1
|
Biomechanical Comparison between Isobar and Dynamic-Transitional Optima (DTO) Hybrid Lumbar Fixators: A Lumbosacral Finite Element and Intersegmental Motion Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8273853. [PMID: 35845942 PMCID: PMC9286886 DOI: 10.1155/2022/8273853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
Biomechanical performance of longitudinal component in dynamic hybrid devices was evaluated to display the load-transfer effects of Dynesys cord spacer or Isobar damper-joint dynamic stabilizer on junctional problem based on various disc degenerations. The dynamic component was adapted at the mildly degenerative L3–L4 segment, and the static component was fixed at the moderately degenerative L4–L5 segment under a displacement-controlled mode for the finite element study. Furthermore, an intersegmental motion behavior was analyzed experimentally on the synthetic model under a load-controlled mode. Isobar or DTO hybrid fixator could reduce stress/motion at transition segment, but compensation was affected at the cephalic adjacent segment more than the caudal one. Within the trade-off region (as a motion-preserving balance between the transition and adjacent segments), the stiffness-related problem was reduced mostly in flexion by a flexible Dynesys cord. In contrast, Isobar damper afforded the effect of maximal allowable displacement (more than peak axial stiffness) to reduce stress within the pedicle and at facet joint. Pedicle-screw travel at transition level was related to the extent of disc degeneration in Isobar damper-joint (more than Dynesys cord spacer) attributing to the design effect of axial displacement and angular rotation under motion. In biomechanical characteristics relevant to clinical use, longitudinal cord/damper of dynamic hybrid lumbar fixators should be designed with less interface stress occurring at the screw-vertebral junction and facet joint to decrease pedicle screw loosening/breakage under various disc degenerations.
Collapse
|
2
|
Lima LVPC, Charles YP, Rouch P, Skalli W. Limiting interpedicular screw displacement increases shear forces in screws: A finite element study. Orthop Traumatol Surg Res 2017; 103:721-726. [PMID: 28554810 DOI: 10.1016/j.otsr.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/30/2017] [Accepted: 05/18/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND CONTEXT Screw loosening has been reported for non-fusion devices. Forces on pedicle screws could be related to kinematic parameters as the interpedicular displacement (ID), which consists of the displacement between superior and inferior screw heads from full extension to full flexion. PURPOSE To investigate the relationship between ID and screw loosening for different designs of posterior implants using a finite element model. METHODS An L3-sacrum previously validated spine FE model was used. Three-rod designs were considered in L4-L5 segment: a rigid screw-rod implant, a flexible one and a specific design with a sliding rod providing limited restrain in ID. In order to simulate intermediate configurations, the friction coefficient between the sliding rods and connectors were varied. The sacrum was rigidly fixed. Rotations (flexion-extension, lateral bending and axial rotation) were applied to L3, for each modeled configuration: intact, injured, injured with different implants. Model consistency was checked with existing experimental in vitro data on intact and instrumented segments. Screw loads were computed as well as ID. RESULTS In flexion-extension, the ID was less than 2mm for rigid (R) and flexible (F) constructs and 5.5mm for intact spine and the sliding implant (S3). Screw's shear forces were 272N, 153N, 43N respectively for R, F and S3 constructs. CONCLUSIONS Implants that allow ID presented lower screws loads. A compromise between the ability of the implant to withstand compressive forces, which requires longitudinal stiffness, and its ability to allow ID could be important for future implant designs in order to prevent screw loosening.
Collapse
Affiliation(s)
- L V P C Lima
- Institut de biomécanique humaine Georges-Charpak/LBM, arts et métiers ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France; Universidade Estadual do Rio de Janeiro, Instituto Politécnico Rua Bonfim, 25, Vila Amélia, 28.625-570 Nova Friburgo, RJ, Brazil.
