1
|
Lin Z, Xu G, Lu X, Wang H, Lu F, Xia X, Song J, Jiang J, Ma X, Zou F. Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca 2+/CaMKII/Drp1 axis. Aging Cell 2025; 24:e14440. [PMID: 39610146 PMCID: PMC11984661 DOI: 10.1111/acel.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca2+-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca2+ signalling during CEP degeneration. In vitro and in vivo models of inflammation-induced CEP degeneration were established with lipopolysaccharide (LPS). We found increased expression of Piezo1 in degenerated CEP tissues and LPS-treated CEP cells. The Piezo1 activator Yoda1 exacerbated CEP cell senescence and apoptosis by triggering Ca2+ influx. Yoda1 also induced mitochondrial fragmentation and dysfunction. In contrast, the Piezo1 inhibitor GsMTx4 exerted cytoprotective effects in LPS-treated CEP cells. Additionally, the CaMKII inhibitor KN-93 reversed Yoda1-induced mitochondrial fission and restored mitochondrial function. Mechanistically, the phosphorylation and mitochondrial translocation of Drp1 were regulated by the Ca2+/CaMKII signalling. The Drp1 inhibitor Mdivi-1 suppressed mitochondrial fission, then reduced mitochondrial dysfunction and CEP cell death. Moreover, knockdown of Piezo1 by siRNA hindered CaMKII and Drp1 activation, facilitating the redistribution of mitochondrial Drp1 to the cytosol in LPS-treated CEP cells. Piezo1 silencing improved mitochondrial morphology and function, thereby rescuing CEP cell senescence and apoptosis under inflammatory conditions. Finally, subendplate injection of GsMTx4 or AAV-shPiezo1 alleviated CEP degeneration in a rat model. Thus, Piezo1 may exacerbate inflammation-induced CEP degeneration by triggering mitochondrial fission and dysfunction via the Ca2+/CaMKII/Drp1 axis.
Collapse
Affiliation(s)
- Zhidi Lin
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jian Song
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Xia J, Jia D, Wu J. Protective effects of alpinetin against interleukin-1β-exposed nucleus pulposus cells: Involvement of the TLR4/MyD88 pathway in a cellular model of intervertebral disc degeneration. Toxicol Appl Pharmacol 2024; 492:117110. [PMID: 39322069 DOI: 10.1016/j.taap.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Intervertebral disc degeneration (IDD) causes a variety of symptoms such as low back pain, disc herniation, and spinal stenosis, which can lead to high social and economic costs. Alpinetin has an anti-inflammatory potential, but its effect on IDD is unclear. Herein, we investigated the effect of alpinetin on IDD. To mimic an in vitro model of IDD, nucleus pulposus cells (NPCs) were exposed to interleukin 1β (IL-1β). The viability of NPCs was assessed by CCK-8 assay. The expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88), aggrecan, collagen-2, and matrix metalloproteinase-3 (MMP-3) was examined by qRT-PCR and western blotting. The protein levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated protein X (Bax), and cleaved caspase-3 were scrutinized by western blotting. The flow cytometry assay was performed to assess apoptosis of NPCs. The contents of inflammatory factors were examined by ELISA kits. Results showed that alpinetin repressed IL-1β-tempted activation of the TLR4/MyD88 pathway and apoptosis in NPCs. Alpinetin alleviated IL-1β-tempted inflammatory responses and oxidative stress in NPCs. Moreover, alpinetin lessened IL-1β-tempted extracellular matrix (ECM) degeneration in NPCs by enhancing the expression of aggrecan and collagen-2 and reducing the expression of MMP-3. The effects of alpinetin on IL-1β-exposed NPCs were neutralized by TLR4 upregulation. In conclusion, alpinetin repressed IL-1β-tempted apoptosis, inflammatory responses, oxidative stress, and ECM degradation in NPCs through the inactivation of the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Junfeng Xia
- Department of Orthopedics, Nanyang First People's Hospital, Nanyang, China
| | - Di Jia
- Medical Department, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Guo K, Zeng J, Lu J, Guo Y, Shan P, Huang Y, Wu D. The clinical significance of the Neutrophil-to-Lymphocyte Ratio as a novel inflammatory biomarker for assessing the severity of intervertebral disc degeneration. Front Med (Lausanne) 2024; 11:1446124. [PMID: 39544385 PMCID: PMC11560784 DOI: 10.3389/fmed.2024.1446124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose Inflammation is integral to the pathogenesis of intervertebral disc degeneration, yet the role of systemic inflammatory markers in this process remains underexplored. This study aims to explore the association between the Neutrophil-to-Lymphocyte Ratio (NLR) and the severity of disc degeneration. Patients and methods A retrospective analysis was conducted on 375 patients diagnosed with lumbar disc degeneration between April 2018 and May 2021. All patients underwent a complete blood cell count examination. We applied the Pfirrmann grading system for cumulative disc grading, stratifying patients into two groups: a high-score group (cumulative grade > 17) and a low-score group (cumulative grade ≤ 17), based on the median cumulative grade. The association between the NLR and and the severity of disc degeneration was further analyzed using correlation analysis and logistic regression models. Furthermore, the predictive capacity of the NLR for lumbar disc degeneration was assessed using the Receiver Operating Characteristic (ROC) curve. Results We found a significant positive correlation between high NLR levels and severe disc degeneration. The high-score group exhibited a significantly higher NLR compared to the low-score group [2.63 (1.91-4.18) vs. 2.04 (1.38-2.74), respectively, p < 0.001]. Significant correlations were found between NLR and patient characteristics (including age, BMI, VAS, NSAIDs usage, hemoglobin) and the cumulative grading. Logistic regression analysis identified age and NLR as independent predictors of the severity of disc degeneration. The ROC curve analysis demonstrated a good predictive capability of NLR for lumbar disc degeneration. Conclusion NLR could serve as a promising biomarker for assessing the severity of lumbar disc degeneration and offer potential benefits in both early diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lin Z, Xu G, Lu X, Liu S, Zou F, Ma X, Jiang J, Wang H, Song J. Chondrocyte-targeted exosome-mediated delivery of Nrf2 alleviates cartilaginous endplate degeneration by modulating mitochondrial fission. J Nanobiotechnology 2024; 22:281. [PMID: 38790015 PMCID: PMC11127380 DOI: 10.1186/s12951-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cartilaginous endplate (CEP) degeneration, which is an important contributor to intervertebral disc degeneration (IVDD), is characterized by chondrocyte death. Accumulating evidence has revealed that dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and dysfunction lead to apoptosis during CEP degeneration and IVDD. Exosomes are promising agents for the treatment of many diseases, including osteoporosis, osteosarcoma, osteoarthritis and IVDD. Despite their major success in drug delivery, the full potential of exosomes remains untapped. MATERIALS AND METHODS In vitro and in vivo models of CEP degeneration were established by using lipopolysaccharide (LPS). We designed genetically engineered exosomes (CAP-Nrf2-Exos) expressing chondrocyte-affinity peptide (CAP) on the surface and carrying the antioxidant transcription factor nuclear factor E2-related factor 2 (Nrf2). The affinity between CAP-Nrf2-Exos and CEP was evaluated by in vitro internalization assays and in vivo imaging assays. qRT‒PCR, Western blotting and immunofluorescence assays were performed to examine the expression level of Nrf2 and the subcellular localization of Nrf2 and Drp1. Mitochondrial function was measured by the JC-1 probe and MitoSOX Red. Mitochondrial morphology was visualized by MitoTracker staining and transmission electron microscopy (TEM). After subendplate injection of the engineered exosomes, the degree of CEP degeneration and IVDD was validated radiologically and histologically. RESULTS We found that the cargo delivery efficiency of exosomes after cargo packaging was increased by surface modification. CAP-Nrf2-Exos facilitated chondrocyte-targeted delivery of Nrf2 and activated the endogenous antioxidant defence system in CEP cells. The engineered exosomes inhibited Drp1 S616 phosphorylation and mitochondrial translocation, thereby preventing mitochondrial fragmentation and dysfunction. LPS-induced CEP cell apoptosis was alleviated by CAP-Nrf2-Exo treatment. In a rat model of CEP degeneration, the engineered exosomes successfully attenuated CEP degeneration and IVDD and exhibited better repair capacity than natural exosomes. CONCLUSION Collectively, our findings showed that exosome-mediated chondrocyte-targeted delivery of Nrf2 was an effective strategy for treating CEP degeneration.
Collapse
Affiliation(s)
- Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Huang ZN, Wang J, Wang ZY, Min LY, Ni HL, Han YL, Tian YY, Cui YZ, Han JX, Cheng XF. SR9009 attenuates inflammation-related NPMSC pyroptosis and IVDD through NR1D1/NLRP3/IL-1β pathway. iScience 2024; 27:109733. [PMID: 38689641 PMCID: PMC11059531 DOI: 10.1016/j.isci.2024.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Intervertebral disc is a highly rhythmical tissue. As a key factor linking biorhythm and inflammatory response, the shielding effect of NR1D1 in the process of intervertebral disc degeneration remains unclear. Here, we first confirmed that NR1D1 in the nucleus pulposus tissue presents periodic rhythmic changes and decreases in expression with intervertebral disc degeneration. Second, when NR1D1 was activated by SR9009 in vitro, NLRP3 inflammasome assembly and IL-1β production were inhibited, while ECM synthesis was increased. Finally, the vivo experiments further confirmed that the activation of NR1D1 can delay the process of disc degeneration to a certain extent. Mechanistically, we demonstrate that NR1D1 can bind to IL-1β and NLRP3 promoters, and that the NR1D1/NLRP3/IL-1β pathway is involved in this process. Our results demonstrate that the activation of NR1D1 can effectively reduce IL-1β secretion, alleviate LPS-induced NPMSC pyroptosis, and protect ECM degeneration.
