 and 2 (Ph1/2) open‐label intraspinal HSSC transplantation studies up to 3 years after transplant to matched participants in Pooled Resource Open‐Access ALS Clinical Trials (PRO‐ACT) and ceftriaxone datasets to provide required analyses to inform future clinical trial designs. Methods Survival, ALSFRS‐R, and a composite statistic (ALS/SURV) combining survival and ALS Functional Rating Scale revised (ALSFRS‐R) functional status were assessed for matched participant subsets: PRO‐ACT n = 1108, Ph1/2 n = 21 and ceftriaxone n = 177, Ph1/2 n = 20. Results Survival did not differ significantly between cohorts: Ph1/2 median survival 4.7 years, 95% CI (1.2, ∞) versus PRO‐ACT 2.3 years (1.9, 2.5), P = 1.0; Ph1/2 3.0 years (1.2, 5.6) versus ceftriaxone 2.3 years (1.8, 2.8), P = 0.88. Mean ALSFRS‐R at 24 months significantly differed between Ph1/2 and both comparison cohorts (Ph1/2 30.1 ± 8.6 vs. PRO‐ACT 24.0 ± 10.2, P = 0.048; Ph1/2 30.7 ± 8.8 vs. ceftriaxone 19.2 ± 9.5, P = 0.0023). Using ALS/SURV, median PRO‐ACT and ceftriaxone participants died by 24 months, whereas median Ph1/2 participant ALSFRS‐Rs were 23 (P = 0.0038) and 19 (P = 0.14) in PRO‐ACT and ceftriaxone comparisons at 24 months, respectively, supporting improved functional outcomes in the Ph1/2 study. Interpretation Comparison of Ph1/2 studies to historical datasets revealed significantly improved survival and function using ALS/SURV versus PRO‐ACT controls. While results are encouraging, comparison against historical populations demonstrate limitations in noncontrolled studies. These findings support continued evaluation of HSSC transplantation in ALS, support the benefit of control populations, and enable necessary power calculations to design a randomized, sham surgery‐controlled efficacy study.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| | - Morton B Brown
- Department of Biostatistics University of Michigan 1415 Washington Heights M4039 SPH II Ann Arbor Michigan 48109
| | - Jonathan D Glass
- Department of Neurology Emory University School of Medicine 101 Woodruff Circle Atlanta Georgia 30322
| | - Nicholas M Boulis
- Department of Neurosurgery Emory University School of Medicine 101 Woodruff Circle WMB Room 6309 Atlanta Georgia
| | - Karl Johe
- Neuralstem, Inc. 20271 Goldenrod Lane Suite 2033 Germantown Maryland 20876
| | - Tom Hazel
- Neuralstem, Inc. 20271 Goldenrod Lane Suite 2033 Germantown Maryland 20876
| | - Merit Cudkowicz
- Department of Neurology Massachusetts General Hospital Harvard Medical School 165 Cambridge Street Boston Massachusetts 02114
| | - Nazem Atassi
- Department of Neurology Massachusetts General Hospital Harvard Medical School 165 Cambridge Street Boston Massachusetts 02114
| | - Lawrence Borges
- Department of Neurosurgery Massachusetts General Hospital Harvard Medical School 15 Parkman Street Wand ACC 745 Boston Massachusetts 02114
| | - Parag G Patil
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109.,Department of Neurosurgery University of Michigan 1500 E. Medical Center Drive SPC 5338 Ann Arbor Michigan 48109
| | - Stacey A Sakowski
- Program for Neurology Research and Discovery University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| | - Eva L Feldman
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109.,Program for Neurology Research and Discovery University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| |
Collapse
|
12
|
Oliveira JM, Carvalho L, Silva-Correia J, Vieira S, Majchrzak M, Lukomska B, Stanaszek L, Strymecka P, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Reis RL, Janowski M, Walczak P. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. NPJ Regen Med 2018; 3:8. [PMID: 29644098 PMCID: PMC5884770 DOI: 10.1038/s41536-018-0046-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/07/2023] Open
Abstract
The prospects for cell replacement in spinal cord diseases are impeded by inefficient stem cell delivery. The deep location of the spinal cord and complex surgical access, as well as densely packed vital structures, question the feasibility of the widespread use of multiple spinal cord punctures to inject stem cells. Disorders characterized by disseminated pathology are particularly appealing for the distribution of cells globally throughout the spinal cord in a minimally invasive fashion. The intrathecal space, with access to a relatively large surface area along the spinal cord, is an attractive route for global stem cell delivery, and, indeed, is highly promising, but the success of this approach relies on the ability of cells (1) to survive in the cerebrospinal fluid (CSF), (2) to adhere to the spinal cord surface, and (3) to migrate, ultimately, into the parenchyma. Intrathecal infusion of cell suspension, however, has been insufficient and we postulate that embedding transplanted cells within hydrogel scaffolds will facilitate reaching these goals. In this review, we focus on practical considerations that render the intrathecal approach clinically viable, and then discuss the characteristics of various biomaterials that are suitable to serve as scaffolds. We also propose strategies to modulate the local microenvironment with nanoparticle carriers to improve the functionality of cellular grafts. Finally, we provide an overview of imaging modalities for in vivo monitoring and characterization of biomaterials and stem cells. This comprehensive review should serve as a guide for those planning preclinical and clinical studies on intrathecal stem cell transplantation.
Collapse
Affiliation(s)
- J. Miguel Oliveira
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães Portugal
| | - Luisa Carvalho
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Joana Silva-Correia
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Sílvia Vieira
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Malgorzata Majchrzak
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Stanaszek
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Strymecka
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Malysz-Cymborska
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Dominika Golubczyk
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L. Reis
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães Portugal
| | - Miroslaw Janowski
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland ,0000 0001 2171 9311grid.21107.35Russel H, Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Piotr Walczak
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland ,0000 0001 2171 9311grid.21107.35Russel H, Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
13
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
14
|
Abstract
Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.
