1
|
Muenzebrock KA, Kersten V, Alblas J, Garcia JP, Creemers LB. The Added Value of the “Co” in Co-Culture Systems in Research on Osteoarthritis Pathology and Treatment Development. Front Bioeng Biotechnol 2022; 10:843056. [PMID: 35309991 PMCID: PMC8927651 DOI: 10.3389/fbioe.2022.843056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent disease and a major health burden. Its development and progression are influenced by factors such as age, obesity or joint overuse. As a whole organ disease OA affects not only cartilage, bone and synovium but also ligaments, fatty or nervous tissue surrounding the joint. These joint tissues interact with each other and understanding this interaction is important in developing novel treatments. To incorporate and study these interactions in OA research, several co-culture models have evolved. They combine two or more cell types or tissues and investigate the influence of amongst others inflammatory or degenerative stimuli seen in OA. This review focuses on co-cultures and the differential processes occurring in a given tissue or cell as a consequence of being combined with another joint cell type or tissue, and/or the extent to which a co-culture mimics the in vivo processes. Most co-culture models depart from synovial lining and cartilage culture, but also fat pad and bone have been included. Not all of the models appear to reflect the postulated in vivo OA pathophysiology, although some of the discrepancies may indicate current assumptions on this process are not entirely valid. Systematic analysis of the mutual influence the separate compartments in a given model exert on each other and validation against in vivo or ex vivo observation is still largely lacking and would increase their added value as in vitro OA models.
Collapse
|
2
|
de Vries SA, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K. Notochordal cell matrix: An inhibitor of neurite and blood vessel growth? J Orthop Res 2018; 36:3188-3195. [PMID: 30035331 PMCID: PMC6585673 DOI: 10.1002/jor.24114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
Abstract
Blood vessel and neurite ingrowth into the degenerating intervertebral disc (IVD) are related to pain. In reported studies, notochordal cell (NC)-conditioned medium (NCCM) induced a regenerative response of nucleus pulposus (NP) cells, but also inhibition of neurite and vessel formation. NC matrix (NCM) derived from NC-rich NP tissue, induced even stronger anabolic effects than NCCM. Thus, the aim was to investigate whether NCM has similar anti-neurogenic and -angiogenic properties as NCCM. NCM and NCCM where produced from porcine NC-rich NP tissue. Human umbilical vein endothelial cells (HUVECs) were cultured in base medium (BM, 300 mOsm), NCCM (produced at 300 and 400 mOsm), NCM, or with chondroitin sulfate (CS, positive control) in angiogenesis-inducing medium, after which vessel length was measured. Although CS alone inhibited vessel growth, NCCM (both osmolarities) stimulated vessel formation by HUVECs. NCM did not affect vessel growth relative to BM. SH-SY5Y cells were cultured in BM, NCCM, and NCM on poly-D-lysine coated and polystyrene surfaces, and analyzed for neurite length and percentage of neurite expressing cells. On coated surfaces, neither NCCM nor NCM affected neurite growth. On a polystyrene surface, NCCM and NCM induced a higher number of neurite-expressing cells. NCCM's previously reported anti-angiogenic and -neurogenic effects were not observed in this study. Although addition of CS inhibited HUVEC vessel formation, other factors may be present in NCCM and NCM that affect neurite and vessel growth. Therefore, future studies testing an NC-based regenerative strategy should carefully assess the risk of such adverse effects in an in vivo setting. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 36:3188-3195, 2018.
