1
|
Castro AL, Gonçalves RM. Trends and considerations in annulus fibrosus in vitro model design. Acta Biomater 2025; 195:42-51. [PMID: 39900271 DOI: 10.1016/j.actbio.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Annulus Fibrosus (AF) tissue integrity maintains intervertebral disc (IVD) structure, essential to spine mobility and shock absorption. However, this tissue, which confines nucleus pulposus (NP), has been poorly investigated, partially due to the lack of appropriate study models. This review provides a comprehensive analysis of AF in vitro models. By critically assessing the current AF in vitro models, this works thoroughly identifies key gaps in replicating the tissue's complex microenvironment. Finally, we outline the essential criteria for developing more accurate and reliable AF models, emphasizing the importance of biomaterial composition, architecture, and microenvironmental cues. By advancing in vitro models, we aim to deepen the understanding of AF failure mechanisms and support the development of novel therapeutic strategies for IVD herniation. Insights gained from this review may also have broader applications in regenerative medicine, particularly in the study and treatment of other connective tissue disorders. STATEMENT OF SIGNIFICANCE: This review evaluates the current in vitro models of the annulus fibrosus (AF), a key component of the intervertebral disc (IVD). By identifying gaps in these models, particularly in replicating tissue's complex microenvironment, we propose essential criteria for the development of more accurate AF models, to better understand the pathomechanisms and potentially aid the development of therapeutic approaches for spinal disorders. The findings also extend to broader studies of musculoskeletal tissue disorders in the context of regenerative medicine, appealing to a diverse biomedical research readership.
Collapse
Affiliation(s)
- A L Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - R M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
3
|
Xu H, Li J, Fei Q, Jiang L. Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. Connect Tissue Res 2023; 64:413-427. [PMID: 37161923 DOI: 10.1080/03008207.2023.2212051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province, China
| |
Collapse
|
4
|
Gao XW, Hu HL, Xie MH, Tang CX, Ou J, Lu ZH. CX3CL1/CX3CR1 axis alleviates inflammation and apoptosis in human nucleus pulpous cells via M2 macrophage polarization. Exp Ther Med 2023; 26:359. [PMID: 37324510 PMCID: PMC10265713 DOI: 10.3892/etm.2023.12058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
CX3C chemokine ligand 1 (CX3CL1) belongs to the CX3C chemokine family and is involved in various disease processes. However, its role in intervertebral disc degeneration (IDD) remains to be elucidated. In the present study, western blotting, reverse transcription-quantitative PCR and ELISA assays were used to assess target gene expression. In addition, immunofluorescence and TUNEL staining were used to assess macrophage infiltration, monocyte migration and apoptosis. The present study aimed to reveal if and how CX3CL1 regulates IDD progression by exploring its effect on macrophage polarization and apoptosis of human nucleus pulposus cells (HNPCs). The data showed that CX3CL1 bound to CX3C motif chemokine receptor 1 (CX3CR1) promoted the M2 phenotype polarization via JAK2/STAT3 signaling, followed by increasing the secretion of anti-inflammatory cytokines from HNPCs. In addition, HNPC-derived CX3CL1 promoted M2 macrophage-derived C-C motif chemokine ligand 17 release thereby reducing the apoptosis of HNPCs. In clinic, the reduction of mRNA and protein levels CX3CL1 in degenerative nucleus pulposus tissues (NPs) was measured. Increased M1 macrophages and pro-inflammatory cytokines were found in NPs of IDD patients with low CX3CL1 expression. Collectively, these findings suggested that the CX3CL1/CX3CR1 axis alleviates IDD by reducing inflammation and apoptosis of HNPCs via macrophages. Therefore, targeting CX3CL1/CX3CR1 axis is expected to produce a new therapeutic approach for IDD.