| | - Y P Charles
- Service de chirurgie du Rachis, hôpitaux universitaires de Strasbourg, clinique chirurgicale B, 1, place de l'Hôpital BP 426, 67091 Strasbourg, France
| | - P Rouch
- Institut de biomécanique humaine Georges-Charpak/LBM, arts et métiers ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
| | - W Skalli
- Institut de biomécanique humaine Georges-Charpak/LBM, arts et métiers ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
3
|
In Vitro Comparison of Dynesys, PEEK, and Titanium Constructs in the Lumbar Spine. Adv Orthop 2015; 2015:895931. [PMID: 26366303 PMCID: PMC4553300 DOI: 10.1155/2015/895931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction. Pedicle based posterior dynamic stabilization systems aim to stabilize the pathologic spine while also allowing sufficient motion to mitigate adjacent level effects. Two flexible constructs that have been proposed to act in such a manner, the Dynesys Dynamic Stabilization System and PEEK rod, have yet to be directly compared in vitro to a rigid Titanium rod. Methods. Human lumbar specimens were tested in flexion extension, lateral bending, and axial torsion to evaluate the following conditions at L4-L5: Intact, Dynesys, PEEK rod, Titanium rod, and Destabilized. Intervertebral range of motion, interpedicular travel, and interpedicular displacement metrics were evaluated from 3rd-cycle data using an optoelectric tracking system. Results. Statistically significant decreases in ROM compared to Intact and Destabilized conditions were detected for the instrumented conditions during flexion extension and lateral bending. AT ROM was significantly less than Destabilized but not the Intact condition. Similar trends were found for interpedicular displacement in all modes of loading; however, interpedicular travel trends were less consistent. More importantly, no metrics under any mode of loading revealed significant differences between Dynesys, PEEK, and Titanium. Conclusion. The results of this study support previous findings that Dynesys and PEEK constructs behave similarly to a Titanium rod in vitro.
Collapse
|
4
|
Santoni B, Cabezas AF, Cook DJ, Yeager MS, Billys JB, Whiting B, Cheng BC. Comparison of Intervertebral ROM in Multi-Level Cadaveric Lumbar Spines Using Distinct Pure Moment Loading Approaches. Int J Spine Surg 2015; 9:32. [PMID: 26273550 DOI: 10.14444/2032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pure-moment loading is the test method of choice for spinal implant evaluation. However, the apparatuses and boundary conditions employed by laboratories in performing spine flexibility testing vary. The purpose of this study was to quantify the differences, if they exist, in intervertebral range of motion (ROM) resulting from different pure-moment loading apparatuses used in two laboratories. METHODS Twenty-four (laboratory A) and forty-two (laboratory B) intact L1-S1 specimens were loaded using pure moments (±7.5 Nm) in flexion-extension (FE), lateral bending (LB) and axial torsion (AT). At laboratory A, pure moments were applied using a system of cables, pulleys and suspended weights in 1.5 Nm increments. At laboratory B, specimens were loaded in a pneumatic biaxial test frame mounted with counteracting stepper-motor-driven biaxial gimbals. ROM was obtained in both labs using identical optoelectronic systems and compared. RESULTS In FE, total L1-L5 ROM was similar, on average, between the two laboratories (lab A: 37.4° ± 9.1°; lab B: 35.0° ± 8.9°, p=0.289). Larger apparent differences, on average, were noted between labs in AT (lab A: 19.4° ± 7.3°; lab B: 15.7° ± 7.1°, p=0.074), and this finding was significant for combined right and left LB (lab A: 45.5° ± 11.4°; lab B: 35.3° ± 8.5°, p < 0.001). CONCLUSIONS To our knowledge, this is the first study comparing ROM of multi-segment lumbar spines between laboratories utilizing different apparatuses. The results of this study show that intervertebral ROM in multi-segment lumbar spine constructs are markedly similar in FE loading. Differences in boundary conditions are likely the source of small and sometimes statistically significant differences between the two techniques in LB and AT ROM. The relative merits of each testing strategy with regard to the physiologic conditions that are to be simulated should be considered in the design of a study including LB and AT modes of loading. An understanding of these differences also serves as important information when comparing study results across different laboratories.