Collapse
Affiliation(s)
- Ze-Nan Huang
- Department of Orthopedics, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 200072, Shandong Province, China
| | - Jing Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 200072, Shandong Province, China
| | - Ze-yu Wang
- Department of Spine Surgery, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Nanjing 210019, Jiangsu Province, China
| | - Ling-yuan Min
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 200072, Shandong Province, China
| | - Hai-Ling Ni
- Department of Orthopedics, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 200072, Shandong Province, China
| | - Yan-Ling Han
- Medical Experimental Research Center, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - You-yue Tian
- Department of Pharmacy, University of South China, Hengyang 421001, Hunan Province, China
| | - Ya-Zhou Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 200072, Shandong Province, China
| | - Jing-Xiang Han
- Department of Orthopedics, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 200072, Shandong Province, China
| | - Xiao-Fei Cheng
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
6
|
Wei Z, Ye H, Li Y, Li X, Liu Y, Chen Y, Yu J, Wang J, Ye X. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater 2024; 178:50-67. [PMID: 38382832 DOI: 10.1016/j.actbio.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-β1) (OHA-DA-PAM/CMP/TGF-β1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-β1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-β1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-β1), was developed to facilitate AF regeneration. The sustained release of TGF-β1 enhanced AF cell recruitment, while both TGF-β1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-β1 composite hydrogel for repairing AF defects.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaoxiao Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yi Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
7
|
Tian S, Chen X, Wu W, Lin H, Qing X, Liu S, Wang B, Xiao Y, Shao Z, Peng Y. Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway. Exp Mol Med 2024; 56:408-421. [PMID: 38316963 PMCID: PMC10907345 DOI: 10.1038/s12276-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 02/07/2024] Open
Abstract
Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xuanzuo Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Lisiewski LE, Jacobsen HE, Viola DCM, Kenawy HM, Kiridly DN, Chahine NO. Intradiscal inflammatory stimulation induces spinal pain behavior and intervertebral disc degeneration in vivo. FASEB J 2024; 38:e23364. [PMID: 38091247 PMCID: PMC10795732 DOI: 10.1096/fj.202300227r] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Degeneration of the intervertebral disc (IVD) results in a range of symptomatic (i.e., painful) and asymptomatic experiences. Components of the degenerative environment, including structural disruption and inflammatory cytokine production, often correlate with pain severity. However, the role of inflammation in the activation of pain and degenerative changes has been complex to delineate. The most common IVD injury model is puncture; however, it initiates structural damage that is not representative of the natural degenerative cascade. In this study, we utilized in vivo injection of lipopolysaccharide (LPS), a pro-inflammatory stimulus, into rat caudal IVDs using 33G needles to induce inflammatory activation without the physical tissue disruption caused by puncture using larger needles. LPS injection increased gene expression of pro-inflammatory cytokines (Tnfa, Il1b) and macrophage markers (Inos, Arg1), supported by immunostaining of macrophages (CD68, CCR7, Arg1) and systemic changes in blood cytokine and chemokine levels. Disruption of the IVD structural integrity after LPS injection was also evident through changes in histological grading, disc height, and ECM biochemistry. Ultimately, intradiscal inflammatory stimulation led to local mechanical hyperalgesia, demonstrating that pain can be initiated by inflammatory stimulation of the IVD. Gene expression of nociceptive markers (Ngf, Bdnf, Cgrp) and immunostaining for neuron ingrowth (PGP9.5) and sensitization (CGRP) in the IVD were also shown, suggesting a mechanism for the pain exhibited. To our knowledge, this rat IVD injury model is the first to demonstrate local pain behavior resulting from inflammatory stimulation of caudal IVDs. Future studies will examine the mechanistic contributions of inflammation in mediating pain.
Collapse
Affiliation(s)
- Lauren E. Lisiewski
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hayley E. Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Dan C. M. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hagar M. Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Daniel N. Kiridly
- Department of Orthopedic Surgery, Northwell Health, Manhasset, NY, United States
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
10
|
Kenawy HM, Nuñez MI, Morales X, Lisiewski LE, Burt KG, Kim MKM, Campos L, Kiridly N, Hung CT, Chahine NO. Sex differences in the biomechanical and biochemical responses of caudal rat intervertebral discs to injury. JOR Spine 2023; 6:e1299. [PMID: 38156061 PMCID: PMC10751974 DOI: 10.1002/jsp2.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP) worldwide. Sexual dimorphism, or sex-based differences, appear to exist in the severity of LBP. However, it is unknown if there are sex-based differences in the inflammatory, biomechanical, biochemical, and histological responses of intervertebral discs (IVDs). Methods Caudal (Coccygeal/Co) bone-disc-bone motion segments were isolated from multiple spinal levels (Co8 to Co14) of male and female Sprague-Dawley rats. Changes in motion segment biomechanics and extracellular matrix (ECM) biochemistry (glycosaminoglycan [GAG], collagen [COL], water, and DNA content) were evaluated at baseline and in response to chemical insult (lipopolysaccharide [LPS]) or puncture injury ex vivo. We also investigated the contributions of Toll-like receptor (TLR4) signaling on responses to LPS or puncture injury ex vivo, using a small molecule TLR4 inhibitor, TAK-242. Results Findings indicate that IVD motion segments from female donors had greater nitric oxide (NO) release in LPS groups compared to male donors. HMGB1 release was increased in punctured discs, but not LPS injured discs, with no sex effect. Although both male and female discs exhibited reductions in dynamic moduli in response to LPS and puncture injuries, dynamic moduli from female donors were higher than male donors across all groups. In uninjured (baseline) samples, a significant sex effect was observed in nucleus pulposus (NP) DNA and water content. Female annulus fibrosus (AF) also had higher DNA, GAG, and COL content (normalized by dry weight), but lower water content than male AF. Additional injury- and sex-dependent effects were observed in AF GAG/DNA and COL/DNA content. Finally, TAK-242 improved the dynamic modulus of female but not male punctured discs. Conclusions Our findings demonstrate that there are differences in rat IVD motion segments based on sex, and that the response to injury in inflammatory, biomechanical, biochemical, and histological outcomes also exhibit sex differences. TLR4 inhibition protected against loss of mechanical integrity of puncture-injured IVD motion segments, with differences responses based on donor sex.
Collapse
Affiliation(s)
- Hagar M. Kenawy
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - María I. Nuñez
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Xóchitl Morales
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | | | - Kevin G. Burt
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Min Kyu M. Kim
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Leonardo Campos
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Nadia Kiridly
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Clark T. Hung
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
11
|
Kenawy HM, Marshall SL, Rogot J, Lee AJ, Hung CT, Chahine NO. Blocking toll-like receptor 4 mitigates static loading induced pro-inflammatory expression in intervertebral disc motion segments. J Biomech 2023; 150:111491. [PMID: 36870259 PMCID: PMC10108674 DOI: 10.1016/j.jbiomech.2023.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
While the anabolic effects of mechanical loading on the intervertebral disc (IVD) have been extensively studied, inflammatory responses to loading have not been as well characterized. Recent studies have highlighted a significant role of innate immune activation, particularly that of toll-like receptors (TLRs), in IVD degeneration. Biological responses of intervertebral disc cells to loading depend on many factors that include magnitude and frequency. The goals of this study were to characterize the inflammatory signaling changes in response to static and dynamic loading of IVD and investigate the contributions of TLR4 signaling in response to mechanical loading. Rat bone-disc-bone motion segments were loaded for 3 hr under a static load (20 % strain, 0 Hz) with or without an additional low-dynamic (4 % dynamic strain, 0.5 Hz) or high-dynamic (8 % dynamic strain, 3 Hz) strain, and results were compared to unloaded controls. Some samples were also loaded with or without TAK-242, an inhibitor of TLR4 signaling. The magnitude of NO release into the loading media (LM) was correlated with the applied frequency and strain magnitudes across different loading groups. Injurious loading profiles, such as static and high-dynamic, significantly increased Tlr4 and Hmgb1 expression while this result was not observed in the more physiologically relevant low-dynamic loading group. TAK-242 co-treatment decreased pro-inflammatory expression in static but not dynamic loaded groups, suggesting that TLR4 plays a direct role in mediating inflammatory responses of IVD to static compression. Overall, the microenvironment induced by dynamic loading diminished the protective effects of the TAK-242, suggesting that TLR4 plays a direct role in mediating inflammatory responses of IVD to static loading injury.