Collapse
Affiliation(s)
- Xiao-Wen Gao
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Han-Lin Hu
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ming-Hua Xie
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cai-Xia Tang
- The Department of Obstetrics and Gynecology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Ou
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zheng-Hao Lu
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Kim JH, Ham CH, Kwon WK. Current Knowledge and Future Therapeutic Prospects in Symptomatic Intervertebral Disc Degeneration. Yonsei Med J 2022; 63:199-210. [PMID: 35184422 PMCID: PMC8860939 DOI: 10.3349/ymj.2022.63.3.199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is the main source of intractable lower back pain, and symptomatic IVD degeneration could be due to different degeneration mechanisms. In this article, we describe the molecular basis of symptomatic IVD degenerative disc diseases (DDDs), emphasizing the role of degeneration, inflammation, angiogenesis, and extracellular matrix (ECM) regulation during this process. In symptomatic DDD, pro-inflammatory mediators modulate catabolic reactions, resulting in changes in ECM homeostasis and, finally, neural/vascular ingrowth-related chronic intractable discogenic pain. In ECM homeostasis, anabolic protein-regulating genes show reduced expression and changes in ECM production, while matrix metalloproteinase gene expression increases and results in aggressive ECM degradation. The resultant loss of normal IVD viscoelasticity and a concomitant change in ECM composition are key mechanisms in DDDs. During inflammation, a macrophage-related cascade is represented by the secretion of high levels of pro-inflammatory cytokines, which induce inflammation. Aberrant angiogenesis is considered a key initiative pathologic step in symptomatic DDD. In reflection of angiogenesis, vascular endothelial growth factor expression is regulated by hypoxia-inducible factor-1 in the hypoxic conditions of IVDs. Furthermore, IVD cells undergoing degeneration potentially enhance neovascularization by secreting large amounts of angiogenic cytokines, which penetrate the IVD from the outer annulus fibrosus, extending deep into the outer part of the nucleus pulposus. Based on current knowledge, a multi-disciplinary approach is needed in all aspects of spinal research, starting from basic research to clinical applications, as this will provide information regarding treatments for DDDs and discogenic pain.
Collapse
Affiliation(s)
- Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chang Hwa Ham
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Erario MDLÁ, Croce E, Moviglia Brandolino MT, Moviglia G, Grangeat AM. Ozone as Modulator of Resorption and Inflammatory Response in Extruded Nucleus Pulposus Herniation. Revising Concepts. Int J Mol Sci 2021; 22:ijms22189946. [PMID: 34576108 PMCID: PMC8469341 DOI: 10.3390/ijms22189946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Ozone therapy has been used to treat disc herniation for more than four decades. There are several papers describing results and mechanism of action. However, it is very important to define the characteristics of extruded disc herniation. Although ozone therapy showed excellent results in the majority of spinal diseases, it is not yet fully accepted within the medical community. Perhaps it is partly due to the fact that, sometimes, indications are not appropriately made. The objective of our work is to explain the mechanisms of action of ozone therapy on the extruded disc herniation. Indeed, these mechanisms are quite different from those exerted by ozone on the protruded disc herniation and on the degenerative disc disease because the inflammatory response is very different between the various cases. Extruded disc herniation occurs when the nucleus squeezes through a weakness or tear in the annulus. Host immune system considers the nucleus material to be a foreign invader, which triggers an immune response and inflammation. We think ozone therapy modulates this immune response, activating macrophages, which produce phagocytosis of extruded nucleus pulposus. Ozone would also facilitate the passage from the M1 to M2 phase of macrophages, going from an inflammatory phase to a reparative phase. Further studies are needed to verify the switch of macrophages.