Collapse
Affiliation(s)
- Stefan A.H. de Vries
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands
| | - Björn P. Meij
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityUtrechtthe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands,Department of OrthopaedicsUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
3
|
Proinflammatory Cytokines IL-1β and TNF-α Influence Human Annulus Cell Signaling Cues for Neurite Growth: In Vitro Coculture Studies. Spine (Phila Pa 1976) 2017; 42:1529-1537. [PMID: 28306638 DOI: 10.1097/brs.0000000000002155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Institutional review board-approved research using human annulus cells cocultured with F11 nerve cells. OBJECTIVE To perform functional, kinetic assays of neurite dynamics and media neurotrophin measurements to test whether proinflammatory cytokines influence annulus cells' signaling cues for neurite growth/repulsion. SUMMARY OF BACKGROUND DATA Nerves grow in response to signaling molecules called neurotrophins, which disc cells produce (e.g., brain-derived neurotrophic factor [BDNF], glial cell line-derived neurotrophic factor [GDNF], and neurotrophin 3 [NT3]) and which influence neuron survival, differentiation, and migration. How proinflammatory cytokines influence disc signaling cues for neurite growth/repulsion is poorly understood. METHODS Studies used our previous model of 4-day human annulus cell-F11 nerve cell coculture to assess effects of added proinflammatory cytokines interleukin 1 beta (IL-1β; 10 pmol/L) or tumor necrosis factor alpha (TNF-α) (10 pmol/L). Annulus cells were cultured from 6 Thompson grade I, 9 grade II, 8 grade III, 11 grade IV, and 7 grade V discs. Neurite lengths were measured following control conditions or with added IL-1β or TNF-α, and conditioned media assayed with RayBiotech Growth Factor Arrays. Standard statistical methods used analysis of variance and Spearman correlation coefficient testing associations of neurite length with neurotrophin levels. RESULTS IL-1-β or TNF-α significantly increased neurite lengths (P < 0.001) and BDNF, NT3, and GDNF media levels (P ≤ 0.01) versus controls. Significant positive correlations were present between media neurotrophin levels for BDNF, NT3, and GDNF and neurite lengths under control conditions, following addition of IL-1β, and following addition of TNF-α. Novel data showed production of the neurotrophin amphiregulin. CONCLUSION In vitro data supported the hypothesis that nerve-disc cell interactions may be influenced by the heightened proinflammatory milieu present in degenerating discs, leading to increased nerve migration. Data may have direct clinical relevance/implications for nerve ingrowth and pain in the outer annulus (where disc cell numbers are high), and in regions where nerves penetrate into the disc via annular tears. LEVEL OF EVIDENCE N/A.
Collapse
|
4
|
Yuan Q, Sun L, Yu H, An C. Human microvascular endothelial cell promotes the development of dorsal root ganglion neurons via BDNF pathway in a co-culture system. Biosci Biotechnol Biochem 2017; 81:1335-1342. [PMID: 28394221 DOI: 10.1080/09168451.2017.1313695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Our previous study found that co-culture with human vascular endothelial cells (HMVECs) is beneficial for dorsal root ganglion cells (DRGCs). The goal of the present study is to investigate whether co-culture with HMVECs could promote the development of DRGCs, and whether this effect is induced by the secretion of BDNF by HMVECs. DRGCs were mono-cultured, co-cultured with HMVECs or co-cultured with HMVECs that pre-transfected with BDNF siRNA, the expression of neurite formation and branching factors were determined. The results showed that transfecting with BDNF siRNA inhibited BDNF expression and reduced BDNF secretion. Co-culture with HMVECs increased the expression of Etv4, Etv5, FN-L, FN-M, and GAP-43 in DRGCs that accompanied by the activation of ERK pathway. However, these changes were all reversed by the inhibition of BDNF in HMVECs. In conclusion, our data demonstrate that HMVECs potentiated DRGCs development at least partly by the secretion of BDNF in the co-culture system.