Collapse
Affiliation(s)
- Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Samantha L Marshall
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - James Rogot
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Nadeen O Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Lai A, Iliff D, Zaheer K, Wang D, Gansau J, Laudier DM, Zachariou V, Iatridis JC. Spinal Cord Sensitization and Spinal Inflammation from an In Vivo Rat Endplate Injury Associated with Painful Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:3425. [PMID: 36834838 PMCID: PMC9964286 DOI: 10.3390/ijms24043425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Intervertebral disc (IVD) degeneration with Modic-like changes is strongly associated with pain. Lack of effective disease-modifying treatments for IVDs with endplate (EP) defects means there is a need for an animal model to improve understanding of how EP-driven IVD degeneration can lead to spinal cord sensitization. This rat in vivo study determined whether EP injury results in spinal dorsal horn sensitization (substance P, SubP), microglia (Iba1) and astrocytes (GFAP), and evaluated their relationship with pain-related behaviors, IVD degeneration, and spinal macrophages (CD68). Fifteen male Sprague Dawley rats were assigned into sham or EP injury groups. At chronic time points, 8 weeks after injury, lumbar spines and spinal cords were isolated for immunohistochemical analyses of SubP, Iba1, GFAP, and CD68. EP injury most significantly increased SubP, demonstrating spinal cord sensitization. Spinal cord SubP-, Iba1- and GFAP-immunoreactivity were positively correlated with pain-related behaviors, indicating spinal cord sensitization and neuroinflammation play roles in pain responses. EP injury increased CD68 macrophages in the EP and vertebrae, and spinal cord SubP-, Iba1- and GFAP-ir were positively correlated with IVD degeneration and CD68-ir EP and vertebrae. We conclude that EP injuries result in broad spinal inflammation with crosstalk between spinal cord, vertebrae and IVD, suggesting that therapies must address neural pathologies, IVD degeneration, and chronic spinal inflammation.
Collapse
Affiliation(s)
- Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denise Iliff
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kashaf Zaheer
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dalin Wang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jennifer Gansau
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damien M. Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Liu Z, Zhu J, Liu H, Fu C. Natural products can modulate inflammation in intervertebral disc degeneration. Front Pharmacol 2023; 14:1150835. [PMID: 36874009 PMCID: PMC9978229 DOI: 10.3389/fphar.2023.1150835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a common clinical symptom and is an important cause of low back pain (LBP). IDD is initially considered to be associated with aging and abnormal mechanical loads. However, over recent years, researchers have discovered that IDD is caused by a variety of mechanisms, including persistent inflammation, functional cell loss, accelerated extracellular matrix decomposition, the imbalance of functional components, and genetic metabolic disorders. Of these, inflammation is thought to interact with other mechanisms and is closely associated with the production of pain. Considering the key role of inflammation in IDD, the modulation of inflammation provides us with new options for mitigating the progression of degeneration and may even cause reversal. Many natural substances possess anti-inflammatory functions. Due to the wide availability of such substances, it is important that we screen and identify natural agents that are capable of regulating IVD inflammation. In fact, many studies have demonstrated the potential clinical application of natural substances for the regulation of inflammation in IDD; some of these have been proven to have excellent biosafety. In this review, we summarize the mechanisms and interactions that are responsible for inflammation in IDD and review the application of natural products for the modulation of degenerative disc inflammation.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Haiyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Luo J, Darai A, Pongkulapa T, Conley B, Yang L, Han I, Lee KB. Injectable bioorthogonal hydrogel (BIOGEL) accelerates tissue regeneration in degenerated intervertebral discs. Bioact Mater 2022; 23:551-562. [PMID: 36582500 PMCID: PMC9764133 DOI: 10.1016/j.bioactmat.2022.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of back pain and precursor to more severe conditions, including disc herniation and spinal stenosis. While traditional growth factor therapies (e.g., TGFβ) are effective at transiently reversing degenerated disc by stimulation of matrix synthesis, it is increasingly accepted that bioscaffolds are required for sustained, complete IVD regeneration. Current scaffolds (e.g., metal/polymer composites, non-mammalian biopolymers) can be improved in one or more IVD regeneration demands: biodegradability, noninvasive injection, recapitulated healthy IVD biomechanics, predictable crosslinking, and matrix repair induction. To meet these demands, tetrazine-norbornene bioorthogonal ligation was combined with gelatin to create an injectable bioorthogonal hydrogel (BIOGEL). The liquid hydrogel precursors remain free-flowing across a wide range of temperatures and crosslink into a robust hydrogel after 5-10 min, allowing a human operator to easily inject the therapeutic constructs into degenerated IVD. Moreover, BIOGEL encapsulation of TGFβ potentiated histological repair (e.g., tissue architecture and matrix synthesis) and functional recovery (e.g., high water retention by promoting the matrix synthesis and reduced pain) in an in vivo rat IVD degeneration/nucleotomy model. This BIOGEL procedure readily integrates into existing nucleotomy procedures, indicating that clinical adoption should proceed with minimal difficulty. Since bioorthogonal crosslinking is essentially non-reactive towards biomolecules, our developed material platform can be extended to other payloads and degenerative injuries.
Collapse
Affiliation(s)
- Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Anjani Darai
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, 59 Yaptap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, 59 Yaptap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea,Corresponding author. https://sites.google.com/view/inbolab/home
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA,Corresponding author. https://kblee.rutgers.edu/
| |
Collapse
|
15
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
16
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
17
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
A20 attenuates pyroptosis and apoptosis in nucleus pulposus cells via promoting mitophagy and stabilizing mitochondrial dynamics. Inflamm Res 2022; 71:695-710. [DOI: 10.1007/s00011-022-01570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022] Open
|
19
|
Molladavoodi S, DeWitte‐Orr SJ, Gregory DE. An in vitro 3D annulus fibrosus cell culture model with type I collagen: An examination of cell-matrix interactions. JOR Spine 2022; 5:e1193. [PMID: 35386752 PMCID: PMC8966884 DOI: 10.1002/jsp2.1193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/07/2022] Open
Abstract
Background Disorders of the intervertebral disc (IVD) are widely known to result in low back pain; one of the most common debilitating conditions worldwide. As a multifaceted condition, both inflammatory environment and mechanical factors can play a crucial role in IVD damage, and in particular, in the annulus fibrosus (AF), the highly collagenous outer ring of the IVD. As a result, a better understanding of how cells from the IVD, and specifically the AF, interact and respond to their environment is imperative. Goal The goal of this study is to use collagen type I as an in vitro three-dimensional extracellular matrix for AF cells of IVD and briefly examine both the cellular and mechanical effect of exposure to an inflammatory stimulant. Methods We utilized type I collagen as a 3D in vitro model material for culturing AF cells of Sprague Dawley rat tail IVDs. Results We showed that the cultured cells are viable and metabolically active; these cells also induced a distinct and significant contraction on their collagen matrix. Furthermore, to demonstrate potential versatility of our model our model and its versatility, we used lipopolysaccharide (LPS), as a known inflammatory stimulant in IVDs, to manipulate the cells and their interaction. LPS treatment resulted in detectable changes to the contraction cells induced on the collagen matrix and affected the mechanical properties of these constructs.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Stephanie J. DeWitte‐Orr
- Department of Health SciencesWilfrid Laurier UniversityWaterlooOntarioCanada
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Diane E. Gregory
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
- Department of Health SciencesWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
20
|
Zhou ZM, Bao JP, Peng X, Gao JW, VLF C, Zhang C, Sun R, Kun-Wang, Wu XT. Small extracellular vesicles from hypoxic mesenchymal stem cells alleviate intervertebral disc degeneration by delivering miR-17-5p. Acta Biomater 2022; 140:641-658. [PMID: 34879291 DOI: 10.1016/j.actbio.2021.11.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
Minimally invasive repair strategies are a very promising approach for the treatment of intervertebral disc degeneration (IDD). In recent years, small extracellular vesicles (sEVs) secreted from mesenchymal stem cells (MSCs) have been shown great potential in alleviating IDD. However, in vitro experiments, MSCs are usually exposed to a normoxic micro-environment, which differs greatly from the hypoxic micro-environment in vivo. The primary purpose of our research was to determine whether sEVs isolated from MSCs under hypoxic status (H-sEVs) exhibit a more beneficial effect on protecting IDD compared with sEVs derived from MSCs under normoxic status (N-sEVs). A tail IDD rat model and a series of experiments in vitro were conducted to compare the beneficial effects of PBS, N-sEVs, and H-sEVs treatment. Then, to validate the role of sEVs miRNAs in IDD, a miRNA microarray sequencing analysis and a series of rescue experiments were conducted. Luciferase activity, RNA-ChIP and western blot were performed to explore the potential mechanisms. The results indicate that sEVs alleviate IDD by ameliorating the homeostatic imbalance between anabolism and catabolism in vivo and in vitro. Microarray sequencing result shows that miR-17-5p is maximally enriched in H-sEVs. Toll-like receptor 4 (TLR4) was determined to be a target downstream gene of miR-17-5p. Finally, it was found that H-sEVs miR-17-5p may modulate proliferation and synthesis of human nucleus pulposus cells (HNPCs) matrix via TLR4 pathway. In conclusion, H-sEVs miR-17-5p alleviate IDD via promoting HNPCs matrix proliferation and synthesis, providing new therapeutic targets for IDD. STATEMENT OF SIGNIFICANCE: Intervertebral disc degeneration (IDD) is the primary cause of low back pain (LBP), which is a huge burden to society. Our research demonstrates for the first time that hypoxic pretreatment of small extracellular vesicles (H-sEVs) effectively alleviated the progress of IDD. In short, in the present research, we found that H-sEVs miR-17-5p could modulate proliferation and synthesis of nucleus pulposus cells (NPCs) matrix via TLR4/PI3K/AKT pathway. Therefore, hypoxic pre-treatment is a prospective and efficient method to optimize the therapeutic effect of MSCs-derived sEVs. miRNA and MSCs-derived sEVs combination may be a promising therapeutic approach for IDD.