Collapse
|
15
|
Lamanna JJ, Gutierrez J, Espinosa JR, Wagner J, Urquia LN, Moreton C, Victor Hurtig C, Tora M, Kirk AD, Federici T, Boulis NM. Peripheral blood detection of systemic graft-specific xeno-antibodies following transplantation of human neural progenitor cells into the porcine spinal cord. J Clin Neurosci 2017; 48:173-180. [PMID: 29089163 DOI: 10.1016/j.jocn.2017.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
Extensive pre-clinical and clinical studies have searched for therapeutic efficacy of cell-based therapeutics in diseases of the Central Nervous System (CNS) with no other viable options. Allogeneic cells represent the primary source of these therapies and immunosuppressive regimens have been empirically employed based on experience with solid organ transplantation, attempting to avoid immune mediated graft rejection. In this study, we aimed to 1) characterize the host immune response to stem cells transplanted into the CNS and 2) develop a non-invasive method for detecting immune response to transplanted cell grafts. Human neural progenitor cells were transplanted into the spinal cord of 10 Göttingen minipigs, of which 5 received no immunosuppression and 5 received Tacrolimus. Peripheral blood samples were collected longitudinally for flow cytometry cross match studies. Necropsy was performed at day 21 and spinal cord tissue analysis. We observed a transient increase in xeno-reactive antibodies was detected on post-operative day 7 and 14 in pigs that did not receive immunosuppression. This response was not detected in pigs that received Tacrolimus immunosuppression. No difference in graft survival was observed between the groups. Infiltration of numerous immune mediators including granulocytes, T lymphocytes, and activated microglia, and complement deposition were detected. In summary, a systemic immunologic response to stem cell grafts was detected for two weeks after transplantation using peripheral blood. This could be used as a non-invasive biomarker by investigators for detection of immunologic rejection. However, the absence of a detectable response in peripheral blood does not rule out a parenchymal immune response.
Collapse
Affiliation(s)
- Jason J Lamanna
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| | - Juanmarco Gutierrez
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Jaclyn R Espinosa
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Jacob Wagner
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Lindsey N Urquia
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Cheryl Moreton
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - C Victor Hurtig
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Muhibullah Tora
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Thais Federici
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Unger MD, Maus TP, Puffer RC, Newman LK, Currier BL, Beutler AS. Laminotomy for Lumbar Dorsal Root Ganglion Access and Injection in Swine. J Vis Exp 2017. [PMID: 29053676 DOI: 10.3791/56434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dorsal root ganglia (DRG) are anatomically well defined structures that contain all primary sensory neurons below the head. This fact makes DRG attractive targets for injection of novel therapeutics aimed at treating chronic pain. In small animal models, laminectomy has been used to facilitate DRG injection because it involves surgical removal of the vertebral bone surrounding each DRG. We demonstrate a technique for intraganglionic injection of lumbar DRG in a large animal species, namely, swine. Laminotomy is performed to allow direct access to DRG using standard neurosurgical techniques, instruments, and materials. Compared with more extensive bone removal via laminectomy, we implement laminotomy to conserve spinal anatomy while achieving sufficient DRG access. Intraoperative progress of DRG injection is monitored using a non-toxic dye. Following euthanasia on post-operative day 21, the success of injection is determined by histology for intraganglionic distribution of 4',6-diamidino-2-phenylindole (DAPI). We inject a biologically inactive solution to demonstrate the protocol. This method could be applied in future preclinical studies to target therapeutic solutions to DRG. Our methodology should facilitate testing the translatability of intraganglionic small animal paradigms in a large animal species. Additionally, this protocol may serve as a key resource for those planning preclinical studies of DRG injection in swine.
Collapse
Affiliation(s)
- Mark D Unger
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School
| | - Timothy P Maus
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic;
| | | | - Laura K Newman
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School
| | | | - Andreas S Beutler
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School;
| |
Collapse
|
17
|
Choi SS, Yoon SB, Lee SR, Kim SU, Cha YJ, Lee D, Kim SU, Chang KT, Lee HJ. Establishment and Characterization of Immortalized Minipig Neural Stem Cell Line. Cell Transplant 2017; 26:271-281. [PMID: 27524466 DOI: 10.3727/096368916x692852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite the increasing importance of minipigs in biomedical research, there has been relatively little research concerning minipig-derived adult stem cells as a promising research tool that could be used to develop stem cell-based therapies. We first generated immortalized neural stem cells (iNSCs) from primary minipig olfactory bulb cells (pmpOBCs) and defined the characteristics of the cell line. Primary neural cells were prepared from minipig neonate olfactory bulbs and immortalized by infection with retrovirus carrying the v-myc gene. The minipig iNSCs (mpiNSCs) had normal karyotypes and expressed NSC-specific markers, including nestin, vimentin, Musashi1, and SOX2, suggesting a similarity to human NSCs. On the basis of the global gene expression profiles from the microarray analysis, neurogenesis-associated transcript levels were predominantly altered in mpiNSCs compared with pmpOBCs. These findings increase our understanding of minipig stem cells and contribute to the utility of mpiNSCs as resources for immortalized stem cell experiments.
Collapse
|
18
|
Schomberg DT, Miranpuri GS, Chopra A, Patel K, Meudt JJ, Tellez A, Resnick DK, Shanmuganayagam D. Translational Relevance of Swine Models of Spinal Cord Injury. J Neurotrauma 2017; 34:541-551. [DOI: 10.1089/neu.2016.4567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dominic T. Schomberg
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | - Gurwattan S. Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abhishek Chopra
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kush Patel
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer J. Meudt
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | | | - Daniel K. Resnick
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| |
Collapse
|
19
|
Lamanna JJ, Urquia LN, Hurtig CV, Gutierrez J, Anderson C, Piferi P, Federici T, Oshinski JN, Boulis NM. Magnetic Resonance Imaging-Guided Transplantation of Neural Stem Cells into the Porcine Spinal Cord. Stereotact Funct Neurosurg 2017; 95:60-68. [PMID: 28132063 DOI: 10.1159/000448765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cell-based therapies are a promising treatment option for traumatic, tumorigenic and degenerative diseases of the spinal cord. Transplantation into the spinal cord is achieved with intravascular, intrathecal, or direct intraparenchymal injection. The current standard for direct injection is limited by surgical invasiveness, difficulty in reinjection, and the inability to directly target anatomical or pathological landmarks. The objective of this study was to present the proof of principle for minimally invasive, percutaneous transplantation of stem cells into the spinal cord parenchyma of live minipigs under MR guidance. METHODS An MR-compatible spine injection platform was developed to work with the ClearPoint SmartFrame system (MRI Interventions Inc.). The system was attached to the spine of 2 live minipigs, a percutaneous injection cannula was advanced into the spinal cord under MR guidance, and cells were delivered to the cord. RESULTS A graft of 2.5 × 106 human (n = 1) or porcine (n = 1) neural stem cells labeled with ferumoxytol nanoparticles was transplanted into the ventral horn of the spinal cord with MR guidance in 2 animals. Graft delivery was visualized with postprocedure MRI, and characteristic iron precipitates were identified in the spinal cord by Prussian blue histochemistry. Grafted stem cells were observed in the spinal cord of the pig injected with porcine neural stem cells. No postoperative morbidity was observed in either animal. CONCLUSION This report supports the proof of principle for transplantation and visualization of pharmacological or biological agents into the spinal cord of a large animal under the guidance of MRI.