Collapse
Affiliation(s)
- Quan Yuan
- a Department of Orthopedics , Shengjing Hospital of China Medical University , Shenyang , People's Republic of China
| | - Li Sun
- b Department of Nephrology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China
| | - Honghao Yu
- a Department of Orthopedics , Shengjing Hospital of China Medical University , Shenyang , People's Republic of China
| | - Chunhou An
- a Department of Orthopedics , Shengjing Hospital of China Medical University , Shenyang , People's Republic of China
| |
Collapse
|
5
|
Gruber HE, Hoelscher GL, Bullock L, Ingram JA, Norton HJ, Hanley EN. Human annulus signaling cues for nerve outgrowth: In vitro studies. J Orthop Res 2016; 34:1456-65. [PMID: 27155444 DOI: 10.1002/jor.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
The relationship between neurotrophins produced by human annulus cells, such as neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) which function in neurite survival and outgrowth, and nerve ingrowth into the disc remains poorly understood. In this work, we tested F11 neurite growth during exposure to control media, media with added nerve growth factor (NGF), conditioned media (CM) harvested from previous human annulus culture, or co-culture with annulus cells. Co-culture of F11 cells with annulus cells significantly increased media levels of amphiregulin, BDNF, glial-derived neurotrophic factor, and vascular endothelial growth factor compared to levels from in culture of F11 cells alone (p ≤ 0.04). Cell-based assays of neurite growth revealed that BDNF levels present in CM bore a significant (p = 0.01) positive relationship to neurite length and accounted for 38.5% of the change in neurite length. NT4 levels produced during co-culture with annulus cells bore a significant (p = 0.04) positive relationship to neurite length and accounted for 40.9% of the change in length. Statement of clinical significance: In vitro findings point to a potential role of annulus cells related to nerve ingrowth in vivo, and may have relevance in the outer annulus (where cell numbers are high) or in regions where nerves penetrate into annular tears or fissures. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1456-1465, 2016.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Letitia Bullock
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - H James Norton
- Dickson Advanced Analytics, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| |
Collapse
|
6
|
Kim H, W Caspar T, Shah SB, Hsieh AH. Effects of proinflammatory cytokines on axonal outgrowth from adult rat lumbar dorsal root ganglia using a novel three-dimensional culture system. Spine J 2015; 15:1823-31. [PMID: 25797812 DOI: 10.1016/j.spinee.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/11/2015] [Accepted: 03/16/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. PURPOSE The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. STUDY DESIGN This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. METHODS Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. RESULTS Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these differences were not statistically significant. Among cytokine treatments, however, average axon length in the IL-1β (10 ng/mL) group was significantly higher than that in the other groups (p<.05). CONCLUSIONS A novel 3D collagen gel culture system was used to investigate factors modulating neuronal ingrowth. Our results showed that NGF was necessary to promote neurite growth into collagen gels. In the presence of proinflammatory cytokines, high concentrations of IL-1β induced significantly higher axonal outgrowth than TNF-α and low levels of IL-1β.
Collapse
Affiliation(s)
- Hyunchul Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Tyler W Caspar
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA; Department of Orthopaedics, University of Maryland, Baltimore, 22 S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Purmessur D, Cornejo MC, Cho SK, Roughley PJ, Linhardt RJ, Hecht AC, Iatridis JC. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability. Spine J 2015; 15:1060-9. [PMID: 25661435 PMCID: PMC4416992 DOI: 10.1016/j.spinee.2015.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/08/2014] [Accepted: 02/01/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Painful human intervertebral discs (IVDs) exhibit nerve growth deep into the IVD. Current treatments for discogenic back pain do not address the underlying mechanisms propagating pain and are often highly invasive or only offer temporary symptom relief. The notochord produces factors during development that pattern the spine and inhibit the growth of dorsal root ganglion (DRG) axons into the IVD. We hypothesize that notochordal cell (NC)-conditioned medium (NCCM) includes soluble factors capable of inhibiting neurite growth and may represent a future therapeutic target. PURPOSE To test if NCCM can inhibit neurite growth and determine if NC-derived glycosaminoglycans (GAGs) are necessary candidates for this