Collapse
|
21
|
Huang Y, Yang J, Liu X, Wang X, Zhu K, Ling Z, Zeng B, Chen N, Liu S, Wei F. Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Front Cell Dev Biol 2022; 9:837777. [PMID: 35111765 PMCID: PMC8802762 DOI: 10.3389/fcell.2021.837777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhu
- Orthopaedic Section II, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baozhu Zeng
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ningning Chen
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
22
|
Peng X, Wang K, Zhang C, Bao JP, Vlf C, Gao JW, Zhou ZM, Wu XT. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res 2021; 55:1080-1093. [PMID: 34903138 DOI: 10.1080/10715762.2021.2018426] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence has shown that effects from inflammation and mitochondrial dysfunction lead to pyroptosis and apoptosis of nucleus pulposus (NP) cells. Damaged mitochondria release dangerous molecules such as reactive oxygen species (ROS), activating the NLRP3 inflammasome. SS-31 is a mitochondria-targeting peptide that has been used in the treatment of many diseases by scavenging ROS and ameliorating mitochondrial function. This study found that SS-31 ameliorated lipopolysaccharide (LPS)-induced loss of cell viability, ROS production, and apoptosis in NP cells. Moreover, mitochondrial dynamics and ATP synthesis were restored on pretreatment with SS-31 compared with the LPS group. For the molecular mechanism research, SS-31 stabilized mitochondrial morphology and inhibited the activation of the NF-κB pathway and the activation of the NLRP3 inflammasome. To evaluate whether the inhibition of NLRP3 inflammasome activation by SS-31 is dependent on the clearance of mitochondrial ROS, we comparatively analyzed the activation of NLRP3 inflammasome in NP cells pretreated with SS-31 and the ROS scavenger N-acetyl-L-cysteine (NAC). The results indicate that SS-31 could inhibit NLRP3 inflammasome activation by limiting the production of mitochondrial ROS. To sum up, our results revealed that SS-31 inhibits LPS-induced apoptosis, pyroptosis, and inflammation in NP cells via scavenging ROS and maintaining the stability of mitochondrial dynamics, which could be considered a promising therapeutic intervention for disk degeneration.
Collapse
Affiliation(s)
- Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun-Ping Bao
- Medical School of Southeast University, Nanjing, China
| | - Cabral Vlf
- Medical School of Southeast University, Nanjing, China
| | - Jia-Wei Gao
- Medical School of Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Medical School of Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Medical School of Southeast University, Nanjing, China.,Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
24
|
Ekram S, Khalid S, Bashir I, Salim A, Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem 2021; 476:3191-3205. [PMID: 33864569 DOI: 10.1007/s11010-021-04155-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-β1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-β1, TGF-β2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-β1, and TGF-β2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Imtiaz Bashir
- Zainab Panjwani Memorial Hospital, Mohammadali Habib Road, Numaish Karachi, 74800, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
25
|
Zhao F, Guo Z, Hou F, Fan W, Wu B, Qian Z. Magnoflorine Alleviates "M1" Polarized Macrophage-Induced Intervertebral Disc Degeneration Through Repressing the HMGB1/Myd88/NF-κB Pathway and NLRP3 Inflammasome. Front Pharmacol 2021; 12:701087. [PMID: 34366853 PMCID: PMC8343137 DOI: 10.3389/fphar.2021.701087] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is related to the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. The imbalance of pro-inflammatory (M1 type) and anti-inflammatory (M2 type) macrophages contributes to maintaining tissue integrity. Here, we aimed to probe the effect of Magnoflorine (MAG) on NP cell apoptosis mediated by “M1” polarized macrophages. THP-1 cells were treated with lipopolysaccharide (LPS) to induce “M1” polarized macrophages. Under the treatment with increasing concentrations of MAG, the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-18), high mobility group box protein 1 (HMGB1), as well as myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB) and NOD-like receptor 3 (NLRP3) inflammasomes in THP-1 cells were determined. What’s more, human NP cells were treated with the conditioned medium (CM) from THP-1 cells. The NP cell viability and apoptosis were evaluated. Western blot (WB) was adopted to monitor the expression of apoptosis-related proteins (Bax, Caspase3, and Caspase9), catabolic enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5), and extracellular matrix (ECM) compositions (collagen II and aggrecan) in NP cells. As a result, LPS evidently promoted the expression of pro-inflammatory cytokines and HMGB1, the MyD88-NF-κB activation, and the NLRP3 inflammasome profile in THP-1 cells, while MAG obviously inhibited the "M1″ polarization of THP-1 cells. After treatment with “M1” polarized THP-1 cell CM, NP cell viability was decreased, while cell apoptosis, the pro-inflammatory cytokines, apoptosis-related proteins, and catabolic enzymes were distinctly up-regulated, and ECM compositions were reduced. After treatment with MAG, NP cell damages were dramatically eased. Furthermore, MAG dampened the HMGB1 expression and inactivated the MyD88/NF-κB pathway and NLRP3 inflammasome in NP cells. In conclusion, this study confirmed that MAG alleviates “M1” polarized macrophage-mediated NP cell damage by inactivating the HMGB1-MyD88-NF-κB pathway and NLRP3 inflammasome, which provides a new reference for IDD treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhenye Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Fushan Hou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wei Fan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Binqiang Wu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhonglai Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
26
|
Jacobsen T, Hernandez P, Chahine N. Inhibition of toll-like receptor 4 protects against inflammation-induced mechanobiological alterations to intervertebral disc cells. Eur Cell Mater 2021; 41:576-591. [PMID: 34013512 PMCID: PMC8329983 DOI: 10.22203/ecm.v041a37] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is associated with elevated levels of inflammatory cytokines implicated in disease aetiology and matrix degradation. Toll-like receptor-4 (TLR4) has been shown to participate in the inflammatory responses of the nucleus pulposus (NP) and its levels are upregulated in disc degeneration. Activation of TLR4 in NP cells leads to significant, persistent changes in cell biophysical properties, including hydraulic permeability and osmotically active water content, as well as alterations to the actin cytoskeleton. The study hypothesis was that inflammation-induced changes to cellular biomechanical properties and actin cytoskeleton of NP cells could be prevented by inhibiting TLR4 signalling. Isolated NP cells from bovine discs were treated with lipopolysaccharide (LPS), the best studied TLR4 agonist, with or without treatment with the TLR4 inhibitor TAK-242. Cellular volume regulation responses to step osmotic loading were measured and the transient volume-response was captured by time-lapse microscopy. Volume-responses were analysed using mixture theory framework to investigate hydraulic permeability and osmotically active intracellular water content. Hydraulic permeability and cell radius were significantly increased with LPS treatment and these changes were blocked in cells treated with TAK-242. LPS-induced remodelling of cortical actin and IL-6 upregulation were also mitigated by TAK-242 treatment. These findings indicated that TLR4 signalling participated in NP cell biophysical regulation and may be an important target for mitigating altered cell responses observed in IVD inflammation and degeneration.
Collapse
Affiliation(s)
- T.D. Jacobsen
- Department of Biomedical Engineering, Columbia University,
New York, NY
| | - P.A. Hernandez
- Department of Orthopaedic Surgery, University of Texas
Southwestern Medical Centre, Dallas, TX
| | - N.O. Chahine
- Department of Biomedical Engineering, Columbia University,
New York, NY,Department of Orthopaedic Surgery, Columbia University, New
York, NY,Address for correspondence: Nadeen
Chahine, 650 W 168th St, William Black Building, 14th
Floor Room 14-1408E, New York, NY 10032, USA. Telephone number: +1 2123051515,
| |
Collapse
|
27
|
Wang Y, Dai G, Xu Y, Jiang L, Fu Z, Xia J, Tian G, Du W. Integrated traditional Chinese medicine alleviates sciatica while regulating gene expression in peripheral blood. J Orthop Surg Res 2021; 16:130. [PMID: 33573686 PMCID: PMC7877113 DOI: 10.1186/s13018-021-02280-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background Although integrated traditional Chinese medicine (TCM) has long been indicated to be effective in the treatment of sciatica and is widely used in the management of this condition, the mechanism by which integrated TCM alleviates sciatica has not yet been fully defined, and the effect of integrated TCM on gene expression in the peripheral blood of patients with sciatica is still unknown. We performed this study to investigate the effect of integrated TCM on peripheral blood gene expression in patients with sciatica and to explore new clues for studying the mechanism of integrated TCM in alleviating sciatica. Methods We used a microarray to identify differentially expressed genes (DEGs) in the peripheral blood of patients with sciatica and healthy controls (DEGs-baseline), bioinformatic analysis to reveal the characteristics of DEGs-baseline, and the key genes that contribute to the gene dysregulation. A microarray was also used to identify DEGs in the peripheral blood of patients with sciatica after integrated TCM treatment compared with those at baseline, and the expression levels of DEGs were validated by qRT-PCR. Results We identified 153 DEGs-baseline, which included 131 upregulated genes and 22 downregulated genes. Bioinformatic analysis revealed that most of the DEGs-baseline were related to immunity and the inflammatory response and that TLR4, MMP9, MPO, CAMP, RETN, TLR5, and IL1RN were key genes involved in the dysregulation of genes in the peripheral blood of patients with sciatica. The expression levels of TLR5, IL1RN, SLC8A1, RBM20, GPER1, IL27, SOCS1, and GRTP1-AS1 were decreased in the peripheral blood of patients after integrated TCM treatment compared with that at baseline, which was accompanied by relief of pain. Conclusion Integrated TCM treatment relieved pain while regulating the gene expression of TLR5, IL1RN, SLC8A1, RBM20, GPER1, IL27, SOCS1, and GRTP1-AS1 in the peripheral blood of patients with sciatica. Our study provides new clues for studying the mechanism of TCM in treating sciatica. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02280-1.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Wuhou District, Chengdu, Sichuan Province, China.