Collapse
Affiliation(s)
- Jason J Lamanna
- Department of Neurosurgery, School of Medicine, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glass JD, Hertzberg VS, Boulis NM, Riley J, Federici T, Polak M, Bordeau J, Fournier C, Johe K, Hazel T, Cudkowicz M, Atassi N, Borges LF, Rutkove SB, Duell J, Patil PG, Goutman SA, Feldman EL. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials. Neurology 2016; 87:392-400. [PMID: 27358335 DOI: 10.1212/wnl.0000000000002889] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. METHODS This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. RESULTS Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. CONCLUSIONS Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to exclude important benefit or safety issues.
Collapse
Affiliation(s)
- Jonathan D Glass
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI.
| | - Vicki S Hertzberg
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Nicholas M Boulis
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Jonathan Riley
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Thais Federici
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Meraida Polak
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Jane Bordeau
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Christina Fournier
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Karl Johe
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Tom Hazel
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Merit Cudkowicz
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Nazem Atassi
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Lawrence F Borges
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Seward B Rutkove
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Jayna Duell
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Parag G Patil
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Stephen A Goutman
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| | - Eva L Feldman
- From the Departments of Neurology (J.D.G., M.P., J.B., C.F.) and Neurosurgery (N.M.B., J.R., T.F.), Emory University School of Medicine, Atlanta; Center for Nursing Data Science (V.S.H.), Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Neuralstem, Inc. (K.J., T.H.), Germantown, MD; Department of Neurology, Neurological Clinical Research Institute (M.C., N.A.), and Department of Neurosurgery (L.F.B.), Massachusetts General Hospital, Boston; Department of Neurology (S.B.R.), Beth Israel Hospital, Boston, MA; and Departments of Neurosurgery (P.G.P.) and Neurology (J.D., P.G.P., S.A.G., E.L.F.), University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, Johe K, Feldman EL. Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 2016; 33:1480-9. [PMID: 25532472 DOI: 10.1002/stem.1933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in motor neuron (MN) loss. There are currently no effective therapies; however, cellular therapies using neural progenitor cells protect MNs and attenuate disease progression in G93A-SOD1 ALS rats. Recently, we completed a phase I clinical trial examining intraspinal human spinal stem cell (HSSC) transplantation in ALS patients which demonstrated our approach was safe and feasible, supporting the phase II trial currently in progress. In parallel, efforts focused on understanding the mechanisms underlying the preclinical benefit of HSSCs in vitro and in animal models of ALS led us to investigate how insulin-like growth factor-I (IGF-I) production contributes to cellular therapy neuroprotection. IGF-I is a potent growth factor with proven efficacy in preclinical ALS studies, and we contend that autocrine IGF-I production may enhance the salutary effects of HSSCs. By comparing the biological properties of HSSCs to HSSCs expressing sixfold higher levels of IGF-I, we demonstrate that IGF-I production augments the production of glial-derived neurotrophic factor and accelerates neurite outgrowth without adversely affecting HSSC proliferation or terminal differentiation. Furthermore, we demonstrate that increased IGF-I induces more potent MN protection from excitotoxicity via both indirect and direct mechanisms, as demonstrated using hanging inserts with primary MNs or by culturing with organotypic spinal cord slices, respectively. These findings support our theory that combining autocrine growth factor production with HSSC transplantation may offer a novel means to achieve additive neuroprotection in ALS.
Collapse
|
22
|
Chen KS, Sakowski SA, Feldman EL. Intraspinal stem cell transplantation for amyotrophic lateral sclerosis. Ann Neurol 2016; 79:342-53. [PMID: 26696091 DOI: 10.1002/ana.24584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only US Food and Drug Administration-approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS, because they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. Various stem cell types are being evaluated in preclinical and early clinical applications; here, we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of phase I and IIa clinical trials involving direct intraspinal transplantation in humans.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI
| | - Eva L Feldman
- A. Alfred Taubman Medical Research Institute and Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
23
|
Eom YW, Kim G, Baik SK. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J Gastroenterol 2015; 21:10253-10261. [PMID: 26420953 PMCID: PMC4579873 DOI: 10.3748/wjg.v21.i36.10253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis occurs as a result of various chronic liver injuries, which may be caused by viral infections, alcohol abuse and the administration of drugs and chemicals. Recently, bone marrow cells (BMCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been used for developing treatments for cirrhosis. Clinical trials have investigated the therapeutic potential of BMCs, HSCs and MSCs for the treatment of cirrhosis based on their potential to differentiate into hepatocytes. Although the therapeutic mechanisms of BMC, HSC and MSC treatments are still not fully characterized, the evidence thus far has indicated that the potential therapeutic mechanisms of MSCs are clearer than those of BMCs or HSCs with respect to liver regenerative medicine. MSCs suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, reverse liver fibrosis and enhance liver functionality. This paper summarizes the clinical studies that have used BMCs, HSCs and MSCs in patients with liver failure or cirrhosis. We also present the potential therapeutic mechanisms of BMCs, HSCs and MSCs for the improvement of liver function.