inhibition. STUDY DESIGN Human neuroblastoma (SH-SY5Y) cells and rat DRG cells were treated with NCCM in two-dimensional culture in vitro, and digestion and mechanistic studies determined if specific GAGs were responsible for inhibitory effects. METHODS Notochordal cell-conditioned medium was generated from porcine nucleus pulposus tissue that was cultured in Dulbecco's modified eagle's medium for 4 days. A dose study was performed using SH-SY5Y cells that were seeded in basal medium for 24 hours and neurite outgrowth and cell viability were assessed after treatment with basal media or NCCM (10% and 100%) for 48 hours. Glycosaminoglycans from NCCM were characterized using multiple digestions and liquid chromatography mass spectroscopy (LC-MS). Neurite growth was assessed on both SH-SY5Y and DRG cells after treatment with NCCM with and without GAG digestion. RESULTS Notochordal cell-conditioned medium significantly inhibited the neurite outgrowth from SH-SY5Y cells compared with basal controls without dose or cytotoxic effects; % of neurite expressing cells were 39.0±2.9%, 27.3±3.6%, and 30.2±2.7% and mean neurite length was 60.3±3.5, 50.8±2.4, 53.2±3.7 μm for basal, 10% NCCM, and 100% NCCM, respectively. Digestions and LC-MS determined that chondroitin-6-sulfate was the major GAG chain in NCCM. Neurite growth from SH-SY5Y and DRG cells was not inhibited when cells were treated with NCCM with digested chondroitin sulfate (CS). CONCLUSIONS Soluble factors derived from NCCM were capable of inhibiting neurite outgrowth in multiple neural cell types without any negative effects on cell viability. Cleavage of GAGs via digestion was necessary to reverse the neurite inhibition capacity of NCCM. We conclude that intact GAGs such as CS secreted from NCs are potential candidates that could be useful to reduce neurite growth in painful IVDs.
Collapse
Affiliation(s)
- Devina Purmessur
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marisa C Cornejo
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Robert J Linhardt
- Biocatalysis & Metabolic Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, One Gustave L.levy place, box 1188 New York, NY 10029, USA.
| |
Collapse
|
8
|
Yuan Q, Li JJ, An CH, Sun L. Biological characteristics of rat dorsal root ganglion cell and human vascular endothelial cell in mono- and co-culture. Mol Biol Rep 2014; 41:6949-56. [PMID: 25028268 DOI: 10.1007/s11033-014-3581-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the biological activity of rat dorsal root ganglion cell (DRGC) and human vascular endothelial cell (HMVEC) in mono- and co-culture. Expression levels of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) mRNA were measured by quantitative real-time RT-PCR (qRT-PCR). Western blot analysis was used to identify VEGF and NGF protein expressions. Cell injury was assessed by measuring cell viability with methylthiazol tetrazolium (MTT) assay. The results showed that VEGF and NGF mRNA levels in the HMVEC+DRGC group were significantly higher than those in the DRGC and HMVEC groups (all p < 0.05). There were also greater increases in both VEGF and NGF protein expressions in the HMVEC+DRGC group than those in the DRGC and HMVEC groups (all p < 0.05). The results of MTT analysis revealed significant differences in cell viability among the HMVEC+DRGC group and the DRGC and HMVEC groups (all p < 0.05). In summary, our findings provide evidence that DRGC and HMVEC in co-culture may exhibit greater biological activity than DRGC in mono-culture.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, Shengjing Hospital, China Medical University, San Hao Street No. 36, Heping District, Shenyang, 110004, People's Republic of China,
| | | | | | | |
Collapse
|
9
|
Francis NL, Hunger PM, Donius AE, Wegst UGK, Wheatley MA. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds. J Tissue Eng Regen Med 2014; 11:285-294. [PMID: 24889394 DOI: 10.1002/term.1912] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 02/28/2014] [Accepted: 04/20/2014] [Indexed: 11/07/2022]
Abstract
Freeze casting, or controlled unidirectional solidification, can be used to fabricate chitosan-alginate (C-A) scaffolds with highly aligned porosity that are suitable for use as nerve-guidance channels. To augment the guidance of growth across a spinal cord injury lesion, these scaffolds are now evaluated in vitro to assess their ability to release neurotrophin-3 (NT-3) and chondroitinase ABC (chABC) in a controlled manner. Protein-loaded microcapsules were incorporated into C-A scaffolds prior to freeze casting without affecting the original scaffold architecture. In vitro protein release was not significantly different when comparing protein loaded directly into the scaffolds with release from scaffolds containing incorporated microcapsules. NT-3 was released from the C-A scaffolds for 8 weeks in vitro, while chABC was released for up to 7 weeks. Low total percentages of protein released from the scaffolds over this time period were attributed to limitation of diffusion by the interpenetrating polymer network matrix of the scaffold walls. NT-3 and chABC released from the scaffolds retained bioactivity, as determined by a neurite outgrowth assay, and the promotion of neurite growth across an inhibitory barrier of chondroitin sulphate proteoglycans. This demonstrates the potential of these multifunctional scaffolds for enhancing axonal regeneration through growth-inhibiting glial scars via the sustained release of chABC and NT-3. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicola L Francis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Philipp M Hunger
- Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.,Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Amalie E Donius
- Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Ulrike G K Wegst
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Purmessur D, Cornejo MC, Cho SK, Hecht AC, Iatridis JC. Notochordal cell-derived therapeutic strategies for discogenic back pain. Global Spine J 2013; 3:201-18. [PMID: 24436871 PMCID: PMC3854597 DOI: 10.1055/s-0033-1350053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
An understanding of the processes that occur during development of the intervertebral disk can help inform therapeutic strategies for discogenic pain. This article reviews the literature to identify candidates that are found in or derived from the notochord or notochordal cells and evaluates the theory that such factors could be isolated and used as biologics to target the structural disruption, inflammation, and neurovascular ingrowth often associated with discogenic back pain. A systematic review using PubMed was performed with a primary search using keywords "(notochordal OR notochord) And (nerves OR blood vessels OR SHH OR chondroitin sulfate OR notch OR CTGF) NOT chordoma." Secondary searches involved keywords associated with the intervertebral disk and pain. Several potential therapeutic candidates from the notochord and their possible targets were identified. Studies are needed to further identify candidates, explore mechanisms for effect, and to validate the theory that these candidates can promote structural restoration and limit or inhibit neurovascular ingrowth using in vivo studies.
Collapse
Affiliation(s)
- D. Purmessur
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M. C. Cornejo
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - S. K. Cho
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - A. C. Hecht
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J. C. Iatridis
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States,Address for correspondence James Iatridis, PhD Professor and Director of Spine Research, Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029United States
| |
Collapse
|
11
|
Nilsson E, Larsson K, Rydevik B, Brisby H, Hammar I. Evoked thalamic neuronal activity following DRG application of two nucleus pulposus derived cell populations: an experimental study in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1113-8. [PMID: 23341046 DOI: 10.1007/s00586-013-2669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/18/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the effects on evoked thalamic neuronal activity of application of notochordal cells and chondrocyte-like cells derived from nucleus pulposus (NP) onto a dorsal root ganglion (DRG) and to compare these effects with a previously reported increased thalamic activity induced by NP. METHODS Nucleus pulposus was harvested from tail discs of adult rats and the disc cells were separated into two cell populations, notochordal cells and chondrocyte-like cells. The two cell populations were applied separately, or in combination, to the L4 DRG of anaesthetised female Sprague-Dawley rats during acute electrophysiological experiments. In control experiments, cell suspension medium was applied on the DRG. Recordings from the contralateral thalamus were sampled for 40 min while electrically stimulating the ipsilateral sciatic nerve at above Aδ-fibre thresholds. RESULTS Application of notochordal cells resulted in a decrease in evoked thalamic activity within 10 min while chondrocyte-like cells did not induce any changes during the 40 min of recording. The difference in evoked thalamic activity 40 min after notochordal and chondrocyte-like cell application, respectively, was statistically significant. Neither an increased concentration of chondrocyte-like cells alone nor a combination of the two cell populations induced any changes in thalamic activity. CONCLUSIONS Separate exposure of the DRG to the two NP-derived cell populations induced different effects on evoked thalamic activity, but none of the tested cell samples induced an increase in neuronal activity similar to that previously observed with NP. This indicates a high complexity of the interaction between NP and nervous tissue.
Collapse
Affiliation(s)
- E Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, PO Box 432, 405 30, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|