Collapse
Affiliation(s)
| | | | - Daniel J Cook
- Allegheny Health Network, Department of Neurosurgery, Pittsburgh, PA
| | - Matthew S Yeager
- Allegheny Health Network, Department of Neurosurgery, Pittsburgh, PA
| | - James B Billys
- Allegheny Health Network, Department of Neurosurgery, Pittsburgh, PA
| | - Benjamin Whiting
- Allegheny Health Network, Department of Neurosurgery, Pittsburgh, PA
| | - Boyle C Cheng
- Allegheny Health Network, Department of Neurosurgery, Pittsburgh, PA
| |
Collapse
|
5
|
Cheng B, Goel V. Foreword, Biomechanics Special Issue. Int J Spine Surg 2015; 9:31. [PMID: 26273549 DOI: 10.14444/2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Boyle Cheng
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA ; Department of Neurosurgery, Drexel University College of Medicine, Pittsburgh, PA
| | - Vijay Goel
- Engineering Center for Orthopaedic Research Excellence, Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, University of Toledo, Ohio
| |
Collapse
|
6
|
Cook DJ, Yeager MS, Cheng BC. Range of motion of the intact lumbar segment: a multivariate study of 42 lumbar spines. Int J Spine Surg 2015; 9:5. [PMID: 25785241 PMCID: PMC4360610 DOI: 10.14444/2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A thorough understanding of the biomechanical characteristics of the healthy human spine is critical in furthering the treatment of spinal pathology. The goal of this study was to investigate the motion of the intact lumbar spine segment as measured by range of motion (ROM), and to investigate the dependencies thereof on gender and intervertebral level. MATERIALS AND METHODS Kinematic data was obtained for 42 human lumbar segments (L1-S1) in response to a pure-moment loading protocol in flexion extension (FE), lateral bending (LB) and axial torsion (AT). Data was obtained for 204 individual functional spinal units (91 female, 113 male). Multivariate analysis of variance was conducted to detect differences between genders and intervertebral levels in each mode of loading. Correlations between ROM and donor demographics, including height, weight, and age, were conducted. RESULTS ROM was significantly greater for females than for males in FE, LB and AT (p<0.001). ROM tended to increase down the vertebral column in FE. L3-4 FE ROM was significantly greater than L1-2 (p=0.024), and L4-5 and L5-S1 FE ROM were significantly greater than for every other level (p<0.003). LB ROM tended to be greater toward the center of the segment with L2-3, L3-4 and L4-5 ROM being significantly greater than both L1-2 (p<0.001) and L5-S1 (p=0.006, p<0.001, p=0.043, respectively). A similar trend was found for AT, however only L1-2 was significantly less than all other levels (p=0.042, p<0.001, p<0.001, and p=0.034 for L2-3, L3-4, L4-5, and L5-S1 respectively). CONCLUSION The significant differences in lumbar ROM between male and female spine segments and between the intervertebral levels must be taken into account in study design in order to prevent biases in outcomes. The significant differences in ROM between levels may also have critical implications in the design of spinal implants, particularly those designed to maintain or restore healthy motion.
Collapse
Affiliation(s)
- Daniel J Cook
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA
| | - Matthew S Yeager
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA
| | - Boyle C Cheng
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA
| |
Collapse
|
7
|
The current testing protocols for biomechanical evaluation of lumbar spinal implants in laboratory setting: a review of the literature. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506181. [PMID: 25785272 PMCID: PMC4345069 DOI: 10.1155/2015/506181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/25/2015] [Indexed: 01/03/2023]
Abstract
In vitro biomechanical investigations have become a routinely employed technique to explore new lumbar instrumentation. One of the most important advantages of such investigations is the low risk present when compared to clinical trials. However, the best use of any experimental data can be made when standard testing protocols are adopted by investigators, thus allowing comparisons among studies. Experimental variables, such as the length of the specimen, operative level, type of loading (e.g., dynamic versus quasistatic), magnitude, and rate of load applied, are among the most common variables controlled during spinal biomechanical testing. Although important efforts have been made to standardize these protocols, high variability can be found in the current literature. The aim of this investigation was to conduct a systematic review of the literature to identify the current trends in the protocols reported for the evaluation of new lumbar spinal implants under laboratory setting.