Collapse
|
24
|
Abstract
Currently, the most effective treatment for end-stage liver fibrosis is liver transplantation; however, transplantation is limited by a shortage of donor organs, surgical complications, immunological rejection, and high medical costs. Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have the potential to differentiate into hepatocytes, and therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. In addition, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis and enhance liver functionality. Despite these advantages, issues remain; MSCs also have fibrogenic potential and the capacity to promote tumor cell growth and oncogenicity. This paper summarizes the properties of MSCs for regenerative medicine and their therapeutic mechanisms and clinical application in the treatment of liver fibrosis. We also present several outstanding risks, including their fibrogenic potential and their capacity to promote pre-existing tumor cell growth and oncogenicity.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Soon Koo Baik, M.D. Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-1223 Fax: +82-33-745-6782 E-mail:
| |
Collapse
|
25
|
Haidet-Phillips AM, Maragakis NJ. Neural and glial progenitor transplantation as a neuroprotective strategy for Amyotrophic Lateral Sclerosis (ALS). Brain Res 2015; 1628:343-350. [PMID: 26187754 DOI: 10.1016/j.brainres.2015.06.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
ALS is a neurodegenerative disease with a prevalence rate of up to 7.4/100,000 and the overall risk of developing ALS over a lifetime is 1:400. Most patients die from respiratory failure following a course of progressive weakness. To date, only one traditional pharmaceutical agent-riluzole, has been shown to afford a benefit on survival but numerous pharmaceutical interventions have been studied in preclinical models of ALS without subsequent translation to patient efficacy. Despite the relative selectivity of motor neuron cell death, animal and tissue culture models of familial ALS suggest that non-neuronal cells significantly contribute to neuronal dysfunction and death. Early efforts to transplant stem cells had focused on motor neuron replacement. More practically for this aggressive neurodegenerative disease, recent studies, preclinical efforts, and early clinical trials have focused on the transplantation of neural stem cells, mesenchymal stem cells, or glial progenitors. Using transgenic mouse or rat models of ALS, a number of studies have shown neuroprotection through a variety of different mechanisms that have included neurotrophic factor secretion, glutamate transporter regulation, and modulation of neuroinflammation, among others. However, given that cell replacement could involve a number of biologically relevant factors, identifying the key pathway(s) that may contribute to neuroprotection remains a challenge. Nevertheless, given the abundant data supporting the interplay between non-neuronal cell types and motor neuron disease propagation, the replacement of disease-carrying host cells by normal cells may be sufficient to confer neuroprotection. Key preclinical issues that currently are being addressed include the most appropriate methods and routes for delivery of cells to disease-relevant regions of the neuraxis, cell survival and migration, and tracking the cells following transplantation. Central to the initial development of stem cell transplantation into patients with ALS is the demonstration that transplanted cells lack tumorigenicity and have the appropriate biodistribution to ensure the safety of ALS patients receiving these therapies. Here, we review preclinical and clinical studies focusing on the transplantation of neural and glial progenitor cells as a promising neuroprotective therapy for ALS. The rationale for stem cell transplantation for neuroprotection, proof-of-concept animal studies, and current challenges facing translation of these therapies to the clinic is presented. Lastly, we discuss advancements on the horizon including induced pluripotent stem cell technology and developments for cellular tracking and detection post-transplantation. With the safe completion of the first-in-human Phase I clinical trial for intraspinal stem cell transplantation for ALS in the United States, the time is ripe for stem cell therapies to be translated to the clinic and excitingly, evaluated for neuroprotection for ALS. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Amanda M Haidet-Phillips
- Department of Neurology, Johns Hopkins University, 250.10 Rangos Building, 855 North Wolfe St., Baltimore, MD 21205, United States
| | - Nicholas J Maragakis
- Department of Neurology, Johns Hopkins University, 250.10 Rangos Building, 855 North Wolfe St., Baltimore, MD 21205, United States.
| |
Collapse
|
26
|
Gutierrez J, Lamanna JJ, Grin N, Hurtig CV, Miller JH, Riley J, Urquia L, Avalos P, Svendsen CN, Federici T, Boulis NM. Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord. Neurosurgery 2015; 77:604-12; discussion 612. [DOI: 10.1227/neu.0000000000000882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
BACKGROUND:
Although multiple clinical trials are currently testing different stem cell therapies as treatment alternatives for many neurodegenerative diseases and spinal cord injury, the optimal injection parameters have not yet been defined.
OBJECTIVE:
To test the spinal cord's tolerance to increasing volumes and numbers of stem cell injections in the pig.
METHODS:
Twenty-seven female Göttingen minipigs received human neural progenitor cell injections using a stereotactic platform device. Cell transplantation in groups 1 to 5 (5–7 pigs in each) was undertaken with the intent of assessing the safety of an injection volume escalation (10, 25, and 50 µL) and an injection number escalation (20, 30, and 40 injections). Motor function and general morbidity were assessed for 21 days. Full necropsy was performed; spinal cords were analyzed for graft survival and microscopic tissue damage.
RESULTS:
No mortality or permanent surgical complications were observed during the 21-day study period. All animals returned to preoperative baseline within 14 days, showing complete motor function recovery. The histological analysis showed that there was no significant decrease in neuronal density between groups, and cell engraftment ranged from 12% to 31% depending on the injection paradigm. However, tissue damage was identified when injecting large volumes into the spinal cord (50 μL).
CONCLUSION:
This series supports the functional safety of various injection volumes and numbers in the spinal cord and gives critical insight into important safety thresholds. These results are relevant to all translational programs delivering cell therapeutics to the spinal cord.
Collapse
Affiliation(s)
- Juanmarco Gutierrez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Jason J. Lamanna
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Natalia Grin
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Carl V. Hurtig
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph H. Miller
- Department of Neurosurgery, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Jonathan Riley
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Lindsey Urquia
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Pablo Avalos
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thais Federici
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Lunn JS, Sakowski SA, Feldman EL. Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32:1099-109. [PMID: 24448926 DOI: 10.1002/stem.1628] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
28
|
Riley J, Glass J, Feldman EL, Polak M, Bordeau J, Federici T, Johe K, Boulis NM. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 2014; 74:77-87. [PMID: 24018694 DOI: 10.1227/neu.0000000000000156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The first US Food and Drug Administration approved clinical trial for a stem cell-based treatment of amyotrophic lateral sclerosis has now been completed. OBJECTIVE Primary aims assessed the safety of a direct microinjection-based technique and the toxicity of neural stem cell transplantation to the ventral horn of the cervical and thoracolumbar spinal cord. Results from thoracolumbar-only microinjection groups have been previously published. Cervical and cervical plus thoracolumbar microinjection group perioperative morbidity results are presented. METHODS Eighteen microinjection procedures (n = 12 thoracolumbar [T10/11], n = 6 cervical [C3-5]) delivered NSI-566RSC (Neuralstem, Inc), a human neural stem cell, to 15 patients in 5 cohorts. Each injection series comprised 5 injections of 10 μL at 4-mm intervals. The patients in group A (n = 6) were nonambulatory and received unilateral (n = 3) or bilateral (n = 3) thoracolumbar microinjections. The patients in groups B to E were ambulatory and received either unilateral (group B, n = 3) or bilateral (group C, n = 3) thoracolumbar microinjection. Group D and E patients received unilateral cervical (group D, n = 3) or cervical plus bilateral thoracolumbar microinjection (group E, n = 3). RESULTS Unilateral cervical (group D, n = 3) and cervical plus thoracolumbar (group E, n = 3) microinjections to the ventral horn have been completed in ambulatory patients. One patient developed a postoperative kyphotic deformity prompting completion of a laminoplasty in subsequent patients. Another required reoperation for wound dehiscence and infection. The solitary patient with bulbar amyotrophic lateral sclerosis required perioperative reintubation. CONCLUSION Delivery of a cellular payload to the cervical or thoracolumbar spinal cord was well tolerated by the spinal cord in this vulnerable population. This encouraging finding supports consideration of this delivery approach for neurodegenerative, oncologic, and traumatic spinal cord afflictions.
