1
|
Dong R, Xu H, Wang P, Fang L, Xiao L, Lv S, Tong P, Jin H. Disruption of Col9a2 expression leads to defects in osteochondral homeostasis and osteoarthritis-like phenotype in mice. J Orthop Translat 2023; 41:33-41. [PMID: 37635809 PMCID: PMC10450353 DOI: 10.1016/j.jot.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Background/Objective As one of the branched chains of Type IX collagen (Col9), Collagen IX alpha2 (Col9a2) has been reported to be associated with several orthopedic conditions. However, the relationship between Col9a2 and knee osteoarthritis (KOA) remains to be elucidated. Methods To probe the relationship between Col9a2 and KOA, we performed a systematic analysis of Col9a2-deficient (Col9a2-/-) mice using whole-mount skeletal staining, Micro-CT (μCT), biomechanics, histomorphometry, immunohistochemistry (IHC), immunofluorescence (IF) and Elisa. Results We found that the subchondral bone (SCB) in the knee joint of Col9a2-/- mice became sparse and deformed in the early stage, with altered bone morphometric parameters, reduced load-bearing capacity, dysfunctional bone homeostasis (decreased osteogenesis capacity and elevated bone resorption capacity), diminished cartilage proteoglycans and disrupted cartilage extracellular matrix (ECM) anabolism and catabolism compared with the Col9a2+/+ mice. In the late stage, the cartilage degeneration in Col9a2-/- mice were particularly pronounced compared to Col9a2+/+ mice, as evidenced by severe cartilage destruction and a marked reduction in cartilage thickness and area. Conclusion Overall, Col9a2 is essential for maintaining osteochondral homeostasis in the knee joint of mice, and the absence of this gene is accompanied by distinct sclerosis of the SCB and a reduction in load-bearing capacity; in the late stage, in the lack of SCB stress inhibition, excessive load is consistently exerted on the cartilage, ultimately leading to osteoarthritic-like articular cartilage damage.
Collapse
Affiliation(s)
- Rui Dong
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Huihui Xu
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang Province, 310006, PR China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang Province, 310006, PR China
| | - Liang Fang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang Province, 310006, PR China
| | - Luwei Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang, 310006, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang Province, 310006, PR China
| | - Shuaijie Lv
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang, 310006, PR China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548, Binwen Road, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54, Youdian Road, Hangzhou, Zhejiang Province, 310006, PR China
| |
Collapse
|
2
|
Wang Y, Zhang P, Yan X, Wang J, Zhu M, Teng H. The correlation between lumbar interlaminar space size on plain radiograph and spinal stenosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1721-1728. [PMID: 36941496 DOI: 10.1007/s00586-023-07646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023]
Abstract
PURPOSE Investigating the correlation between the interlaminar space size on plain radiograph and lumbar spinal stenosis (LSS). METHODS 100 Patients with LSS and 100 normal participants without LSS were included in this study. Lumbar interlaminar parameters were measured on plain radiographs. Spinal canal parameters were measure on CT and MRI. These image parameters were compared between LSS and control group. The linear correlation among interlaminar parameters, spinal canal parameters and Oswestry Disability Index (ODI) were analyzed. The cut-off values of interlaminar parameters for diagnosing L3/4 and L4/5 symptomatic LSS were analyzed. RESULTS Excepting for L1/2 interlaminar width, all interlaminar and spinal canal related parameters in LSS group were significantly smaller than those in control group. Excepting for L1/2 interlaminar width and L5/S1 interlaminar height, all interlaminar parameters had significantly positive linear correlation with spinal canal parameters accordingly in each lumbar level. For diagnosis of symptomatic LSS, The cut off values of L4/5 interlaminar width, height and area were 18.46 mm, 11.37 mm and 134.05 mm2 while 15.78 mm, 13.59 mm and 157.98 mm2 in L3/4. Both spinal canal size and interlaminar size had no linear correlation with ODI in cases of L4/5 LSS. CONCLUSIONS Lumbar interlaminar space size on plain radiograph has positive linear correlation with developmental and degenerative LSS, excepting for L1/2 interlaminar width and L5/S1 interlaminar height. Lumbar plain radiograph can be a feasible way for predicting and helping to diagnose LSS through evaluating the interlaminar space size. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Yu Wang
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Peng Zhang
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xin Yan
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jing Wang
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Minyu Zhu
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Honglin Teng
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
3
|