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Wuhou District, Chengdu, Sichuan Province, China
| | - Yan Xu
- Experiment Teaching Center for Preclinical Medicine, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan Province, China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University, Chengdu Campus, No. 211 Huiming Road, Wenjiang District, Chengdu, Sichuan Province, China
| | - Zhibin Fu
- Department of Lower Extremities, Sport Hospital Affiliated to Chengdu Sport Institute, No. 2, Tiyuan Road, Wuhou District, Chengdu, Sichuan Province, China
| | - Jiao Xia
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Wuhou District, Chengdu, Sichuan Province, China
| | - Guogang Tian
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Wuhou District, Chengdu, Sichuan Province, China
| | - Wanli Du
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Wuhou District, Chengdu, Sichuan Province, China
| |
Collapse
|
28
|
Wang Y, Dai G, Jiang L, Liao S, Xia J. Microarray analysis reveals an inflammatory transcriptomic signature in peripheral blood for sciatica. BMC Neurol 2021; 21:50. [PMID: 33535986 PMCID: PMC7856817 DOI: 10.1186/s12883-021-02078-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although the pathology of sciatica has been studied extensively, the transcriptional changes in the peripheral blood caused by sciatica have not been characterized. This study aimed to characterize the peripheral blood transcriptomic signature for sciatica. METHODS We used a microarray to identify differentially expressed genes in the peripheral blood of patients with sciatica compared with that of healthy controls, performed a functional analysis to reveal the peripheral blood transcriptomic signature for sciatica, and conducted a network analysis to identify key genes that contribute to the observed transcriptional changes. The expression levels of these key genes were assessed by qRT-PCR. RESULTS We found that 153 genes were differentially expressed in the peripheral blood of patients with sciatica compared with that of healthy controls, and 131 and 22 of these were upregulated and downregulated, respectively. A functional analysis revealed that these differentially expressed genes (DEGs) were strongly enriched for the inflammatory response or immunity. The network analysis revealed that a group of genes, most of which are related to the inflammatory response, played a key role in the dysregulation of these DEGs. These key genes are Toll-like receptor 4, matrix metallopeptidase 9, myeloperoxidase, cathelicidin antimicrobial peptide, resistin and Toll-like receptor 5, and a qRT-PCR analysis validated the higher transcript levels of these key genes in the peripheral blood of patients with sciatica than in that of healthy controls. CONCLUSION We revealed inflammatory characteristics that serve as a peripheral blood transcriptomic signature for sciatica and identified genes that are essential for mRNA dysregulation in the peripheral blood of patients with sciatica.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road,Wuhou District, Chengdu, 610041, Sichuan Province, China.
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road,Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University-Chengdu Campus, NO. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shichuan Liao
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road,Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Jiao Xia
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road,Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
29
|
Wang L, Gu Y, Zhao H, Chen R, Chen W, Qi H, Gao W. Dioscin Attenuates Interleukin 1β (IL-1β)-Induced Catabolism and Apoptosis via Modulating the Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling in Human Nucleus Pulposus Cells. Med Sci Monit 2020; 26:e923386. [PMID: 32841225 PMCID: PMC7466834 DOI: 10.12659/msm.923386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Nucleus pulposus (NP) cell dysfunction and apoptosis contribute to disc degeneration. Dioscin, a natural steroid saponin, has been demonstrated to have anti-inflammatory, antiapoptotic, and antioxidative effects in various diseases. However, little is known about the roles of dioscin in intervertebral disc degeneration. Material/Methods To evaluate the roles of dioscin in disc degeneration and its specific mechanism, human NP cells were incubated with IL-1β and various concentrations of dioscin. Cell viability, extracellular matrix protein expression, catabolic factors, degree of apoptosis, inflammatory factors, and related signaling pathways were evaluated by western blotting, fluorescence immunostaining, TUNEL staining, and reverse transcription PCR. Results Dioscin inhibited IL-1β-activated apoptotic signaling and catabolic activity in NP cells. Dioscin suppressed TLR4/NF-0κB signaling, and attenuated the level of inflammatory mediators (IL-6, TNF-α) in IL-1β-stimulated human NP cells. Conclusions Our work provides the first evidence that dioscin attenuates IL-1β-activated inflammation and catabolic activity in human NP cells through inhibiting the TLR4/NF-κB pathway, indicating that dioscin is a new potential candidate for clinical therapy to attenuate disc degeneration.
Collapse
Affiliation(s)
- Longhui Wang
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Yuntao Gu
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Hai Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Rong Chen
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Wensheng Chen
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Hao Qi
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Weisong Gao
- Department of Orthopedics, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| |
Collapse
|
30
|
Hernandez PA, Jacobsen TD, Chahine NO. Actomyosin contractility confers mechanoprotection against TNFα-induced disruption of the intervertebral disc. SCIENCE ADVANCES 2020; 6:eaba2368. [PMID: 32875103 PMCID: PMC7438088 DOI: 10.1126/sciadv.aba2368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Inflammation triggers degradation of intervertebral disc extracellular matrix (ECM), a hallmark of disc degeneration that contributes to back pain. Mechanosensitive nucleus pulposus cells are responsible for ECM production, yet the impact of a proinflammatory microenvironment on cell mechanobiology is unknown. Using gain- and loss-of-function approaches, we show that tumor necrosis factor-α (TNFα)-induced inflammation alters cell morphology and biophysical properties (circularity, contractility, cell stiffness, and hydraulic permeability) in a mechanism dependent on actomyosin contractility in a three-dimensional (3D) culture. We found that RhoA activation rescued cells from TNFα-induced mechanobiological disruption. Using a novel explant-in-hydrogel culture system, we demonstrate that nuclear factor kappa-B nuclear translocation and transcription are mechanosensitive, and its downstream effects on ECM degradation are regulated by actomyosin contractility. Results define a scaling relationship between circularity, contractility, and hydraulic permeability that is conserved from healthy to inflammatory microenvironments and is indicative of cell mechanobiological control across scales in 3D.
Collapse
Affiliation(s)
- Paula A. Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy D. Jacobsen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Wang Y, Dai G, Li L, Liu L, Jiang L, Li S, Liao S, Wang F, Du W, Li Y. Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse. Exp Ther Med 2019; 18:4591-4602. [PMID: 31777557 PMCID: PMC6862187 DOI: 10.3892/etm.2019.8137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate differentially expressed genes (DEGs) in whole blood (WB) obtained from patients with lumbar disc prolapse (LDP) and healthy volunteers. A total of 8 patients with LDP and 8 healthy volunteers were recruited. An Agilent SurePrint G3 human gene expression microarray 8×60 K was used to perform the microarray analyses. R was employed to identify DEGs, which were then subjected to bioinformatics analysis, including a Gene Ontology (GO) analysis, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) network analysis. DEGs in the degenerative annulus fibrosis (AF) and nucleus pulposus (NP) compared with non-degenerative tissues were also identified based on microarray data and the intersections of the three were assessed. Furthermore, reverse transcription-quantitative (RT-q)PCR was performed to confirm the aberrant expression levels of selected DEGs in the WB of all subjects. A total of 161 DEGs between LDP patients and the healthy controls were identified (128 upregulated and 33 downregulated). These DEGs were enriched in 293 biological process, 36 cellular component and 21 molecular function GO terms, as well as in 24 KEGG pathways. The PPI network contained 4 submodules, and Toll-like receptor 4 had the highest degree centrality. A total of 22 DEGs were common to the three groups of DEGs. The RT-qPCR assay confirmed that the expression levels of cytochrome P450 family 27 subfamily A member 1, superoxide dismutase 2, protein disulfide isomerase family A member 4, FKBP prolyl isomerase 11 and ectonucleotide pyrophosphatase/phosphodiesterase 4 were significantly different between the patient group and the volunteer group. In conclusion, several genes were identified as potential biomarkers in WB that should be further explored in future studies to determine their potential application in the clinical treatment and diagnosis of LDP, and the present bioinformatics analysis revealed several GO terms, KEGG pathways and submodules of the PPI network that may be involved in LDP, although the exact mechanisms remain elusive.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Lengtao Li
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Liu
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University - Chengdu Campus, Chengdu, Sichuan 611130, P.R. China
| | - Shengwu Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Shichuan Liao
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Wanli Du
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuewen Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
32
|
Pfannkuche JJ, Guo W, Cui S, Ma J, Lang G, Peroglio M, Richards RG, Alini M, Grad S, Li Z. Intervertebral disc organ culture for the investigation of disc pathology and regeneration - benefits, limitations, and future directions of bioreactors. Connect Tissue Res 2019; 61:304-321. [PMID: 31556329 DOI: 10.1080/03008207.2019.1665652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.