Collapse
Affiliation(s)
- Jonathan Riley
- *Department of Neurosurgery, Emory University, Atlanta, Georgia; ‡Department of Neurology, Emory University, Atlanta, Georgia; §Department of Neurology, University of Michigan, Ann Arbor, Michigan; ¶Neuralstem, Inc, Rockville, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines. PLoS One 2014; 9:e91408. [PMID: 24614895 PMCID: PMC3948841 DOI: 10.1371/journal.pone.0091408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Stroke is a major cause of death and disability, with very limited treatment option. Cell-based therapies have emerged as potential treatments for stroke. Indeed, studies have shown that transplantation of neural stem cells (NSCs) exerts functional benefits in stroke models. However, graft survival and integration with the host remain pressing concerns with cell-based treatments. The current study set out to investigate those very issues using a human NSC line, NSI-566RSC, in a rat model of ischemic stroke induced by transient occlusion of the middle cerebral artery. Seven days after stroke surgery, those animals that showed significant motor and neurological impairments were randomly assigned to receive NSI-566RSC intracerebral transplants at two sites within the striatum at three different doses: group A (0 cells/µl), group B (5,000 cells/µl), group C (10,000 cells/µl), and group D (20,000 cells/µl). Weekly behavioral tests, starting at seven days and continued up to 8 weeks after transplantation, revealed dose-dependent recovery from both motor and neurological deficits in transplanted stroke animals. Eight weeks after cell transplantation, immunohistochemical investigations via hematoxylin and eosin staining revealed infarct size was similar across all groups. To identify the cell graft, and estimate volume, immunohistochemistry was performed using two human-specific antibodies: one to detect all human nuclei (HuNu), and another to detect human neuron-specific enolase (hNSE). Surviving cell grafts were confirmed in 10/10 animals of group B, 9/10 group C, and 9/10 in group D. hNSE and HuNu staining revealed similar graft volume estimates in transplanted stroke animals. hNSE-immunoreactive fibers were also present within the corpus callosum, coursing in parallel with host tracts, suggesting a propensity to follow established neuroanatomical features. Despite absence of reduction in infarct volume, NSI-566RSC transplantation produced behavioral improvements possibly via robust engraftment and neuronal differentiation, supporting the use of this NSC line for stroke therapy.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - David M. Quach
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Stephanie Wu
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - David Lee
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Tina Lam
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Ken L. Hayama
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Thomas G. Hazel
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Karl Johe
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Michael C. Wu
- Neurodigitech, LLC., San Diego, California, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
30
|
Feldman EL, Boulis NM, Hur J, Johe K, Rutkove SB, Federici T, Polak M, Bordeau J, Sakowski SA, Glass JD. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 2014; 75:363-73. [PMID: 24510776 PMCID: PMC4005820 DOI: 10.1002/ana.24113] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Objective The US Food and Drug Administration–approved trial, “A Phase 1, Open-Label, First-in-Human, Feasibility and Safety Study of Human Spinal Cord-Derived Neural Stem Cell Transplantation for the Treatment of Amyotrophic Lateral Sclerosis, Protocol Number: NS2008-1,” is complete. Our overall objective was to assess the safety and feasibility of stem cell transplantation into lumbar and/or cervical spinal cord regions in amyotrophic lateral sclerosis (ALS) subjects. Methods Preliminary results have been reported on the initial trial cohort of 12 ALS subjects. Here, we describe the safety and functional outcome monitoring results for the final trial cohort, consisting of 6 ALS subjects receiving 5 unilateral cervical intraspinal neural stem cell injections. Three of these subjects previously received 10 total bilateral lumbar injections as part of the earlier trial cohort. All injections utilized a novel spinal-mounted stabilization and injection device to deliver 100,000 neural stem cells per injection, for a dosing range up to 1.5 million cells. Subject assessments included detailed pre- and postsurgical neurological outcome measures. Results The cervical injection procedure was well tolerated and disease progression did not accelerate in any subject, verifying the safety and feasibility of cervical and dual-targeting approaches. Analyses on outcome data revealed preliminary insight into potential windows of stem cell biological activity and identified clinical assessment measures that closely correlate with ALS Functional Rating Scale-Revised scores, a standard assessment for ALS clinical trials. Interpretation This is the first report of cervical and dual-targeted intraspinal transplantation of neural stem cells in ALS subjects. This approach is feasible and well-tolerated, supporting future trial phases examining therapeutic dosing and efficacy.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol 2014; 262 Pt B:127-37. [PMID: 24613827 DOI: 10.1016/j.expneurol.2014.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that is characterized by progressive degeneration of motor neurons in the cortex, brainstem and spinal cord. This leads to paralysis, respiratory insufficiency and death within an average of 3 to 5 years from disease onset. While the genetics of ALS are becoming more understood in familial cases, the mechanisms underlying disease pathology remain unclear and there are no effective treatment options. Without understanding what causes ALS it is difficult to design treatments. However, in recent years stem cell transplantation has emerged as a potential new therapy for ALS patients. While motor neuron replacement remains a focus of some studies trying to treat ALS with stem cells, there is more rationale for using stem cells as support cells for dying motor neurons as they are already connected to the muscle. This could be through reducing inflammation, releasing growth factors, and other potential less understood mechanisms. Prior to moving into patients, stringent pre-clinical studies are required that have at least some rationale and efficacy in animal models and good safety profiles. However, given our poor understanding of what causes ALS and whether stem cells may ameliorate symptoms, there should be a push to determine cell safety in pre-clinical models and then a quick translation to the clinic where patient trials will show if there is any efficacy. Here, we provide a critical review of current clinical trials using either mesenchymal or neural stem cells to treat ALS patients. Pre-clinical data leading to these trials, as well as those in development are also evaluated in terms of mechanisms of action, validity of conclusions and rationale for advancing stem cell treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Gretchen M Thomsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Genevieve Gowing
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Soshana Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
32
|
Hurst RW, Bosch EP, Peter Bosch E, Morris JM, Dyck PJB, Reeves RK. Inflammatory hypertrophic cauda equina following intrathecal neural stem cell injection. Muscle Nerve 2013; 48:831-5. [PMID: 23740462 DOI: 10.1002/mus.23920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Potential benefit from stem cell treatments has more patients seeking treatment without understanding possible risks. METHODS We describe a woman who presented with progressive bilateral leg pain, numbness, and gait difficulties. A prior stroke, macular degeneration, osteoarthritis, and depression, led her to receive intrathecal neural stem cell therapy overseas 1 year before onset of symptoms. RESULTS Imaging showed marked enlargement of lumbosacral roots of the cauda equina, which was not seen before stem cell treatment. Electrodiagnostic studies confirmed chronic multiple lumbosacral radiculopathies. Biopsy of a lumbar dorsal sensory root showed myelinated fiber degeneration and loss, with endoneurial inflammation. The hypertrophic inflammatory cauda equina syndrome was potentially triggered by the prior intrathecal neural stem cell injection. CONCLUSIONS Safety of intrathecal stem cell treatments is not routinely regulated in overseas stem cell facilities. We wish to bring this potential complication to the attention of health care providers.