Lai MKL, Cheung PWH, Samartzis D, Cheung JPY. Prevalence and Definition of Multilevel Lumbar Developmental Spinal Stenosis. Global Spine J 2022; 12:1084-1090. [PMID: 33222541 PMCID: PMC9210236 DOI: 10.1177/2192568220975384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVES To define multilevel lumbar developmental spinal stenosis (DSS) using a composite score model and to determine its prevalence. METHODS This was a cohort study of 2385 openly recruited subjects with lumbosacral (L1-S1) MRIs. All subjects with previous spinal surgery or spinal deformities were excluded. The anteroposterior (AP) vertebral canal diameter was measured by two independent observers. Any associations between level-specific vertebral canal diameter and subject body habitus were analysed with non-parametric tests. Three or more stenotic levels, equivalent to a composite score of 3 or more, were considered as multilevel DSS. The median values of these subjects' AP canal diameters were used to construct the multilevel DSS values. Receiver operating characteristic analysis was utilized to determine the ability of these cut-off values to screen for DSS by presenting their area under curve, sensitivity and specificity. RESULTS Subject body habitus was poorly correlated with AP vertebral canal diameter. Multilevel DSS was identified as L1<19 mm, L2<19 mm, L3<18 mm, L4<18 mm, L5<18 mm, S1<16 mm with 81%-96% sensitivity and 72%-91% specificity. The prevalence of multilevel DSS in this cohort was 7.3%. CONCLUSIONS Utilizing a large homogeneous cohort, the prevalence of multilevel DSS is determined. Our cut-offs provide high diagnostic accuracy. Patients with multiple levels that fulfil these criteria may be at-risk of spinal canal compressions at multiple sites. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Marcus Kin Long Lai
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dino Samartzis
- Department of Orthopaedic Surgery, RUSH University Medical Center, Chicago, IL, USA,International Spine Research and Innovation Initiative, RUSH University Medical Center, Chicago, IL, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Jason Pui Yin Cheung, Department of Orthopaedics & Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Xu H, Dong R, Zeng Q, Fang L, Ge Q, Xia C, Zhang P, Lv S, Zou Z, Wang P, Li J, Ruan H, Hu S, Wu C, Jin H, Tong P. Col9a2 gene deletion accelerates the degeneration of intervertebral discs. Exp Ther Med 2022; 23:207. [PMID: 35126710 PMCID: PMC8796617 DOI: 10.3892/etm.2022.11130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Huihui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Rui Dong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qinghe Zeng
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liang Fang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qinwen Ge
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chenjie Xia
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Peng Zhang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shuaijie Lv
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhen Zou
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Pinger Wang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ju Li
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hongfeng Ruan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Songfeng Hu
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Chengliang Wu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hongting Jin
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Peijian Tong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
5
|
Xie G, Liang C, Yu H, Zhang Q. Association between polymorphisms of collagen genes and susceptibility to intervertebral disc degeneration: a meta-analysis. J Orthop Surg Res 2021; 16:616. [PMID: 34663366 PMCID: PMC8522091 DOI: 10.1186/s13018-021-02724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Collagens are important structural components of intervertebral disc. A number of studies have been performed for association between polymorphisms of collagen genes and risk of intervertebral disc degeneration (IVDD) but yielded inconsistent results. Here, we performed a meta-analysis to investigate the association of collagen IX alpha 2 (COL9A2) Trp2, collagen IX alpha 3 (COL9A3) Trp3, collagen I alpha 1 (COL1A1) Sp1 and collagen XI alpha 1 (COL11A1) C4603T polymorphisms with susceptibility to IVDD. METHOD Eligible studies were retrieved by searching MEDLINE, EMBASE, Web of Science prior to 31 March, 2021. Odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated for association strength. RESULTS A total of 28 eligible studies (31 datasets comprising 5497 cases and 5335 controls) were included. COL9A2 Trp2 carriers had an increased risk of IVDD than non-carriers in overall population (OR = 1.43, 95% CI 0.99-2.06, P = 0.058), which did not reach statistical significance. However, Trp2 carriers had 2.62-fold (95% CI 1.15-6.01, P = 0.022) risk than non-carriers in Caucasians. COL9A3 Trp3 was not associated with IVDD risk (OR = 1.28, 95% CI 0.81-2.02, P = 0.299). T allele and TT genotype of COL1A1 Sp1 (+ 1245G > T) were correlated with increased risk of IVDD. Significant associations were found between COL11A1 C4603T and IVDD risk under allelic (OR = 1.33, 95% CI 1.20-1.48), dominant (OR = 1.45, 95% CI 1.26-1.67), recessive (OR = 1.55, 95% CI 1.21-1.98) and homozygote model (OR = 1.81, 95% CI 1.40-2.34). CONCLUSIONS COL1A1 Sp1 and COL11A1 C4603T polymorphism are associated with IVDD risk while the predictive roles of collagen IX gene Trp2/3 need verification in more large-scale studies.