Collapse
|
8
|
Chamoli U, Chen AS, Diwan AD. Interpedicular kinematics in an in vitro biomechanical assessment of a bilateral lumbar spondylolytic defect. Clin Biomech (Bristol, Avon) 2014; 29:1108-15. [PMID: 25454471 DOI: 10.1016/j.clinbiomech.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND A spondylolytic defect in lumbar vertebra is a common condition during early childhood and adolescence, and is considered a precursor to spondylolisthesis. This study examined whether a bilateral spondylolytic defect in lumbar spine intrinsically results in increased intervertebral translations during different bending motions. METHODS Seven fresh frozen cadaveric kangaroo lumbar (L1-L6) spine specimens were tested in a kinematic spine simulator; first in their intact state, followed by creating a bilateral spondylolytic defect at L4 and retesting. In addition to recording global and segmental range of motions, the pedicles at L3, L4, and L5 vertebrae were digitized bilaterally and virtually tracked throughout testing. Interpedicular kinematic metrics were employed to capture any changes in translatory motions during flexion-extension, bilateral bending, and axial torsion testing modes. FINDINGS Following the defect, range of motion at the defect level (L4-L5) increased significantly in all the three motion planes. At L4-L5, normalized interpedicular displacement increased significantly in flexion-extension (median change +156%) and bilateral bending (median change +58%) motions, but changes in bending-plane and out-of-plane intervertebral translations were not significant in any of the testing modes. INTERPRETATION In the absence of any significant changes in bending-plane and out-of-plane intervertebral translations at L4-L5, changes in interpedicular displacement would directly correspond with the stretching of posterior annulus of the L4-L5 intervertebral disc. A bilateral spondylolytic defect at L4 may result in significant overstretching of the posterior annulus of the L4-L5 disc during flexion-extension and bilateral bending motions.
Collapse
Affiliation(s)
- Uphar Chamoli
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW 2217, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington campus, Sydney, NSW 2052, Australia.
| | - Alan S Chen
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW 2217, Australia
| | - Ashish D Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW 2217, Australia
| |
Collapse
|
9
|
Nayak AN, Doarn MC, Gaskins RB, James CR, Cabezas AF, Castellvi AE, Santoni BG. Postero-lateral disc prosthesis combined with a unilateral facet replacement device maintains quantity and quality of motion at a single lumbar level. Int J Spine Surg 2014; 8:14444-1031. [PMID: 25694929 PMCID: PMC4325497 DOI: 10.14444/1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Mechanically replacing one or more pain generating articulations in the functional spinal unit (FSU) may be a motion preservation alternative to arthrodesis at the affected level. Baseline biomechanical data elucidating the quantity and quality of motion in such arthroplasty constructs is non-existent. Purpose The purpose of the study was to quantify the motion-preserving effect of a posterior total disc replacement (PDR) combined with a unilateral facet replacement (FR) system at a single lumbar level (L4-L5). We hypothesized that reinforcement of the FSU with unilateral FR to replace the resected, native facet joint following PDR implantation would restore quality and quantity of motion and additionally not change biomechanics at the adjacent levels. Study Design In-vitro study using human cadaveric lumbar spines. Methods Six (n = 6) cadaveric lumbar spines (L1-S1) were evaluated using a pure-moment stability testing protocol (±7.5 Nm) in flexion-extension (F/E), lateral bending (LB) and axial rotation (AR). Each specimen was tested in: (1) intact; (2) unilateral FR; and (3) unilateral FR + PDR conditions. Index and adjacent level ROM (using hybrid protocol) were determined opto-electronically. Interpedicular travel (IPT) and instantaneous center of rotation (ICR) at the index level were radiographically determined for each condition. ROM, ICR, and IPT measurements were compared (repeated measures ANOVA) between the three conditions. Results Compared to the intact spine, no significant changes in F/E, LB or AR ROM were identified as a result of unilateral FR or unilateral FR + PDR. No significant changes in adjacent L3-L4 or L5-S1 ROM were identified in any loading mode. No significant differences in IPT were identified between the three test conditions in F/E, LB or AR at the L4-L5 level. The ICRs qualitatively were similar for the intact and unilateral FR conditions and appeared to follow placement (along the anterior-posterior (AP) direction) of the PDR in the disc space Conclusion Biomechanically, quantity and quality of motion are maintained with combined unilateral FR + PDR at a single lumbar spinal level.