Collapse
Affiliation(s)
| | - Eduardo Croce
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
| | - Maria Teresita Moviglia Brandolino
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Gustavo Moviglia
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Aníbal M. Grangeat
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
- Correspondence: ; Tel.: +54-11-4809-3110
| |
Collapse
|
7
|
Sun Z, Liu B, Luo ZJ. The Immune Privilege of the Intervertebral Disc: Implications for Intervertebral Disc Degeneration Treatment. Int J Med Sci 2020; 17:685-692. [PMID: 32210719 PMCID: PMC7085207 DOI: 10.7150/ijms.42238] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the body. It is composed of three parts: the nucleus pulposus (NP), the annulus fibrosus (AF) and the cartilaginous endplate (CEP). The central NP is surrounded by the AF and sandwiched by the two CEPs ever since its formation. This unique structure isolates the NP from the immune system of the host. Additionally, molecular factors expressed in IVD have been shown inhibitive effect on immune cells and cytokines infiltration. Therefore, the IVD has been identified as an immune privilege organ. The steady state of immune privilege is fundamental to the homeostasis of the IVD. The AF and the CEP, along with the immunosuppressive molecular factors are defined as the blood-NP barrier (BNB), which establishes a strong barrier to isolate the NP from the host immune system. When the BNB is damaged, the auto-immune response of the NP occurs with various downstream cascade reactions. This effect plays an important role in the whole process of IVD degeneration and related complications, such as herniation, sciatica and spontaneous herniated NP regression. Taken together, an enhanced understanding of the immune privilege of the IVD could provide new targets for the treatment of symptomatic IVD disease. However, the underlying mechanism above is still not fully clarified. Accordingly, the current study will extensively review and discuss studies regarding the immune privilege of the IVD.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Zhuo-Jing Luo
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| |
Collapse
|
8
|
Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside. Oncotarget 2018; 9:26507-26526. [PMID: 29899873 PMCID: PMC5995168 DOI: 10.18632/oncotarget.25476] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
The socioeconomic burden of chronic back pain related to intervertebral disc (IVD) disease is high and current treatments are only symptomatic. Minimally invasive strategies that promote biological IVD repair should address this unmet need. Notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) during IVD maturation and degeneration. The regenerative potential of NC-secreted substances on CLCs and mesenchymal stromal cells (MSCs) has already been demonstrated. However, identification of these substances remains elusive. Innovatively, this study exploits the regenerative NC potential by using healthy porcine NC-derived matrix (NCM) and employs the dog as a clinically relevant translational model. NCM increased the glycosaminoglycan and DNA content of human and canine CLC aggregates and facilitated chondrogenic differentiation of canine MSCs in vitro. Based on these results, NCM, MSCs and NCM+MSCs were injected in mildly (spontaneously) and moderately (induced) degenerated canine IVDs in vivo and, after six months of treatment, were analyzed. NCM injected in moderately (induced) degenerated canine IVDs exerted beneficial effects at the macroscopic and MRI level, induced collagen type II-rich extracellular matrix production, improved the disc height, and ameliorated local inflammation. MSCs exerted no (additive) effects. In conclusion, NCM induced in vivo regenerative effects on degenerated canine IVDs. NCM may, comparable to demineralized bone matrix in bone regeneration, serve as ‘instructive matrix’, by locally releasing growth factors and facilitating tissue repair. Therefore, intradiscal NCM injection could be a promising regenerative treatment for IVD disease, circumventing the cumbersome identification of bioactive NC-secreted substances.
Collapse
|
9
|
Miguélez-Rivera L, Pérez-Castrillo S, González-Fernández ML, Prieto-Fernández JG, López-González ME, García-Cosamalón J, Villar-Suárez V. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J 2018; 18:330-342. [PMID: 28939169 DOI: 10.1016/j.spinee.2017.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back pain is a highly prevalent health problem in the world today and has a great economic impact on health-care budgets. Intervertebral disc (IVD) degeneration has been identified as a main cause of back pain. Inflammatory cytokines produced by macrophages or disc cells in an inflammatory environment play an important role in painful progressive degeneration of IVD. Mesenchymal stem cells (MSCs) have shown to have immunosuppressive and anti-inflammatory properties. Mesenchymal stem cells express a variety of chemokines and cytokines receptors having tropism to inflammation sites. PURPOSE This study aimed to develop an in vitro controlled and standardized model of inflammation and degeneration of IVD with rat cells and to evaluate the protective and immunomodulatory effect of conditioned medium (CM) from the culture of MSCs to improve the conditions presented in herniated disc and discogenic pain processes. STUDY DESIGN This is an experimental study. METHODS In this study, an in vitro model of inflammation and degeneration of IVD has been developed, as well as the effectiveness of CM from the culture of MSCs. RESULTS Conditioned medium from MSCs downregulated the expression of various proinflammatory cytokines produced in the pathogenesis of discogenic pain such as interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor (TNF). CONCLUSION Mesenchymal stem cells represent a promising alternative strategy in the treatment of IVD degeneration inasmuch as there is currently no treatment which leads to a complete remission of long-term pain in the absence of drugs.