Collapse
Affiliation(s)
- Guohui Xie
- Department of Spine Surgery, Yuncheng Central Hospital, Shanxi Medical University, No. 3690, Hedong East Street, Yanhu District, Yuncheng, 044000, Shanxi Province, China
| | - Chunhong Liang
- Department of Spine Surgery, Yuncheng Central Hospital, Shanxi Medical University, No. 3690, Hedong East Street, Yanhu District, Yuncheng, 044000, Shanxi Province, China
| | - Honglin Yu
- Department of Spine Surgery, Yuncheng Central Hospital, Shanxi Medical University, No. 3690, Hedong East Street, Yanhu District, Yuncheng, 044000, Shanxi Province, China
| | - Qin Zhang
- Department of Spine Surgery, Yuncheng Central Hospital, Shanxi Medical University, No. 3690, Hedong East Street, Yanhu District, Yuncheng, 044000, Shanxi Province, China.
| |
Collapse
|
6
|
Lai MKL, Cheung PWH, Song YQ, Samartzis D, Cheung JPY. Pedigree analysis of lumbar developmental spinal stenosis: Determination of potential inheritance patterns. J Orthop Res 2021; 39:1763-1776. [PMID: 32902878 DOI: 10.1002/jor.24850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Lumbar developmental spinal stenosis (DSS) refers to multilevel pre-existing narrowed spinal canals, which predispose to neural compromise. The objective of this study is to identify any inheritance pattern of DSS by utilizing pedigree charts. This was a case series of 13 families with a total of 80 subjects having magnetic resonance imaging (MRI) from L1 to S1. Cases (subjects with DSS) or controls (subjects without DSS) were identified by measuring their anteroposterior (AP) vertebral canal diameters. Multilevel model analyses were also performed to evaluate whether there is substantial clustering of observations within the families, and the effect of multilevel DSS. The intraclass correlation coefficient (ICC) and Akaike information criteria (AIC) were compared between models. Correlations between subject demographics and AP vertebral canal diameter were statistically insignificant at all levels. Only vertebral canal cross-sectional area, and axial and sagittal vertebral canal diameter were found to be statistically different between cases and controls at all levels (all p < .05). Both males and females were affected by DSS and there was no skipping of generation, which highly suggested DSS followed an autosomal dominant inheritance pattern. After accounting for multilevel DSS, there was a drop of more than 10 in AIC and some variances were also explained within families. This is the first study that suggests multilevel lumbar DSS to have an autosomal dominant inheritance pattern. Within families with a background of DSS, subjects had a smaller canal size, contributed by shortened axial and sagittal AP vertebral canal diameter, and smaller canal cross-sectional area.