Collapse
Affiliation(s)
- Aniruddh N Nayak
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research & Education, Tampa, FL, USA
| | - Michael C Doarn
- Department of Orthopaedics & Sports Medicine, University of South Florida, Tampa, FL, USA
| | - Roger B Gaskins
- Department of Orthopaedics & Sports Medicine, University of South Florida, Tampa, FL, USA
| | - Chris R James
- Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - Andres F Cabezas
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research & Education, Tampa, FL, USA
| | | | - Brandon G Santoni
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research & Education, Tampa, FL, USA ; Department of Orthopaedics & Sports Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Hanlon AD, Cook DJ, Yeager MS, Cheng BC. Quantitative Analysis of the Nonlinear Displacement–Load Behavior of the Lumbar Spine. J Biomech Eng 2014; 136:1877321. [DOI: 10.1115/1.4027754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
There is currently no universal model or fitting method to characterize the visco-elastic behavior of the lumbar spine observed in displacement versus load hysteresis loops. In this study, proposed methods for fitting these loops, along with the metrics obtained, were thoroughly analyzed. A spline fitting technique was shown to provide a consistent approximation of spinal kinetic behavior that can be differentiated and integrated. Using this tool, previously established metrics were analyzed using data from two separate studies evaluating different motion preservation technologies. Many of the metrics, however, provided no significant differences beyond range of motion analysis. Particular attention was paid to how different definitions of the neutral zone capture the high-flexibility region often seen in lumbar hysteresis loops. As a result, the maximum slope was introduced and shown to be well defined. This new parameter offers promise as a descriptive measurement of spinal instability in vitro and may have future implications in clinical diagnosis and treatment of spinal instability. In particular, it could help in assigning treatments to specific stabilizing effects in the lumbar spine.
Collapse
Affiliation(s)
- Andrew D. Hanlon
- Department of Neurosurgery, Allegheny General Hospital, 420 East North Avenue, Pittsburgh, PA 15212
| | - Daniel J. Cook
- Department of Neurosurgery, Allegheny General Hospital, 420 East North Avenue, Pittsburgh, PA 15212
| | - Matthew S. Yeager
- Department of Neurosurgery, Allegheny General Hospital, 420 East North Avenue, Pittsburgh, PA 15212
| | - Boyle C. Cheng
- Department of Neurosurgery, Allegheny General Hospital, 420 East North Avenue, Pittsburgh, PA 15212 e-mail:
| |
Collapse
|
11
|
|
12
|
Chamoli U, Diwan AD, Tsafnat N. Pedicle screw-based posterior dynamic stabilizers for degenerative spine:In vitrobiomechanical testing and clinical outcomes. J Biomed Mater Res A 2013; 102:3324-40. [DOI: 10.1002/jbm.a.34986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Uphar Chamoli
- Spine Service, Department of Orthopaedic Surgery, St. George Hospital Clinical School; University of New South Wales; Kogarah Sydney NSW 2217 Australia
- School of Mechanical and Manufacturing Engineering; University of New South Wales; Kensington Campus Sydney NSW 2052 Australia
| | - Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George Hospital Clinical School; University of New South Wales; Kogarah Sydney NSW 2217 Australia
| | - Naomi Tsafnat
- School of Mechanical and Manufacturing Engineering; University of New South Wales; Kensington Campus Sydney NSW 2052 Australia
| |
Collapse
|
13
|