Collapse
Affiliation(s)
- Richard W Hurst
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
33
|
Potts MB, Silvestrini MT, Lim DA. Devices for cell transplantation into the central nervous system: Design considerations and emerging technologies. Surg Neurol Int 2013; 4:S22-30. [PMID: 23653887 PMCID: PMC3642746 DOI: 10.4103/2152-7806.109190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/04/2012] [Indexed: 12/14/2022] Open
Abstract
Successful use of cell-based therapies for the treatment of neurological diseases is dependent upon effective delivery to the central nervous system (CNS). The CNS poses several challenges to the delivery of cell-based therapeutics, including the blood-brain barrier, anatomic complexity, and regional specificity. Targeted delivery methods are therefore required for the selective treatment of specific CNS regions. In addition, CNS tissues are mechanically and physiologically delicate and even minor injury to normal brain or spinal cord can cause devastating neurological deficits. Targeted delivery methods must therefore minimize tissue trauma. At present, direct injection into brain or spinal cord parenchyma promises to be the most versatile and accurate method of targeted CNS therapeutic delivery. While direct injection methods have already been employed in clinical trials of cell transplantation for a wide variety of neurological diseases, there are many shortcomings with the devices and surgical approaches currently used. Some of these technical limitations may hinder the clinical development of cell transplantation therapies despite validity of the underlying biological mechanisms. In this review, we discuss some of the important technical considerations of CNS injection devices such as targeting accuracy, distribution of infused therapeutic, and overall safety to the patient. We also introduce and discuss an emerging technology - radially branched deployment - that may improve our ability to safely distribute cell-based therapies and other therapeutic agents to the CNS. Finally, we speculate on future technological developments that may further enhance the efficacy of CNS therapeutic delivery.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
34
|
Riley J, Federici T, Polak M, Kelly C, Glass J, Raore B, Taub J, Kesner V, Feldman EL, Boulis NM. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2013; 71:405-16; discussion 416. [PMID: 22565043 DOI: 10.1227/neu.0b013e31825ca05f] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND No United States-based clinical trials have attempted delivery of biological therapies directly to the spinal cord for treatment of amyotrophic lateral sclerosis (ALS) because of the lack of a meaningful US Food and Drug Administration-authorized cell candidate and a validated delivery approach. OBJECTIVE To assess safety of delivery of a neural stem cell-based treatment into the upper lumbar segments of the ALS spinal cord in the first US Food and Drug Administration-authorized phase I trial. METHODS Each microinjection series comprised 5 injections (10 μL/injection) separated by 4 mm. Each injection deposited 100,000 neural stem cells derived from a fetal spinal cord. Twelve patients were treated with either unilateral or bilateral injections. Group A, nonambulatory patients, underwent unilateral (n = 3) or bilateral (n = 3) lumbar microinjections. Groups B and C were ambulatory (n = 3 each) and, respectively, received unilateral or bilateral injections. Patients are followed clinically and radiologically to assess potential toxicity of the procedure. RESULTS Twelve patients have received a transplant. There was one instance of transient intraoperative somatosensory-evoked potentials depression. In the immediate postoperative period, there was 1 episode of urinary retention requiring Foley catheter reinsertion. By discharge, none had a documented motor function decrement. Two patients required readmission and reoperation for cerebrospinal fluid leak or suprafascial wound dehiscence (n = 1 each). Two deaths occurred at 8 and 13 months postsurgery; neither was related to the surgical transplant. CONCLUSION Our experience in 12 patients supports the procedural safety of unilateral and bilateral intraspinal lumbar microinjection. Completion of this phase I safety trial is planned by proceeding to cervical and combined cervical + lumbar microinjections in ALS patients.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosurgery, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Federici T, Hurtig CV, Burks KL, Riley JP, Krishna V, Miller BA, Sribnick EA, Miller JH, Grin N, Lamanna JJ, Boulis NM. Surgical technique for spinal cord delivery of therapies: demonstration of procedure in gottingen minipigs. J Vis Exp 2012:e4371. [PMID: 23242422 DOI: 10.3791/4371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This is a compact visual description of a combination of surgical technique and device for the delivery of (gene and cell) therapies into the spinal cord. While the technique is demonstrated in the animal, the procedure is FDA-approved and currently being used for stem cell transplantation into the spinal cords of patients with ALS. While the FDA has recognized proof-of-principle data on therapeutic efficacy in highly characterized rodent models, the use of large animals is considered critical for validating the combination of a surgical procedure, a device, and the safety of a final therapy for human use. The size, anatomy, and general vulnerability of the spine and spinal cord of the swine are recognized to better model the human. Moreover, the surgical process of exposing and manipulating the spinal cord as well as closing the wound in the pig is virtually indistinguishable from the human. We believe that the healthy pig model represents a critical first step in the study of procedural safety.
Collapse
|
36
|
Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, Kelly C, Feldman EL. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012; 30:1144-51. [PMID: 22415942 DOI: 10.1002/stem.1079] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in stem cell biology have generated intense interest in the prospect of transplanting stem cells into the nervous system for the treatment of neurodegenerative diseases. Here, we report the results of an ongoing phase I trial of intraspinal injections of fetal-derived neural stems cells in patients with amyotrophic lateral sclerosis (ALS). This is a first-in-human clinical trial with the goal of assessing the safety and tolerability of the surgical procedure, the introduction of stem cells into the spinal cord, and the use of immunosuppressant drugs in this patient population. Twelve patients received either five unilateral or five bilateral (10 total) injections into the lumbar spinal cord at a dose of 100,000 cells per injection. All patients tolerated the treatment without any long-term complications related to either the surgical procedure or the implantation of stem cells. Clinical assessments ranging from 6 to 18 months after transplantation demonstrated no evidence of acceleration of disease progression due to the intervention. One patient has shown improvement in his clinical status, although these data must be interpreted with caution since this trial was neither designed nor powered to measure treatment efficacy. These results allow us to report success in achieving the phase I goal of demonstrating safety of this therapeutic approach. Based on these positive results, we can now advance this trial by testing intraspinal injections into the cervical spinal cord, with the goal of protecting motor neuron pools affecting respiratory function, which may prolong life for patients with ALS.