Collapse
Affiliation(s)
- Marcus K L Lai
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Prudence W H Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dino Samartzis
- Department of Orthopaedic Surgery, RUSH University Medical Center, Chicago, Illinois, USA.,International Spine Research and Innovation Initiative, RUSH University Medical Center, Chicago, Illinois, USA
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Jiang X, Chen D. The identification of novel gene mutations for degenerative lumbar spinal stenosis using whole-exome sequencing in a Chinese cohort. BMC Med Genomics 2021; 14:134. [PMID: 34020649 PMCID: PMC8138972 DOI: 10.1186/s12920-021-00981-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Degenerative lumbar spinal stenosis (DLSS) is a common lumbar disease that requires surgery. Previous studies have indicated that genetic mutations are implicated in DLSS. However, studies on specific gene mutations are scarce. Whole-exome sequencing (WES) is a valuable research tool that identifies disease-causing genes and could become an effective strategy to investigate DLSS pathogenesis. METHODS From January 2016 to December 2017, we recruited 50 unrelated patients with symptoms consistent with DLSS and 25 unrelated healthy controls. We conducted WES and exome data analysis to identify susceptible genes. Allele mutations firstly identified potential DLSS variants in controls to the patients' group. We conducted a site-based association analysis to identify pathogenic variants using PolyPhen2, SIFT, Mutation Taster, Combined Annotation Dependent Depletion, and Phenolyzer algorithms. Potential variants were further confirmed using manual curation and validated using Sanger sequencing. RESULTS In this cohort, the major classification variant was missense_mutation, the major variant type was single nucleotide polymorphism (SNP), and the major single nucleotide variation was C > T. Multiple SNPs in 34 genes were identified when filtered allele mutations in controls to retain only patient mutations. Pathway enrichment analyses revealed that mutated genes were mainly enriched for immune response-related signaling pathways. Using the Novegene database, site-based associations revealed several novel variants, including HLA-DRB1, PARK2, ACTR8, AOAH, BCORL1, MKRN2, NRG4, NUP205 genes, etc., were DLSS related. CONCLUSIONS Our study revealed that deleterious mutations in several genes might contribute to DLSS etiology. By screening and confirming susceptibility genes using WES, we provided more information on disease pathogenesis. Further WES studies incorporating larger DLSS patient cohorts are required to comprehend the genetic landscape of DLSS pathophysiology fully.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Orthopaedics, China-Japan Friendship Hospital, No. 2 Yinghuayuan Dongjie, Chaoyang District, Beijing, 100029, China
| | - Dong Chen
- Department of Orthopaedics, China-Japan Friendship Hospital, No. 2 Yinghuayuan Dongjie, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
8
|
Two GWAS-identified variants are associated with lumbar spinal stenosis and Gasdermin-C expression in Chinese population. Sci Rep 2020; 10:21069. [PMID: 33273635 PMCID: PMC7713291 DOI: 10.1038/s41598-020-78249-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to investigate the expression levels of genome-wide association studies (GWAS)-identified variants near Gasdermin-C (GSDMC) and its association with lumbar disc degeneration (LDD) in a Chinese population. In accordance with previously reported findings, our study involved the top 4 variants; rs6651255, rs7833174, rs4130415, and rs7816342. A total of 800 participants, 400 LDD patients and 400 controls were involved in the study. The LDD patients were divided into two mutually exclusive subgroups: subgroup 1: lumbar disc herniation; subgroup 2: lumbar spinal stenosis. Genotyping were performed using TaqMan assay, and Enzyme-Linked Immunosorbent Assay (ELISA) used to measure the plasma GSDMC levels, while quantitative reverse-transcription (qRT)-PCR and immunohistochemistry (IHC) were used to evaluate the GSDMC expression levels. Among the studied variants, there were no statistically significant differences in allelic and genotypic frequencies between LDD patients and their controls (all P > 0.05). However, the subgroup analysis revealed a significant association between rs6651255 and rs7833174 in patients with lumbar spinal stenosis (subgroup 2). Furthermore, the max-statistic test revealed that the inheritance models of two variants of lumbar spinal stenosis were represented by the recessive model. The plasma and mRNA expression levels of GSDMC were significantly higher in patients with lumbar spinal stenosis compared with the control group (P < 0.05). Furthermore, the CC genotypes of rs6651255 and rs7833174 were significantly associated with increased plasma expression levels of GSDMC in patients with lumbar spinal stenosis (P < 0.01). Two GWAS-identified variants (rs6651255 and rs7833174) near GSDMC were associated with a predisposition to lumbar spinal stenosis. GSDMC protein and mRNA expression levels may have prognostic qualities as biomarkers for the existence, occurrence or development of lumbar spinal stenosis.