Collapse
Affiliation(s)
- Judith-Johanna Pfannkuche
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | - Gernot Lang
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
33
|
ERRFI1 Inhibits Proliferation and Inflammation of Nucleus Pulposus and Is Negatively Regulated by miR-2355-5p in Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2019; 44:E873-E881. [PMID: 30817728 DOI: 10.1097/brs.0000000000003011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo and in vitro studies of the role of miR-2355-5p and its possible targets in intervertebral disc degeneration (IVDD). OBJECTIVE To elucidate the regulatory role of miR-2355-5p in IVDD and the underlying mechanisms. SUMMARY OF BACKGROUND DATA IVDD, which is caused by multiple factors, is the main cause of lower back pain with or without extremity pain. However, the underlying cellular mechanisms of IVDD pathogenesis are not well elucidated. Cell hyper-proliferation, inflammation, and epidermal growth factor receptor activation have been implicated in IVDD. Up-regulated miR-2355-5p level was identified to associate with IVDD. ERRFI1 (the product of mitogen-inducible gene 6 [MIG6]) was known to inhibit epidermal growth factor receptor activation. METHODS We monitored the expression of miR-2355-5p and ERRFI1 in IVDD tissues and lipopolysaccharides (LPS)-treated nucleus pulposus (NP) cells. We explored the effects of ERFFI1 on NP cells proliferation and LPS-induced pro-inflammatory cytokines production. We searched the targets of miR-2355-5p and explored the effects of miR-2355-5p on NP cells proliferation and cytokines production. RESULTS We identified the up-regulation of miR-2355-5p and down-regulation of ERFFI1 in IVDD samples and LPS-treated NP cells. ERFFI1 inhibited NP cells proliferation and LPS-induced pro-inflammatory cytokine production. MiR-2355-5p targeted ERFFI1 and negatively regulated ERFFI1 expression. MiR-2355-5p regulated IVDD by targeting ERFFI1. CONCLUSION MiR-2355-5p negatively regulated ERFFI1 and prevented the effects of ERRFI1 on inhibiting NP cells proliferation and inflammation. LEVEL OF EVIDENCE N/A.
Collapse
|
34
|
The Relationship Between Low-Grade Infection and Degenerative Disk Disease: A Review of Basic Science and Clinical Data. J Am Acad Orthop Surg 2019; 27:509-518. [PMID: 30575599 DOI: 10.5435/jaaos-d-18-00257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Low back pain resulting from intervertebral disk degeneration is a cause of substantial disability and productivity loss. Over the past few years, growing evidence exists which suggests that low-grade bacterial infection, particularly infection with Cutibacterium acnes, may be associated with degenerative disk disease in the lumbar spine. Positive cultures are obtained in approximately 30% of intervertebral disk specimens removed at the time of surgery. In addition, one randomized trial has shown that antibiotic therapy for low back pain in patients with disk degeneration can slow the progression of degeneration and improve pain and disability levels. Although these results are encouraging, the link between infection and disk degeneration remains controversial. Investigators have attempted to address the limitations of clinical research by using translational methods and animal models. These methods have shown that seeding of the disk with bacteria can lead to increased local inflammation and an in vivo phenotype that is similar to human disk degeneration. This review seeks to provide an overview of the clinical, translational, and animal model data linking infection to disk degeneration. We review mechanisms for disk degeneration in the setting of infection and explore areas for future investigation.
Collapse
|
35
|
Ruiz-Fernández C, Francisco V, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Gualillo O. Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link? Int J Mol Sci 2019; 20:ijms20082030. [PMID: 31027158 PMCID: PMC6515363 DOI: 10.3390/ijms20082030] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a chronic, expensive, and high-incidence musculoskeletal disorder largely responsible for back/neck and radicular-related pain. It is characterized by progressive degenerative damage of intervertebral tissues along with metabolic alterations of all other vertebral tissues. Despite the high socio-economic impact of IVDD, little is known about its etiology and pathogenesis, and currently, no cure or specific treatments are available. Recent evidence indicates that besides abnormal and excessive mechanical loading, inflammation may be a crucial player in IVDD. Furthermore, obese adipose tissue is characterized by a persistent and low-grade production of systemic pro-inflammatory factors. In this context, chronic low-grade inflammation associated with obesity has been hypothesized as an important contributor to IVDD through different, but still unknown, mechanisms. Adipokines, such as leptin, produced prevalently by white adipose tissues, but also by other cells of mesenchymal origin, particularly cartilage and bone, are cytokine-like hormones involved in important physiologic and pathophysiological processes. Although initially restricted to metabolic functions, adipokines are now viewed as key players of the innate and adaptative immune system and active modulators of the acute and chronic inflammatory response. The goal of this review is to summarize the most recent findings regarding the interrelationships among inflammation, obesity and the pathogenic mechanisms involved in the IVDD, with particular emphasis on the contribution of adipokines and their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, 39008 Santander, Spain.
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Shah BS, Burt KG, Jacobsen T, Fernandes TD, Alipui DO, Weber KT, Levine M, Chavan SS, Yang H, Tracey KJ, Chahine NO. High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway. J Orthop Res 2019; 37:220-231. [PMID: 30273982 PMCID: PMC7401857 DOI: 10.1002/jor.24154] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (DD) is associated with low back pain, the leading cause of disability worldwide. Damage-associated molecular patterns (DAMPs) that contribute to inflammation and trigger DD have not been well characterized. Extracellular high mobility group box-1 (HMGB1) protein has been implicated as a potent DAMP and pro-inflammatory stimulus in the immune system. In this study, we show that HMGB1 and IL-6 levels increase in patients with advanced DD in comparison to early DD. This study further tested the hypothesis that HMGB1 promotes inflammatory signaling driving DD in human nucleus pulposus (NP) cells and tissue. Immunofluorescence and western blot analysis confirmed the expression of HMGB1 and its extracellular release by NP cells under cell stress. Gene expression and protein quantification indicate that HMGB1 stimulates the expression IL-6 and MMP-1 in a dose-dependent manner. The contributions of toll-like receptor (TLR) -2, -4 and receptor for advanced glycation end products (RAGE) as receptors mediating HMGB1 signaling was examined using small molecule inhibitors. Inhibition of TLR-4 signaling, with TAK-242, completely abrogated HMGB1 induced IL-6 and MMP-1 expression, whereas inhibition of TLR-2, with O-vanillin, or RAGE, with FPS-ZM1, had mild inhibitory effects. HMGB1 stimulation activated NF-ĸB signaling while TAK-242 co-treatment abrogated it. Lastly, effects of HMGB1 on matrix deposition was evaluated in a 3D culture system of human NP cells. These results implicate HMGB1 as a potent DAMP that promotes inflammation in NP cells and degradation of NP tissues. TLR4-HMGB1 axis is a potential major pathway to alleviate disc inflammation and mitigate DD. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Bhranti S. Shah
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Kevin G. Burt
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| | - Timothy Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tiago D. Fernandes
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | | | - Kathryn T. Weber
- Department of Surgery, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Mitchell Levine
- Department of Neurosurgery, Lenox Hill Hospital, Northwell Health, New York, New York
| | - Sangeeta S. Chavan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Huan Yang
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Kevin J. Tracey
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
37
|
Huang BR, Bau DT, Chen TS, Chuang IC, Tsai CF, Chang PC, Hsu HC, Lu DY. Pro-Inflammatory Stimuli Influence Expression of Intercellular Adhesion Molecule 1 in Human Anulus Fibrosus Cells through FAK/ERK/GSK3 and PKCδ Signaling Pathways. Int J Mol Sci 2018; 20:ijms20010077. [PMID: 30585203 PMCID: PMC6337379 DOI: 10.3390/ijms20010077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Intervertebral disc (IVD) degeneration and disc herniation are major causes of lower back pain, which involve the presence of inflammatory mediators and tissue invasion by immune cells. Intercellular adhesion molecule 1 (ICAM1, also termed CD54) is an adhesion molecule that mediates cell-cell interactions, particularly between immune cells and target tissue. The aim of this study was to examine the intracellular signaling pathways involved in inflammatory stimuli-induced ICAM1 expression in human anulus fibrosus (AF) cells. METHODS Quantitative reverse transcription-polymerase chain reaction (qPCR), western blotting, and flow cytometry were performed to dissect the roles of different signaling pathways in inflammatory stimuli-mediated ICAM1 expression. RESULTS Using qPCR and western blot analyses, a significant increase in ICAM1 expression was observed in AF cells after stimulation of lipopolysaccharide (LPS) plus interferon-gamma (IFNγ) in a time-dependent manner. Flow cytometry revealed ICAM1 upregulation on the surface of AF cells. Importantly, LPS plus IFNγ treatment also significantly promoted Chemokine ligand (CCL)2 expression, but not CCL3. The enhanced ICAM1 expression was abolished after incubation with antibody against CCL2. In AF cells, treatment with LPS plus IFNγ activated the FAK/ERK/GSK3 signaling pathways, promoted a time-dependent increase in PKCδ phosphorylation, and promoted PKCδ translocation to the nucleus. Treatment with the pharmacological PKCδ inhibitor; rottlerin, effectively blocked the enhanced productions of ICAM1 and CCL2. CONCLUSIONS Inflammatory stimuli in AF cells are part of a specific pathophysiology in IVD degeneration and disc herniation that modulates CCL2/ICAM1 activation through the FAK/ERK/GSK3 and PKCδ signaling pathways in AF cells.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Neurosurgery Department, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97002, Taiwan.