Collapse
Affiliation(s)
- Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Riley J, Hurtig CV, Boulis N. Translating cellular therapies from bench to bedside for amyotrophic lateral sclerosis. Per Med 2012; 9:645-655. [DOI: 10.2217/pme.12.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed an increasing number of biologic (e.g., cell- or viral vector-based) therapeutics supported by preclinical efficacy data for the treatment of afflictions to the CNS. While some international investigators have undertaken preliminary clinical safety studies, published literature indicate varying degrees of rigor with respect to study design and technical approach. To our knowledge, ours is the first group to have systematically generated preclinical validation data for a delivery approach and translated this into a Phase I trial attempting to covalidate the safety of a direct, targeted delivery approach, as well as a cell-based therapeutic. This article discusses the rationale for cell-based therapy in amyotrophic lateral sclerosis and several of the unique considerations encountered during this process.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| | - Carl V Hurtig
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Donnelly EM, Boulis NM. Update on gene and stem cell therapy approaches for spinal muscular atrophy. Expert Opin Biol Ther 2012; 12:1463-71. [PMID: 22849423 DOI: 10.1517/14712598.2012.711306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is the leading genetic cause of pediatric death to which at present there is no effective therapeutic. The genetic defect is well characterized as a mutation in exon 7 of the survival of motor neuron (SMN) gene. The current gene therapy approach focuses on two main methodologies, the replacement of SMN1 or augmentation of SMN2 readthrough. The most promising of the current work focuses on the delivery of SMN via AAV9 vectors via intravenous delivery. AREAS COVERED In the review the authors examine the current research in the field of stem cell and gene therapy approaches for SMA. Also focusing on delivery methods, timing of administration and general caveats that must be considered with translational work for SMA. EXPERT OPINION Gene therapy currently offers the most promising avenue of research for a successful therapeutic for SMA. There are many important practical and ethical considerations which must be carefully considered when dealing with clinical trial in infants such as the invasiveness of the surgery, the correct patient cohort and the potential risks.
Collapse
|
39
|
Stem cell therapy for the spinal cord. Stem Cell Res Ther 2012; 3:24. [PMID: 22776143 PMCID: PMC3580462 DOI: 10.1186/scrt115] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 07/03/2012] [Indexed: 02/08/2023] Open
Abstract
Injury and disease of the spinal cord are generally met with a poor prognosis. This poor prognosis is due not only to the characteristics of the diseases but also to our poor ability to deliver therapeutics to the spinal cord. The spinal cord is extremely sensitive to direct manipulation, and delivery of therapeutics has proven a challenge for both scientists and physicians. Recent advances in stem cell technologies have opened up a new avenue for the treatment of spinal cord disease and injury. Stem cells have proven beneficial in rodent models of spinal cord disease and injury. In these animal models, stem cells have been shown to produce their effect by the dual action of cell replacement and the trophic support of the factors secreted by these cells. In this review we look at the main clinical trials involving stem cell transplant into the spinal cord, focusing on motor neuron diseases and spinal cord injury. We will also discuss the major hurdles in optimizing stem cell delivery methods into the spinal cord. We shall examine current techniques such as functional magnetic resonance imaging guidance and cell labeling and will look at the current research striving to improve these techniques. With all caveats and future research taken into account, this is a very exciting time for stem cell transplant into the spinal cord. We are only beginning to realize the huge potential of stem cells in a central nervous system setting to provide cell replacement and trophic support. Many more trials will need to be undertaken before we can fully exploit the attributes of stem cells.
Collapse
|
40
|
Cellular and molecular approaches to motor neuron therapy in amyotrophic lateral sclerosis and spinal muscular atrophy. Neurosci Lett 2012; 527:78-84. [PMID: 22579818 DOI: 10.1016/j.neulet.2012.04.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/29/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are progressive fatal neurodegenerative diseases. They differ in their disease development but have in common a loss of motor neuron as they progress. Research is ongoing to further understand the origin of these diseases but this common thread of motor neuron loss has provided a target for the development of therapies for both ALS and SMA. It is the linked fields of gene and cell therapy that are providing some of the most interesting therapeutic possibilities.
Collapse
|
41
|
De Filippis L, Binda E. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 2012. [PMID: 23197809 DOI: 10.5966/sctm.2011-0045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of neural stem cells (NSCs) in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate future therapeutic approaches for the cure of neurodegenerative diseases. These studies are finally at the clinical stage, and some of them are already under way. The definition of a bona fide stem cell has long been the object of much debate focused on the establishment of standard and univocal criteria to distinguish between stem and progenitor cells. It is commonly accepted that NSCs have to fulfill two basic requirements, the capacity for long-term self-renewal and the potential for differentiation, which account for their physiological role, namely central nervous system tissue homeostasis. Strategies such as immortalization or reprogramming of somatic cells to the embryonic-like stage of pluripotency indicate the relevance of extensive self-renewal ability of NSCs either in vitro or in vivo. Moreover, the discovery of stem-like tumor cells in brain tumors, such as gliomas, accompanied by the isolation of these cells through the same paradigm used for related healthy cells, has provided further evidence of the key role that self-renewal plays in the development and progression of neurodegenerative diseases and cancer. In this review we provide an overview of the current understanding of the self-renewal capacity of nontransformed human NSCs, with or without immortalization or reprogramming, and of stem-like tumor cells, referring to both research and therapeutic studies.
Collapse
Affiliation(s)
- Lidia De Filippis
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Italy.
| | | |
Collapse
|
42
|
Ferrari D, Zalfa C, Nodari LR, Gelati M, Carlessi L, Delia D, Vescovi AL, De Filippis L. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model. Cell Mol Life Sci 2012; 69:1193-210. [PMID: 22076651 PMCID: PMC11115189 DOI: 10.1007/s00018-011-0873-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/22/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.