Collapse
|
9
|
Association of CILP, COL9A2 and MMP3 Gene Polymorphisms with Lumbar Disc Degeneration in an Indian Population. J Mol Neurosci 2018; 66:378-382. [PMID: 30288688 DOI: 10.1007/s12031-018-1182-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Lumbar disc degeneration (LDD) is a multifactorial disorder caused by genetic and environmental factors. Polymorphisms in several structural and inflammatory genes like collagens, aggrecan, matrix metalloproteinases are associated with the risk of disc degeneration. In this study, we analyzed the role of a few important single nucleotide polymorphisms in cartilage intermediate layer protein (CILP), collagen 9A2 (COL9A2) and matrix metalloproteinase 3 (MMP3) genes in LDD from an Indian population. Two hundred patients with LDD and 200 healthy controls were recruited for the study. Genotyping was performed by allelic discrimination assay. The rs2073711 polymorphism (CILP gene - GG genotype) was associated with reduced risk of LDD in the Indian population (OR = 0.43, p = 0.016). The rs591058 polymorphism (MMP3 gene - TT genotype) is found to be associated with lower risk among women (OR = 0.34, p = 0.041). No significant association was found between COL9A2 polymorphism rs7533552 and the risk of LDD. We conclude that the CILP gene polymorphism (rs2073711) is associated with a lower risk of LDD, the MMP3 (rs591058) gene polymorphism is associated with LDD among women, and the TT genotype confers a lower risk of LDD.
Collapse
|
10
|
Cheung JPY, Kao PYP, Sham P, Cheah KSE, Chan D, Cheung KMC, Samartzis D. Etiology of developmental spinal stenosis: A genome-wide association study. J Orthop Res 2018; 36:1262-1268. [PMID: 28983962 DOI: 10.1002/jor.23746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023]
Abstract
Our study aimed to identify possible single nucleotide polymorphisms (SNPs) via a genome-wide association study (GWAS) approach and a candidate gene platform that were associated with lumbar developmental spinal stenosis (DSS). Southern Chinese population-based study volunteers were assessed (age range: 18-55 years). DSS was defined as the anteroposterior bony spinal canal diameter on T1-weighted axial MRI of L1 to S1. Genotyping was performed using the Illumina HumanOmniZhongHua-8 BeadChip. Using the canal diameter as the quantitative trait, genomic statistical analyses was performed. A total of 469 subjects were recruited. The mean axial AP measurements noted were: L1: 21.8 mm, L2: 21.9 mm, L3: 22.4 mm, L4: 20.2 mm, L5: 19.6 mm, and S1: 17.3 mm. Q-Q plots of genome-wide associations found significant differences in L4 and L5 measurements. More significant SNPs were found on chromosomes 8, 11, and 18. Low-density lipoprotein receptor-related protein 5 on chromosome 11 was found to be an important functional gene in canal bony development via candidate gene approach. We found two clusters in the findings with one including the upper levels (L1-L4) and the other the lower levels (L5 and S1). This is the first GWAS addressing DSS. The presence of multiple SNPs suggests a multi-factorial origin of DSS. Further analyses noted region-specific genetic predisposition, delineating distinct upper to lower lumbar regions of DSS. With better understanding of the DSS phenotype and genetic markers, the at-risk population can be identified early, preventative measures can be initiated, lifestyle/activity modification can be implemented, and more novel and precision-based therapeutics can be developed. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1262-1268, 2018.
Collapse
Affiliation(s)
- Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick Y P Kao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pak Sham
- Genome Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Wu H, Wang S, Chen W, Zhan X, Xiao Z, Jiang H, Wei Q. Collagen IX gene polymorphisms and lumbar disc degeneration: a systematic review and meta-analysis. J Orthop Surg Res 2018; 13:47. [PMID: 29506578 PMCID: PMC5838857 DOI: 10.1186/s13018-018-0750-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background An increasing number of studies have investigated associations between collagen IX alpha 2 chain (COL9A2) and collagen IX alpha 3 chain (COL9A3) gene polymorphisms and the risk of lumbar disc degeneration (LDD). However, these studies have yielded contradictory results. The purpose of this meta-analysis is to investigate the association between the collagen IX gene polymorphisms (rs12077871, rs12722877, rs7533552 in COL9A2; rs61734651 in COL9A3) and LDD. Methods All relevant articles were collected from PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI). The last electronic search was performed on September 1, 2017. The allele/genotype frequencies were extracted from each study. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of associations under the five comparison genetic models. Statistical analysis was performed by Review Manager (RevMan) 5.31 software. Results The meta-analysis of 10 case-control studies, including 2102 LDD cases and 2507 controls, indicated that COL9A2 gene (rs12077871, rs12722877, rs7533552) and COL9A3 gene (rs61734651) polymorphisms were not associated with LDD (rs12077871: T vs. C, OR = 1.85, 95% CI = 0.87–3.91, P = 0.11; rs12722877: G vs. C, OR = 0.83, 95% CI = 0.69–1.01, P = 0.06; rs7533552: G vs. A, OR = 1.11, 95% CI = 0.98–1.25, P = 0.09; rs61734651: T vs. C, OR = 1.57, 95% CI = 0.51–4.84, P = 0.43). The Egger text and the Begg funnel plot did not show any evidence of publication bias. Conclusion rs12077871, rs12722877, and rs7533552 variants in COL9A2 and rs61734651 variant in COL9A3 were not significantly associated with a predisposition to LDD. Large-scale and well-designed studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Huihong Wu