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung 41354, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
38
|
Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model. Osteoarthritis Cartilage 2018; 26:1236-1246. [PMID: 29908959 DOI: 10.1016/j.joca.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration is a leading cause of chronic low back pain (LBP) but current treatment is limited. Toll-like receptors (TLRs) on disc cells are activated by endogenous extracellular matrix (ECM) fragments and modulate degeneration in vitro. This study investigated whether inhibiting TLR4 slows disc degeneration and reduces behavioral signs of LBP in vivo. DESIGN 7-9-month old wild-type and secreted protein acidic and rich in cysteine (SPARC)-null (a model of disc degeneration and LBP) male mice were treated with TAK-242 (TLR4 inhibitor) once, and following a 10-day washout, mice were treated 3 times/week for 8 weeks. Behavioral signs of axial discomfort and radiating leg pain were assessed weekly with the grip force assay and acetone test, respectively. Following treatment, pain-related spinal cord changes were evaluated and lumbar discs were excised and cultured. Cytokine secretion from discs was evaluated with protein arrays. RESULTS SPARC-null mice displayed elevated signs of axial and radiating pain at baseline compared to wild-type. Chronic, but not acute, TLR4 inhibition reduced behavioral signs of pain compared to vehicle. SPARC-null mice have increased calcitonin gene-related peptide (CGRP)- and glial fibrillary acidic protein (GFAP)-immunoreactivity (astrocyte marker) in the dorsal horn compared to wild-type, which is reduced by chronic TLR4 inhibition. Ex vivo degenerating discs from SPARC-null mice secrete increased levels of many pro-inflammatory cytokines, which chronic TLR4 inhibition reduced. CONCLUSION Chronic TLR4 inhibition decreased behavioral signs of LBP, pain-related neuroplasticity and disc inflammation in SPARC-null mice. TAK-242 inhibits TLR4 activation within discs, as evidenced by decreases in cytokine release. Therefore, TLRs are potential therapeutic targets to slow disc degeneration and reduce pain.
Collapse
|
39
|
Wang H, Hao P, Zhang H, Xu C, Zhao J. MicroRNA-223 inhibits lipopolysaccharide-induced inflammatory response by directly targeting Irak1 in the nucleus pulposus cells of intervertebral disc. IUBMB Life 2018; 70:479-490. [PMID: 29707878 DOI: 10.1002/iub.1747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
This study was aimed to research the effect of miR-223 on the inflammatory responses induced by lipopolysaccharide (LPS) in nucleus pulposus (NP) cells of rat intervertebral disc. Isolated rat NP cells were induced by LPS. Reverse transcriptase quantitative real-time polymerase chain reaction was used to detect gene expression. To detect protein expression, Western blot and enzyme-linked immunosorbent assay experiments were applied. The putative targeting relationship between miR-223 and Irak1 was determined using dual-luciferase reporter gene assay. We found that miR-223 was downregulated in LPS-induced NP cells. MiR-223 upregulated the expression of extracellular matrix-related genes (Aggrecan and Collagen II). Matrix degrading enzymes (ADAMTS4, ADAMTS5, MMP3 and MMP13), NO reaction-associated proteins (PGE2, COX-2 and INOS) and the expression of nuclear factor (NF)-κB signaling-related proteins were downregulated after miR-233 overexpression. In addition, luciferase reporter assays demonstrated that miR-223 directly targeted Irak1. MiR-223 overexpression could inhibit NF-κB signaling by targeting Irak1, and finally suppress the LPS-induced inflammation in NP cells. © 2018 IUBMB Life, 70(6):479-490, 2018.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pan Hao
- Department of Spinal and Joint Surgery, Jinan Central Hospital, Jinan, Shandong, China
| | - Hu Zhang
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Cuiping Xu
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Junyan Zhao
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
40
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Huang BR, Chen TS, Bau DT, Chuang IC, Tsai CF, Chang PC, Lu DY. EGFR is a pivotal regulator of thrombin-mediated inflammation in primary human nucleus pulposus culture. Sci Rep 2017; 7:8578. [PMID: 28819180 PMCID: PMC5561020 DOI: 10.1038/s41598-017-09122-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
We found that the coagulation and cytokine pathways were important mechanisms involve in the degeneration of intervertebral discs (IVD) using a microarray approach to analyze gene expression in different grades of specimens. Furthermore, using a cytokine/chemokine array, a significant increase in CXCL8 expression was observed in human nucleus pulposus (NP) cells after thrombin treatment. The enhancement of CXCL8 expression by thrombin was activated by the PAR1 receptor. Importantly, analysis of degenerated human NP tissue samples showed that EGFR expression positively correlated with the grade of tissue degeneration. In NP cells, thrombin caused an increase in phosphorylation of the EGFR at the Tyr1068, and treatment with the pharmacological EGFR inhibitor, AG1473 effectively blocked thrombin-enhanced CXCL8 production. Surprisingly, inhibition of STAT3 for 24 h decreased expression of EGFR. Treatment with thrombin also increased Akt and GSK3α/β activation; this activation was also blocked by EGFR inhibitor. Although c-Src, ERK, and FAK were activated by thrombin, only c-Src and ERK were involved in the STAT3/CXCL8 induction. Our findings indicate that stimulation of an inflammatory response in NP cells by thrombin is part of a specific pathophysiology that modulates the EGFR activation through activation of Src/ERK/STAT3 signaling.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
42
|
Mosley GE, Evashwick-Rogler TW, Lai A, Iatridis JC. Looking beyond the intervertebral disc: the need for behavioral assays in models of discogenic pain. Ann N Y Acad Sci 2017; 1409:51-66. [PMID: 28797134 DOI: 10.1111/nyas.13429] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
Orthopedic research into chronic discogenic back pain has commonly focused on aging- and degeneration-related changes in intervertebral disc structure, biomechanics, and biology. However, the primary spine-related reason for physician office visits is pain. The ambiguous nature of the human condition of discogenic low back pain motivates the use of animal models to better understand the pathophysiology. Discogenic back pain models must consider both emergent behavioral changes following pain induction and changes in the nervous system that mediate such behavior. Looking beyond the intervertebral disc, we describe the different ways to classify pain in human patients and animal models. We describe several behavioral assays that can be used in rodent models to augment disc degeneration measurements and characterize different types of pain. We review rodent models of discogenic pain that employed behavioral pain assays and highlight a need to better integrate neuroscience and orthopedic science methods to extend current understanding of the complex and multifactorial pathophysiology of discogenic back pain.