In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness. Spine (Phila Pa 1976) 2013; 38:1913-9. [PMID: 23921330 DOI: 10.1097/brs.0b013e3182a6a4ec] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro biomechanical study. OBJECTIVE To perform in vitro biomechanical testing on a lumbar spine using a 6-degree-of-freedom machine. To compare the range of motion (ROM), intradiscal pressure, and facet force of different 3-level dynamic stabilization constructs with traditional rigid constructs. To determine the effect of decreasing the stiffness of the dynamic construct on the various parameters. SUMMARY OF BACKGROUND DATA Dynamic stabilization systems are a surgical option that may minimize the development of adjacent segment disease. METHODS Seven T12-S1 specimens were tested at ± 7.5 Nm in flexion-extension, lateral bending, and axial rotation. The testing sequence was (1) intact, (2) intact with facet sensors, (3) L3-S1 rigid (3R), (4) L3-L4 dynamic and L4-S1 rigid (1D-2R A), (5) L3-L5 dynamic and L5-S1 rigid (2D-1R A), and (6) L3-S1 dynamic (3D A). Constructs 1D-2R A, 2D-1R A, and 3D A were tested again with the specialized designs of B and C of decreased stiffness. ROM, intradiscal pressure, and facet force were measured. RESULTS In all loading modes there was a trend of increasing motion with decreased stiffness. Significant differences were seen with more dynamic stabilization levels but no significance was seen with only decreasing the stiffness. 3R facet force at the caudal instrumented level significantly decreased compared with intact and dynamic stabilization constructs during axial rotation. CONCLUSION Biomechanical testing resulted in a trend of increased ROM across instrumented levels as the stiffness was decreased. Dynamic stabilization increased the ROM across instrumented levels compared with rigid rods. These results suggest that decreasing the stiffness of the construct may lessen the probability of adjacent-level disease. Although the specialized devices are not commercially available, clinical data would be necessary for a clearer understanding of adjacent level effects and to confirm the in vitro biomechanical findings. LEVEL OF EVIDENCE N/A.
Collapse
|
14
|
Dahl MC, Ellingson AM, Mehta HP, Huelman JH, Nuckley DJ. The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. Spine J 2013; 13:175-83. [PMID: 23318109 DOI: 10.1016/j.spinee.2012.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 06/01/2012] [Accepted: 11/17/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degenerative disc disease is commonly a multilevel pathology with varying deterioration severity. The use of fusion on multiple levels can significantly affect functionality and has been linked to persistent adjacent disc degeneration. A hybrid approach of fusion and nucleus replacement (NR) has been suggested as a solution for mildly degenerated yet painful levels adjacent to fusion. PURPOSE To compare the biomechanical metrics of different hybrid implant constructs, hypothesizing that an NR+fusion hybrid would be similar to a single-level fusion and perform more naturally compared with a two-level fusion. STUDY DESIGN A cadaveric in vitro repeated-measures study was performed to evaluate a multilevel lumbar NR+fusion hybrid. METHODS Eight cadaveric spines (L3-S1) were tested in a Spine Kinetic Simulator (Instron, Norwood, MA, USA). Pure moments of 8 Nm were applied in flexion/extension, lateral bending, and axial rotation as well as compression loading. Specimens were tested intact; fused (using transforaminal lumbar interbody fusion instrumentation with posterior rods) at L5-S1; with a nuclectomy at L4-L5 including fusion at L5-S1; with NR at L4-L5 including fusion at L5-S1; and finally with a two-level fusion spanning L4-S1. Repeated-measures analysis of variance and corrected t tests were used to statistically compare outcomes. RESULTS The NR+fusion hybrid and single-level fusion exhibited no statistical differences for range of motion (ROM), stiffness, neutral zone, and intradiscal pressure in all loading directions. Compared with two-level fusion, the hybrid affords the construct 41.9% more ROM on average. Two-level fusion stiffness was statistically higher than all other constructs and resulted in significantly lower ROM in flexion, extension, and lateral bending. The hybrid construct produced approximately half of the L3-L4 adjacent-level pressures as the two-level fusion case while generating similar pressures to the single-level fusion case. CONCLUSIONS These data portend more natural functional outcomes and fewer adjacent disc complications for a multilevel NR+fusion hybrid compared with the classical two-level fusion.
Collapse
Affiliation(s)
- Michael C Dahl
- Medical Devices Center, University of Minnesota, 111 Church St SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|