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
| | - Siting Wang
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
| | - Weiyou Chen
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
| | - Xinli Zhan
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
| | - Zengming Xiao
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
| | - Hua Jiang
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
| | - Qingjun Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Mukherjee M, Jones JC, Yao J. Lumbosacral stenosis in Labrador retriever military working dogs - an exomic exploratory study. Canine Genet Epidemiol 2017; 4:12. [PMID: 29085643 PMCID: PMC5651560 DOI: 10.1186/s40575-017-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Canine lumbosacral stenosis is defined as narrowing of the caudal lumbar and/or sacral vertebral canal. A risk factor for neurologic problems in many large sized breeds, lumbosacral stenosis can also cause early retirement in Labrador retriever military working dogs. Though vital for conservative management of the condition, early detection is complicated by the ambiguous nature of clinical signs of lumbosacral stenosis in stoic and high-drive Labrador retriever military working dogs. Though clinical diagnoses of lumbosacral stenosis using CT imaging are standard, they are usually not performed unless dogs present with clinical symptoms. Understanding the underlying genomic mechanisms would be beneficial in developing early detection methods for lumbosacral stenosis, which could prevent premature retirement in working dogs. The exomes of 8 young Labrador retriever military working dogs (4 affected and 4 unaffected by lumbosacral stenosis, phenotypically selected by CT image analyses from 40 dogs with no reported clinical signs of the condition) were sequenced to identify and annotate exonic variants between dogs negative and positive for lumbosacral stenosis. Results Two-hundred and fifty-two variants were detected to be homozygous for the wild allele and either homozygous or heterozygous for the variant allele. Seventeen non-disruptive variants were detected that could affect protein effectiveness in 7 annotated (SCN1B, RGS9BP, ASXL3, TTR, LRRC16B, PTPRO, ZBBX) and 3 predicted genes (EEF1A1, DNAJA1, ZFX). No exonic variants were detected in any of the canine orthologues for human lumbar spinal stenosis candidate genes. Conclusions TTR (transthyretin) gene could be a possible candidate for lumbosacral stenosis in Labrador retrievers based on previous human studies that have reported an association between human lumbar spinal stenosis and transthyretin protein amyloidosis. Other genes identified with exonic variants in this study but with no known published association with lumbosacral stenosis and/or lumbar spinal stenosis could also be candidate genes for future canine lumbosacral stenosis studies but their roles remain currently unknown. Human lumbar spinal stenosis candidate genes also cannot be ruled out as lumbosacral stenosis candidate genes. More definitive genetic investigations of this condition are needed before any genetic test for lumbosacral stenosis in Labrador retriever can be developed. Electronic supplementary material The online version of this article (10.1186/s40575-017-0052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meenakshi Mukherjee
- Departments of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506 USA
| | - Jeryl C Jones
- Departments of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506 USA.,Current address: 140 Poole Agricultural Center, Department of Animal and Veterinary Sciences, Clemson University, Clemson, 29634 USA
| | - Jianbo Yao
- Departments of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
13
|
MORALES-RANGEL ELIUHAZAEL, ESPINOZA-CHOQUE FERNANDO, MOHENO-GALLARDO ALFREDOJAVIER, SAAVEDRA-BADILLO LUISANTONIO, ELIZALDE-MARTÍNEZ EULALIO, FUENTE-ZUNO JUANCARLOSDELA, PÉREZ-ATANASIO JOSÉMANUEL. PARAMETERS OF NUCLEAR MAGNETIC RESONANCE IN PATIENTS WITH CONGENITAL NARROWING OF THE LUMBAR SPINAL CANAL. COLUNA/COLUMNA 2016. [DOI: 10.1590/s1808-185120161504167174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT Objective: To compare the morphological parameters of magnetic resonance in patients with congenital narrowing of the lumbar spinal canal with patients with low back pain. Methods: A descriptive, retrospective, observational study was conducted with measurements in the axial and sagittal magnetic resonance sections of the vertebral body and canal of the lumbar spine of 64 patients with diagnosis of low back pain, which were compared with resonance images taken from 31 Mexican patients with congenital narrowing of the lumbar spinal canal. Results: The results show that patients with congenital narrowing of the lumbar spinal canal in the axial sections have a difference in diameters, being L2<13.9 mm, L3<13.3 mm, L4<12.9 mm, L5<13.1 mm, compared with controls L2<20.5 mm, L3<20.5 mm, L4<19.3 mm, L5<18.1 mm with p = 0.000. Conclusions: We found different measurements in the Mexican population compared to those found by similar studies. With the parameters obtained, it would be possible to make the proper diagnosis, surgical planning, and treatment.