Collapse
Affiliation(s)
- Laura Miguélez-Rivera
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - Saúl Pérez-Castrillo
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | | | - Julio Gabriel Prieto-Fernández
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - María Elisa López-González
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - José García-Cosamalón
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain.
| |
Collapse
|
10
|
Kwon WK, Moon HJ, Kwon TH, Park YK, Kim JH. Influence of rabbit notochordal cells on symptomatic intervertebral disc degeneration: anti-angiogenic capacity on human endothelial cell proliferation under hypoxia. Osteoarthritis Cartilage 2017. [PMID: 28647468 DOI: 10.1016/j.joca.2017.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Symptomatic degenerative disc disease (DDD) is associated with neovascularization and nerve ingrowth into intervertebral discs (IVDs). Notochordal cells (NCs) are key cells that may lead to regeneration of IVDs. However, their activities under conditions of hypoxia, the real environment of IVD, are not well known. We hypothesized that NCs may inhibit neovascularization by interacting with endothelial cells (ECs) under hypoxia. DESIGN Human IVDs were isolated and cultured to produce nucleus pulposus (NP) cell conditioned medium (NPCM). Immortalized human microvascular ECs were cultured in NPCM with notochordal cell-rich rabbit nucleus pulposus cells (rNC) under hypoxia. Vascular endothelial growth factor (VEGF), vascular cell adhesion molecule (VCAM), and interleukin-8 (IL-8) were analyzed by ELISA. Focal adhesion kinase (FAK), filamentous actin (F-actin), and platelet-derived growth factor (PDGF) were evaluated to investigate EC activity. Wound-healing migration assays were performed to examine EC migration. RESULTS The VEGF level of EC cells cultured in NPCM was significantly higher under hypoxia compared to normoxia. VEGF expression was significantly decreased, and FAK, F-actin, PDGF expression were inhibited when ECs were cocultured with rNCs under hypoxia. ECs cocultured with rNC in NPCM showed significantly decreased migratory activity compared to those without rNC under hypoxia. CONCLUSIONS The angiogenic capacity of ECs was significantly inhibited by NCs under hypoxia via a VEGF-related pathway. Our results suggest that NCs may play a key role in the development of IVDs by inhibiting vascular growth within the disc, and this may be a promising novel therapeutic strategy for targeting vascular ingrowth in symptomatic DDD.
Collapse
Affiliation(s)
- W-K Kwon
- Department of Neurosurgery, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - H J Moon
- Department of Neurosurgery, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - T-H Kwon
- Department of Neurosurgery, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Y-K Park
- Department of Neurosurgery, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - J H Kim
- Department of Neurosurgery, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Bai XD, Li XC, Chen JH, Guo ZM, Hou LS, Wang DL, He Q, Ruan DK. * Coculture with Partial Digestion Notochordal Cell-Rich Nucleus Pulposus Tissue Activates Degenerative Human Nucleus Pulposus Cells. Tissue Eng Part A 2017; 23:837-846. [PMID: 28145804 DOI: 10.1089/ten.tea.2016.0428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggested that notochordal cells (NCs) and NC-conditioned medium (NCCM) can stimulate cell viability and matrix production of nucleus pulposus cells (NPCs). However, the potential of notochordal cell-rich nucleus pulposus (NRNP) incorporating the native environment of the intervertebral disc (IVD) has not been evaluated. The objective of this study was to develop an optimal NRNP model and test whether it can allow a significant level of NPC activation in vitro. Rabbit NRNP explants were divided into three groups according to different digestion time: digestion NRNP of 8 h, partial digestion NRNP of 2 h, and natural NRNP. Cell viability and NC phenotype were compared between these groups after 14 days of incubation. The products of the selected partial digestion NRNP group were then cocultured with human degenerated NPCs for 14 days. NPC viability, cell proliferation and senescence, the production of glycosaminoglycan (GAG) found in extracellular matrix, and NP matrix production by NPCs were assessed. The results showed that coculturing with partial digestion NRNP significantly improved the cell proliferation, cell senescence, and disc matrix gene expression of NPCs compared with those in the monoculture group. In addition, GAG/DNA ratio in the coculture group increased significantly, while the level of collagen II protein remained unchanged. In this study, we demonstrated that partial digestion NRNP may show a promising potential for NPC regeneration in IVD tissue engineering.