Collapse
Affiliation(s)
- Daniela Ferrari
- Department of Biotechnology and Biosciences, Università Milano Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Riley JP, Raore B, Taub JS, Federici T, Boulis NM. Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery 2012; 69:ons147-54; discussion ons155. [PMID: 21471842 DOI: 10.1227/neu.0b013e3182195680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Only recently have data been published attempting to validate a technology and technique suitable for targeted delivery of biological payloads to the human spinal cord. OBJECTIVE To characterize the development and evolution of a spine-stabilized microinjection platform as a vehicle for biologics delivery to the cervical and thoracolumbar spine on the basis of preclinical experience in both non-Good Laboratory Practice (GLP) experimental series and GLP studies. METHODS Our laboratory completed > 100 cervical and lumbar porcine microinjection procedures between July 2004 and June 2010. This included both non-GLP- and GLP-adherent survival series to validate the safety and accuracy achievable with intraspinal microinjection. During this time, 3 different microinjection platforms, injection stages, and cannula designs were tested. RESULTS Repetitive technological improvements reduced incision length, decreased procedural complexity, and simplified ventral horn targeting and accuracy. These changes reduced procedural invasiveness and the likelihood of neurological morbidity while improving targeting accuracy. In part as a result of these technological improvements and procedural modifications, we have safely progressed from single unilateral microinjections to multiple bilateral injections without long-term neurological sequelae. CONCLUSION Technological and procedural refinements have significantly enhanced the capabilities of intraspinal microinjection-based biologics delivery. Reductions in procedural invasiveness and the capability to deliver sequential biological payloads effectively have broadened the flexibility of intraspinal microinjection to a widened array of intrinsic spinal cord pathologies. These advances have laid the groundwork for clinical translation of spinal cord microinjections.
Collapse
Affiliation(s)
- Jonathan P Riley
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Effective treatments are urgently needed for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of motor neurons. In 2009, the FDA approved the first phase I safety trial of direct intraspinal transplantation of neural stem cells into patients with ALS, which is currently in progress. Stem cell technologies represent a promising approach for treating ALS, but several issues must be addressed when translating promising experimental ALS therapies to patients. This article highlights the key research that supports the use of stem cells as a therapy for ALS, and discusses the rationale behind and approach to the phase I trial. Completion of the trial could pave the way for continued advances in stem cell therapy for ALS and other neurodegenerative diseases.
Collapse
|
45
|
Abstract
Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | |
Collapse
|
46
|
Abstract
More than 1 million people in the United States live with a spinal cord injury (SCI). Despite medical advances, many patients with SCIs still experience substantial neurological disability, with loss of motor, sensory, and autonomic function. Cell therapy is ideally suited to address the multifactorial nature of the secondary events following SCI. Remarkable advances in our understanding of the pathophysiology of SCI, structural and functional magnetic resonance imaging, image-guided micro-neurosurgical techniques, and transplantable cell biology have enabled the use of cell-based regenerative techniques in the clinic. It is important to note that there are more than a dozen recently completed, ongoing, or recruiting cell therapy clinical trials for SCI that reflect the views of many key stakeholders. The field of regenerative neuroscience has reached a stage in which the clinical trials are scientifically and ethically justified. Although experimental models and analysis methods and techniques continue to evolve, no model will completely replicate the human condition. It is recognized that more work with cervical models of contusive/compressive SCI are required in parallel with clinical trials. It is also important that the clinical translation of advances made through well-established and validated experimental approaches in animal models move forward to meet the compelling needs of individuals with SCI and to advance the field of regenerative neuroscience. However, it is imperative that such efforts at translation be done in the most rigorous and informed fashion to determine safety and possible efficacy, and to provide key information to clinicians and basic scientists, which will allow improvements in regenerative techniques and the validation and refinement of existing preclinical animal models and research approaches. The field of regenerative neuroscience should not be stalled at the animal model stage, but instead the clinical trials need to be focused, safe, and ethical, backed up by a robust, translationally relevant preclinical research strategy.
Collapse
Affiliation(s)
- Michael G. Fehlings
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| | - Reaz Vawda
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| |
Collapse
|
47
|
Gowing G, Svendsen CN. Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 2011; 8:591-606. [PMID: 21904789 PMCID: PMC3210365 DOI: 10.1007/s13311-011-0068-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motor neuron degeneration leading to muscle atrophy and death is a pathological hallmark of disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophy. No effective treatment is available for these devastating diseases. At present, cell-based therapies targeting motor neuron replacement, support, or as a vehicle for the delivery of neuroprotective molecules are being investigated. Although many challenges and questions remain, the beneficial effects observed following transplantation therapy in animal models of motor neuron disease has sparked hope and a number of clinical trials. Here, we provide a comprehensive review of cell-based therapeutics for motor neuron disorders, with a particular emphasis on amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Genevieve Gowing
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| |
Collapse
|
48
|
Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, Carriero A, Monaco F, Fagioli F. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2011; 14:56-60. [PMID: 21954839 DOI: 10.3109/14653249.2011.613929] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem cells/marrow stromal cells (MSC) represent a promising tool for stem cell-based clinical trials in amyotrophic lateral sclerosis (ALS). We present the results of long-term monitoring of 19 ALS patients enrolled in two phase I clinical trials of autologous MSC transplantation. METHODS Nineteen patients (11 male and eightfemale) with ALS were enrolled in two consecutive phase I clinical trials. The patients were followed-up for 6-9 months and then treated with autologous MSC isolated from bone marrow and implanted into the dorsal spinal cord with a surgical procedure. The patients were monitored regularly before and after transplantation with clinical, psychological and neuroradiologic assessments every 3 months, at the tertiary referral ALS center in Novara (Italy), until death. RESULTS Follow-up brain magnetic resonance imaging (MRI) revealed no structural changes (including tumor formation) relative to the baseline throughout the follow-up. There was no deterioration in the psychosocial status and all patients coped well. No clear clinical benefits were detected in these patients but the recruitment and selection of appropriate patients into larger trials will be needed to test the efficacy of the treatment. CONCLUSIONS This study is the first to show the safety of MSC transplantation in the central nervous system during a follow-up of nearly 9 years, and is in support of applying MSC-based cellular clinical trials to neurodegenerative disorders.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Centre Department of Neurology 'Eastern Piedmont' University, Maggiore della Carità Hospital, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA, Handy CR, Passini MA, Samulski RJ, Boulis NM. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 2011; 19:852-9. [DOI: 10.1038/gt.2011.130] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL. Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011; 6:201-13. [PMID: 21391854 PMCID: PMC3154698 DOI: 10.2217/rme.11.6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and spinal muscular atrophy are devastating neurodegenerative diseases that lead to the specific loss of motor neurons. Recently, stem cell technologies have been developed for the investigation and treatment of both diseases. Here we discuss the different stem cells currently being studied for mechanistic discovery and therapeutic development, including embryonic, adult and induced pluripotent stem cells. We also present supporting evidence for the utilization of stem cell technology in the treatment of amyotrophic lateral sclerosis and spinal muscular atrophy, and describe key issues that must be considered for the transition of stem cell therapies for motor neuron diseases from bench to bedside. Finally, we discuss the first-in-human Phase I trial currently underway examining the safety and feasibility of intraspinal stem cell injections in amyotrophic lateral sclerosis patients as a foundation for translating stem cell therapies for various neurological diseases.
Collapse
Affiliation(s)
- J Simon Lunn
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | | | | | - Eva L Feldman
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| |
Collapse
|