Collapse
|
14
|
Meta-analysis of the association between COL9A2 genetic polymorphisms and lumbar disc disease susceptibility. Spine (Phila Pa 1976) 2014; 39:1699-706. [PMID: 24983932 DOI: 10.1097/brs.0000000000000497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Meta-analysis to collect all the relevant studies to date to further investigate whether or not the COL9A2 gene rs12077871, rs12722877, and rs7533552 polymorphism are associated with susceptibility to lumbar disc disease (LDD). OBJECTIVE The aim of this study was to assess the association between the COL9A2 gene rs12077871, rs12722877, and rs7533552 and LDD. SUMMARY OF BACKGROUND DATA LDD is a common musculoskeletal disease with strong genetic determinants. COL9A2 encodes the α2 (IX) chain of type IX collagen, which is the major collagen component of the hyaline cartilage. Growing numbers of studies have revealed the association between COL9A2 polymorphisms and susceptibility to LDD. However, those studies have yielded contradictory results. METHODS Data were collected from the following electronic databases: PubMed, Web of Knowledge, and China National Knowledge Infrastructure, with the last report up to November 30, 2013. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association under the allelic genetic model. We summarized the data on the association between COL9A2 rs12077871, rs12722877, and rs7533552 polymorphism and LDD in the overall studies. RESULTS Nine case-control studies, including 1522 LDD cases and 1646 controls, were identified. The results indicated that the rs12077871, rs12722877, and rs7533552 variants in COL9A2 were not associated with LDD (rs12077871: C vs. T, OR = 0.541, 95% CI = 0.256-1.147, P = 0.109; rs12722877: C vs. G, OR = 1.199, 95% CI = 0.992-1.448, P = 0.06; rs7533552: A vs. G, OR = 0.993, 95% CI = 0.815-1.069, P = 0.320). Furthermore, the Egger test and the Begg funnel plot did not show any evidence of publication bias. CONCLUSION Our results suggest that the COL9A2 rs12077871, rs12722877, and rs7533552 polymorphisms may not be associated with LDD. More studies based on larger sample sizes and homogeneous samples of patients with LDD are needed to confirm these findings. LEVEL OF EVIDENCE 2.