Collapse
Affiliation(s)
- Grace E Mosley
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas W Evashwick-Rogler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
43
|
Li W, Wu X, Qu R, Wang W, Chen X, Cheng L, Liu Y, Guo L, Zhao Y, Liu C. Ghrelin protects against nucleus pulposus degeneration through inhibition of NF-κB signaling pathway and activation of Akt signaling pathway. Oncotarget 2017; 8:91887-91901. [PMID: 29190883 PMCID: PMC5696149 DOI: 10.18632/oncotarget.19695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of the present study was to examine the potential role of ghrelin in degeneration of nucleus pulposus (NP). Lower expression levels of ghrelin were found in human NP cells stimulated with interleukin-1β (IL-1β). Moreover, exogenous ghrelin suppressed IL-1β induced degeneration and inflammation associated biomarkers in human NP cells, including matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5, tumor necrosis factor-α and iNOS, which was possibly mediated by antagonization of NF-κB signaling. Moreover, ghrelin enhanced production of critical extracellular matrix of NP cells, including collagen 2, aggrecan, and Sox-9 in NP cells. Ghrelin also promoted NP tissue regeneration in a rabbit IVD degeneration model, which seems to be associated with growth hormone secretagogue receptor. Additionally, the protective role of ghrelin in anabolism potentially relies on activation of Akt signaling pathway. Taken together, ghrelin may represent a molecular target for prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xihai Wu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Ruize Qu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaomin Chen
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoge Liu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Linlin Guo
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery and Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
44
|
Song Y, Wang Y, Zhang Y, Geng W, Liu W, Gao Y, Li S, Wang K, Wu X, Kang L, Yang C. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J Cell Mol Med 2017; 21:1373-1387. [PMID: 28224704 PMCID: PMC5487914 DOI: 10.1111/jcmm.13067] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc degeneration is widely recognized as a cause of lower back pain, neurological dysfunction and other musculoskeletal disorders. The major inflammatory cytokine IL‐1β is associated with intervertebral disc degeneration; however, the molecular mechanisms that drive IL‐1β production in the intervertebral disc, especially in nucleus pulposus (NP) cells, are unknown. In some tissues, advanced glycation end products (AGEs), which accumulate in NP tissues and promote its degeneration, increase oxidative stress and IL‐1β secretion, resulting in disorders, such as obesity, diabetes mellitus and ageing. It remains unclear whether AGEs exhibit similar effects in NP cells. In this study, we observed significant activation of the NLRP3 inflammasome in NP tissues obtained from patients with degenerative disc disease compared to that with idiopathic scoliosis according to results detected by Western blot and immunofluorescence. Using NP cells established from healthy tissues, our in vitro study revealed that AGEs induced an inflammatory response in NP cells and a degenerative phenotype in a NLRP3‐inflammasome‐dependent manner related to the receptor for AGEs (RAGE)/NF‐κB pathway and mitochondrial damage induced by mitochondrial reactive oxygen species (mtROS) generation, mitochondrial permeability transition pore (mPTP) activation and calcium mobilization. Among these signals, both RAGE and mitochondrial damage primed NLRP3 and pro‐IL‐1β activation as upstream signals of NF‐κB activity, whereas mitochondrial damage was critical for the assembly of inflammasome components. These results revealed that accumulation of AGEs in NP tissue may initiate inflammation‐related degeneration of the intervertebral disc via activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Physical Education, China University of Geosciences, Wuhan, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Geng
- China Medical University, Shenyang, China
| | - Wei Liu
- Department of Orthopedics, First Hospital of Wuhan, Wuhan, China
| | - Yong Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Li Z, Wang X, Pan H, Yang H, Li X, Zhang K, Wang H, Zheng Z, Liu H, Wang J. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration. Osteoarthritis Cartilage 2017; 25:341-350. [PMID: 27737814 DOI: 10.1016/j.joca.2016.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/24/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was to investigate whether resistin induces the expression of chemokine ligand 4 (CCL4) during Intervertebral disc degeneration (IVDD) and whether toll-like receptor-4 (TLR-4) and the nuclear factor-κB (NF-κB) signaling pathway are involved in this process. METHODS The expression pattern of resistin and CCL4 in different degenerated human nucleus pulposus (NP) tissues were measured by quantitative reverse transcription-polymerase chain reaction (qPCR); Effect of resistin on the migration of macrophages was measured by cell migration assay. Resistin-induced CCL4 expression were analyzed by qPCR, Enzyme-linked immunosorbant assay (ELISA) and cell immunofluorescence. Involvement of TLR-4, p38-mitogen-activated protein kinase (p38-MAPK), and NF-κB signaling pathways were studied by small interfering RNA (siRNA) or Lenti-virus mediated knockdown, co-immunoprecipitation, and chromatin immunoprecipitation (ChIP) assay. RESULTS Expression of resistin and CCL4 was elevated in degenerated NP tissue. Resistin promoted macrophage migration through CCL4 and its receptor. Expression of CCL4 was significantly increased by resistin treatment. The pharmacological inhibition or siRNA knockdown of TLR-4 blocked the resistin-induced CCL4 expression. Co-immunoprecipitation data confirmed the binding of resistin to TLR4. Pharmacological inhibition of the NF-κB and p38-MAPK signaling pathways attenuated the resistin-induced CCL4 expression. A ChIP assay and lentivirus mediated knockdown showed that resistin regulate CCL4 expression through p65. CONCLUSION This study shows that resistin binds to TLR4 and increase the expression of CCL4 through p38-MAPK and NF-κB signaling pathways in NP cells, and this expression causes infiltration of macrophages. This study might provide a feasible therapeutic target for controlling the inflammatory response associated with IVDD.
Collapse
Affiliation(s)
- Z Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - X Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Pan
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, PR China
| | - X Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - K Zhang
- Department of Orthopedic Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Z Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - H Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - J Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
46
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
47
|
Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1-13. [PMID: 27864283 DOI: 10.1093/abbs/gmw112] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most common cause leading to low back pain (LBP), which is a highly prevalent, costly, and crippling condition worldwide. Current treatments for IDD are limited to treat the symptoms and do not target the pathophysiology. Tumor necrosis factor-α (TNF-α) is one of the most potent pro-inflammatory cytokines and signals through its receptors TNFR1 and TNFR2. TNF-α is highly expressed in degenerative IVD tissues, and it is deeply involved in multiple pathological processes of disc degeneration, including matrix destruction, inflammatory responses, apoptosis, autophagy, and cell proliferation. Importantly, anti-TNF-α therapy has shown promise for mitigating disc degeneration and relieving LBP. In this review, following a brief description of TNF-α signal transduction, we mainly focus on the expression pattern and roles of TNF-α in IDD, and summarize the emerging progress regarding its inhibition as a promising biological therapeutic approach to disc degeneration and associated LBP. A better understanding will help to develop novel TNF-α-centered therapeutic interventions for degenerative disc disease.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Medical Research Center, University of South China, Hengyang 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Yang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shujun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yongxiao Xiang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
48
|
IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells. Biosci Rep 2016; 36:BSR20160118. [PMID: 27512095 PMCID: PMC5025813 DOI: 10.1042/bsr20160118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation and cytokines have been recognized to correlate with intervertebral disc (IVD) degeneration (IDD), via mediating the development of clinical signs and symptoms. However, the regulation mechanism remains unclear. We aimed at investigating the regulatory role of interleukin (IL)β and high mobility group box 1 (HMGB1) in the inflammatory response in human IVD cells, and then explored the signalling pathways mediating such regulatory effect. Firstly, the promotion to inflammatory cytokines in IVD cells was examined with ELISA method. And then western blot and real time quantitative PCR were performed to analyse the expression of toll-like receptors (TLRs), receptors for advanced glycation endproducts (RAGE) and NF-κB signalling markers in the IL-1β- or (and) HMGB1-treated IVD cells. Results demonstrated that either IL-1β or HMGB1 promoted the release of the inflammatory cytokines such as prostaglandin E2 (PGE2), TNF-α, IL-6 and IL-8 in human IVD cells. And the expression of matrix metalloproteinases (MMPs) such as MMP-1, -3 and -9 was also additively up-regulated by IL-1β and HMGB1. We also found such additive promotion to the expression of TLR-2, TLR-4 and RAGE, and the NF-κB signalling in intervertebral disc cells. In summary, our study demonstrated that IL-1β and HMGB1 additively promotes the release of inflammatory cytokines and the expression of MMPs in human IVD cells. The TLRs and RAGE and the NF-κB signalling were also additively promoted by IL-1β and HMGB1. Our study implied that the additive promotion by IL-1β and HMGB1 to inflammatory cytokines and MMPs might aggravate the progression of IDD.
Collapse
|
49
|
Li K, Li Y, Xu B, Mao L, Zhao J. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc. Connect Tissue Res 2016; 57:347-59. [PMID: 27128308 DOI: 10.1080/03008207.2016.1182998] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.
Collapse
Affiliation(s)
- Kang Li
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan Li
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Bo Xu
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Lu Mao
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jie Zhao
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
50
|
Brand FJ, Forouzandeh M, Kaur H, Travascio F, de Rivero Vaccari JP. Acidification changes affect the inflammasome in human nucleus pulposus cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:29. [PMID: 27563282 PMCID: PMC4997758 DOI: 10.1186/s12950-016-0137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-1β is involved in the pathology of intervertebral disc degeneration. Under normal conditions, IL-1β is present in cells in an inactive form (pro-IL-1β). However, under pathological conditions, pro-IL-1β is turned into its active form (IL-1β) by the inflammasome, a multi-protein complex of the innate immune response that activates caspase-1. Under conditions of degeneration, the disc experiences an environment of increased acidification. However, the implications of acidification on the innate immune response remain poorly explored. METHODS Here we have studied how pH changes in human nucleus pulposus cells affect inflammasome activation by immunoblot analysis of protein lysates obtained from nucleus pulposus cells that were exposed to different pH levels in culture. RESULTS In this study, we have found that in nucleus pulposus cells, with increased acidification, there was a decrease in inflammasome activation consistent with lower levels of active IL-1β. However, this effect at a pH of 6.5, the lowest pH level tested, was abrogated when cells were treated with IL-1β. CONCLUSIONS Taken together, these findings suggest that the inflammatory response through IL-1β experienced by the human disc is not initiated in nucleus pulposus cells when the stimulus is acidification.
Collapse
Affiliation(s)
- Frank J Brand
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Mahtab Forouzandeh
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Harmanpreet Kaur
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Francesco Travascio
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ; Department of Neurological Surgery, Lois Pope LIFE Center, 1095 NW 14th Terrace, 3-25JJ, Miami, FL 33136-1060 USA
| |
Collapse
|