Collapse
Affiliation(s)
- Xue-Dong Bai
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Xiao-Chuan Li
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
- 2 Department of Orthopedic Surgery, Gaozhou People's Hospital , Guangdong, People's Republic of China
| | - Jia-Hai Chen
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Zi-Ming Guo
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Li-Sheng Hou
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - De-Li Wang
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Di-Ke Ruan
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
12
|
Li Z, Wang X, Pan H, Yang H, Li X, Zhang K, Wang H, Zheng Z, Liu H, Wang J. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration. Osteoarthritis Cartilage 2017; 25:341-350. [PMID: 27737814 DOI: 10.1016/j.joca.2016.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/24/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was to investigate whether resistin induces the expression of chemokine ligand 4 (CCL4) during Intervertebral disc degeneration (IVDD) and whether toll-like receptor-4 (TLR-4) and the nuclear factor-κB (NF-κB) signaling pathway are involved in this process. METHODS The expression pattern of resistin and CCL4 in different degenerated human nucleus pulposus (NP) tissues were measured by quantitative reverse transcription-polymerase chain reaction (qPCR); Effect of resistin on the migration of macrophages was measured by cell migration assay. Resistin-induced CCL4 expression were analyzed by qPCR, Enzyme-linked immunosorbant assay (ELISA) and cell immunofluorescence. Involvement of TLR-4, p38-mitogen-activated protein kinase (p38-MAPK), and NF-κB signaling pathways were studied by small interfering RNA (siRNA) or Lenti-virus mediated knockdown, co-immunoprecipitation, and chromatin immunoprecipitation (ChIP) assay. RESULTS Expression of resistin and CCL4 was elevated in degenerated NP tissue. Resistin promoted macrophage migration through CCL4 and its receptor. Expression of CCL4 was significantly increased by resistin treatment. The pharmacological inhibition or siRNA knockdown of TLR-4 blocked the resistin-induced CCL4 expression. Co-immunoprecipitation data confirmed the binding of resistin to TLR4. Pharmacological inhibition of the NF-κB and p38-MAPK signaling pathways attenuated the resistin-induced CCL4 expression. A ChIP assay and lentivirus mediated knockdown showed that resistin regulate CCL4 expression through p65. CONCLUSION This study shows that resistin binds to TLR4 and increase the expression of CCL4 through p38-MAPK and NF-κB signaling pathways in NP cells, and this expression causes infiltration of macrophages. This study might provide a feasible therapeutic target for controlling the inflammatory response associated with IVDD.