Collapse
|
15
|
Defining clinically relevant values for developmental spinal stenosis: a large-scale magnetic resonance imaging study. Spine (Phila Pa 1976) 2014; 39:1067-76. [PMID: 24732859 DOI: 10.1097/brs.0000000000000335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study. OBJECTIVE The aim of this study was to define clinically relevant relative and critical (absolute) magnetic resonance imaging values of lumbar spinal stenosis in a cohort of 100 surgical cases and 100 asymptomatic controls. SUMMARY OF BACKGROUND DATA Developmental spinal stenosis is a precipitating factor in patients presenting with lumbar canal stenosis. Yet, due to a lack of agreement on definitions and methods of assessment, as well as ethnic-specific normative values, its prevalence and significance is not known. METHODS This was a case-control study comparing 100 age and sex-matched asymptomatic, volunteers with that of 100 patients who underwent surgery for spinal stenosis. All patients were of Chinese ethnicity and their details were blinded to 2 observers. Spinal stenosis parameters were measured on the basis of axial (pedicle level) and sagittal (midsagittal) magnetic resonance images. RESULTS Anteroposterior spinal canal diameters change with levels. At each level, patients were found to have significantly narrower anteroposterior canal diameters than controls. By use of receiver operating characteristic curve, we defined developmental spinal stenosis if the anteroposterior canal diameter was at L1 <20 mm, L2 <19 mm, L3 <19 mm, L4 <17 mm, L5 <16 mm, and at S1 <16 mm on the basis of a value including 50% of controls and demonstrated best sensitivity and specificity. Furthermore, for L4, L5, and S1, critical stenosis values could be defined, below which almost all subjects needed surgery, these were L4 <14 mm, L5 <14 mm, and S1 <12 mm. CONCLUSION This is the largest magnetic resonance imaging-based study with standardized measurements and comparable groups to determine clinically relevant magnetic resonance imaging criteria for lumbar spinal stenosis. The findings strongly suggest that developmental stenosis plays an important role in the pathogenesis of symptomatic spinal stenosis. Critical values of stenosis below which symptoms were highly likely were defined. These will need to be validated by longitudinal studies in future. However, they may possess clinical utility in determining the appropriate levels requiring canal-widening surgery. LEVEL OF EVIDENCE 3.
Collapse
|
16
|
Battié MC, Lazáry A, Fairbank J, Eisenstein S, Heywood C, Brayda-Bruno M, Varga PP, McCall I. Disc degeneration-related clinical phenotypes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23 Suppl 3:S305-14. [PMID: 23884550 DOI: 10.1007/s00586-013-2903-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The phenotype, or observable trait of interest, is at the core of studies identifying associated genetic variants and their functional pathways, as well as diagnostics. Yet, despite remarkable technological developments in genotyping and progress in genetic research, relatively little attention has been paid to the equally important issue of phenotype. This is especially true for disc degeneration-related disorders, and the concept of degenerative disc disease, in particular, where there is little consensus or uniformity of definition. Greater attention and rigour are clearly needed in the development of disc degeneration-related clinical phenotypes if we are to see more rapid advancements in knowledge of this area. When selecting phenotypes, a basic decision is whether to focus directly on the complex clinical phenotype (e.g. the clinical syndrome of spinal stenosis), which is ultimately of interest, or an intermediate phenotype (e.g. dural sac cross-sectional area). While both have advantages, it cannot be assumed that associated gene variants will be similarly relevant to both. Among other considerations are factors influencing phenotype identification, comorbidities that are often present, and measurement issues. Genodisc, the European research consortium project on disc-related clinical pathologies has adopted a strategy that will allow for the careful characterisation and examination of both the complex clinical phenotypes of interest and their components.
Collapse
Affiliation(s)
- Michele C Battié
- Faculty of Rehabilitation Medicine, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Progression of lumbar spinal stenosis is influenced by polymorphism of thrombospondin 2 gene in the Korean population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:57-63. [PMID: 23807322 DOI: 10.1007/s00586-013-2866-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/29/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study is to determine the contribution of thrombospondin 2 (THBS2) polymorphisms to the development and progression of lumbar spinal stenosis (LSS) in the Korean population. METHODS We studied 148 symptomatic patients with radiographically proven LSS and 157 volunteers with no history of back problems from our institution. Magnetic resonance images were obtained for all the patients and controls. Quantitative image evaluation for LSS was performed to evaluate the severity of LSS. All patients and controls were genotyped for THBS2 allele variations using a polymerase chain reaction-based technique. RESULTS We found no causal single nucleotide polymorphism (SNPs) in THBS2 that were significantly associated with LSS. Two SNPs (rs6422747, rs6422748) were over-represented in controls [P = 0.042, odds ratio [OR] = 0.55 and P = 0.042, OR = 0.55, respectively]. Haplotype analysis showed that the ''AGAGACG'' haplotype (HAP4) and ''AAGGACG'' haplotype (HAP5) were over-represented in severe LSS patients (P = 0.0147, OR = 2.02 and P = 0.0137, OR = 2.48, respectively). In addition, the ''AAAGGGG'' haplotype (HAP1) was over-represented in controls (P = 0.0068, OR = 0.30). CONCLUSIONS Although no SNPs in THBS2 were associated with LSS, haplotypes (HAP4 and HAP5) were significantly associated with progression of LSS in the Korean population, whereas another haplotype (HAP1) may play a protective role against LSS development.
Collapse
|