Collapse
Affiliation(s)
- Z Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - X Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Pan
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, PR China
| | - X Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - K Zhang
- Department of Orthopedic Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Z Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - J Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015; 12:20141191. [PMID: 25673296 DOI: 10.1098/rsif.2014.1191] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Collapse
Affiliation(s)
- Maria Molinos
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Patologia e Imunologia-IPATIMUP, Universidade do Porto, Porto, Portugal
| | - Carla Cunha
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Cornejo M, Cho S, Giannarelli C, Iatridis J, Purmessur D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthritis Cartilage 2015; 23:487-96. [PMID: 25534363 PMCID: PMC4411226 DOI: 10.1016/j.joca.2014.12.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic low back pain can be associated with the pathological ingrowth of blood vessels and nerves into intervertebral discs (IVDs). The notochord patterns the IVD during development and is a source of anti-angiogenic soluble factors such as Noggin and Chondroitin sulfate (CS). These factors may form the basis for a new minimally invasive strategy to target angiogenesis in the IVD. OBJECTIVE To examine the anti-angiogenic potential of soluble factors from notochordal cells (NCs) and candidates Noggin and CS under healthy culture conditions and in the presence of pro-inflammatory mediators. DESIGN NC conditioned media (NCCM) was generated from porcine NC-rich nucleus pulposus tissue. To assess the effects of NCCM, CS and Noggin on angiogenesis, cell invasion and tubular formation assays were performed using human umbilical vein endothelial cells (HUVECs) ± tumor necrosis factor alpha (TNFα [10 ng/ml]). vascular endothelial growth factor (VEGF)-A, MMP-7, interleukin-6 (IL-6) and IL-8 mRNA levels were assessed using qRT-PCR. RESULTS NCCM (10 & 100%), CS (10 and 100 μg) and Noggin (10 and 100 ng) significantly decreased cell invasion of HUVECs with and without TNFα. NCCM 10% and Noggin 10 ng inhibited tubular formation with and without TNFα and CS 100 μg inhibited tubules in Basal conditions whereas CS 10 μg inhibited tubules with TNFα. NCCM significantly decreased VEGF-A, MMP-7 and IL-6 mRNA levels in HUVECs with and without TNFα. CS and Noggin had no effects on gene expression. CONCLUSIONS We provide the first evidence that soluble factors from NCs can inhibit angiogenesis by suppressing VEGF signaling. Notochordal-derived ligands are a promising minimally invasive strategy targeting neurovascular ingrowth and pain in the degenerated IVD.
Collapse
Affiliation(s)
- M.C. Cornejo
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S.K. Cho
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - C. Giannarelli
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J.C. Iatridis
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D. Purmessur
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence and reprint requests to: D. Purmessur, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029, USA. Tel: 1-212-241-1531
| |
Collapse
|
15
|
Wuertz K, Haglund L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J 2013; 3:175-84. [PMID: 24436868 PMCID: PMC3854585 DOI: 10.1055/s-0033-1347299] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/09/2013] [Indexed: 01/07/2023] Open
Abstract
Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in "diseased" intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain.
Collapse
Affiliation(s)
- Karin Wuertz
- Institute for Biomechanics, D-HEST, ETH Zurich, Zurich, Switzerland,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,AOSpine Research Network, Duebendorf, Switzerland,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland,Address for correspondence Dr. Karin Wuertz, PhD Institute for Biomechanics, D-HESTETH Zurich, Schafmattstrasse 30, HPP-O12, 8093 ZurichSwitzerland
| | - Lisbet Haglund
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,Orthopeadic Research Laboratory, Division of Orthopedic Surgery, McGill University, Montreal, Canada,Dr. Lisbet Haglund, PhD Orthopaedic Research Laboratory, Montreal General HospitalRoom C9.173, 1650 Cedar Avenue, Montreal, QCCanada H3G 1A4
| |
Collapse
|
16
|
Purmessur D, Cornejo MC, Cho SK, Hecht AC, Iatridis JC. Notochordal cell-derived therapeutic strategies for discogenic back pain. Global Spine J 2013; 3:201-18. [PMID: 24436871 PMCID: PMC3854597 DOI: 10.1055/s-0033-1350053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
An understanding of the processes that occur during development of the intervertebral disk can help inform therapeutic strategies for discogenic pain. This article reviews the literature to identify candidates that are found in or derived from the notochord or notochordal cells and evaluates the theory that such factors could be isolated and used as biologics to target the structural disruption, inflammation, and neurovascular ingrowth often associated with discogenic back pain. A systematic review using PubMed was performed with a primary search using keywords "(notochordal OR notochord) And (nerves OR blood vessels OR SHH OR chondroitin sulfate OR notch OR CTGF) NOT chordoma." Secondary searches involved keywords associated with the intervertebral disk and pain. Several potential therapeutic candidates from the notochord and their possible targets were identified. Studies are needed to further identify candidates, explore mechanisms for effect, and to validate the theory that these candidates can promote structural restoration and limit or inhibit neurovascular ingrowth using in vivo studies.
Collapse
Affiliation(s)
- D. Purmessur
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M. C. Cornejo
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - S. K. Cho
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - A. C. Hecht
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J. C. Iatridis
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States,Address for correspondence James Iatridis, PhD Professor and Director of Spine Research, Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029United States
| |
Collapse
|