1
|
Pizones J, Chang DG, Suk SI, Izquierdo E. Current biomechanical theories on the etiopathogenesis of idiopathic scoliosis. Spine Deform 2024; 12:247-255. [PMID: 37975988 DOI: 10.1007/s43390-023-00787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE There is great controversy about the etiologic origin of adolescent idiopathic scoliosis. Multiple theories have been suggested, including metabolic aspects, endocrine dysfunction, neurological central abnormalities, genetic predisposition and epigenetic factors involved in the development of scoliosis. However, there has always been speculations based on human biomechanical behavior. METHODS In this article, we performed a literature review on the biomechanical traits of human posture, and the proposed theories that explain the special characteristics present in idiopathic scoliosis. RESULTS The current theory on the etiopathogeneis of AIS suggests that dorsally directed shear loads acting on a preexisting axial plane rotation, in a posteriorly inclined sagittal plane of a growing patient, together with disc maturation, collagen quality at this phase of development and immaturity of proprioception, is the perfect scenario to spark rotational instability and create the three-dimensional deformity that defines idiopathic scoliosis. CONCLUSION The unique spinal alignment of human bipedalism, gravity and muscle forces acting straight above the pelvis to preserve an upright balance, and the instability of the soft tissue in a period of growth development, is an appealing cocktail to try to explain the genesis of this condition in humans.
Collapse
Affiliation(s)
- Javier Pizones
- Department of Orthopedic Surgery, Spine Unit, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Dong-Gune Chang
- Department of Orthopedic Surgery, College of Medicine, Inje University Sanggye Paik Hospital, Inje University, Seoul, 50834, Korea
| | - Se-Il Suk
- Department of Orthopedic Surgery, College of Medicine, Inje University Sanggye Paik Hospital, Inje University, Seoul, 50834, Korea
| | | |
Collapse
|
2
|
Predicting curve progression for adolescent idiopathic scoliosis using random forest model. PLoS One 2022; 17:e0273002. [PMID: 35951527 PMCID: PMC9371275 DOI: 10.1371/journal.pone.0273002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional (3D) spinal deformity characterized by coronal curvature and rotational deformity. Predicting curve progression is important for the selection and timing of treatment. Although there is a consensus in the literature regarding prognostic factors associated with curve progression, the order of importance, as well as the combination of factors that are most predictive of curve progression is unknown.
Objectives
(1) create an ordered list of prognostic factors that most contribute to curve progression, and (2) develop and validate a Machine Learning (ML) model to predict the final major Cobb angle in AIS patients.
Methods
193 AIS patients were selected for the current study. Preoperative PA, lateral and lateral bending radiographs were retrospectively obtained from the Shriners Hospitals for Children. Demographic and radiographic features, previously reported to be associated with curve progression, were collected. Sequential Backward Floating Selection (SBFS) was used to select a subset of the most predictive features. Based on the performance of several machine learning methods, a Random Forest (RF) regressor model was used to provide the importance rank of prognostic features and to predict the final major Cobb angle.
Results
The seven most predictive prognostic features in the order of importance were initial major Cobb angle, flexibility, initial lumbar lordosis angle, initial thoracic kyphosis angle, age at last visit, number of levels involved, and Risser "+" stage at the first visit. The RF model predicted the final major Cobb angle with a Mean Absolute Error (MAE) of 4.64 degrees.
Conclusion
A RF model was developed and validated to identify the most important prognostic features for curve progression and predict the final major Cobb angle. It is possible to predict the final major Cobb angle value within 5 degrees error from 2D radiographic features. Such methods could be directly applied to guide intervention timing and optimization for AIS treatment.
Collapse
|
3
|
Chen H, Yang KG, Zhang J, Cheuk KY, Nepotchatykh E, Wang Y, Hung ALH, Lam TP, Moreau A, Lee WYW. Upregulation of microRNA-96-5p is associated with adolescent idiopathic scoliosis and low bone mass phenotype. Sci Rep 2022; 12:9705. [PMID: 35690607 PMCID: PMC9188568 DOI: 10.1038/s41598-022-12938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Bone densitometry revealed low bone mass in patients with adolescent idiopathic scoliosis (AIS) and its prognostic potential to predict curve progression. Recent studies showed differential circulating miRNAs in AIS but their diagnostic potential and links to low bone mass have not been well-documented. The present study aimed to compare miRNA profiles in bone tissues collected from AIS and non-scoliotic subjects, and to explore if the selected miRNA candidates could be useful diagnostic biomarkers for AIS. Microarray analysis identified miR-96-5p being the most upregulated among the candidates. miR-96-5p level was measured in plasma samples from 100 AIS and 52 healthy girls. Our results showed significantly higher plasma levels of miR-96-5p in AIS girls with an area under the curve (AUC) of 0.671 for diagnostic accuracy. A model that was composed of plasma miR-96-5p and patient-specific parameters (age, body weight and years since menarche) gave rise to an improved AUC of 0.752. Ingenuity Pathway Analysis (IPA) indicated functional links between bone metabolic pathways and miR-96-5p. In conclusion, differentially expressed miRNAs in AIS bone and plasma samples represented a new source of disease biomarkers and players in AIS etiopathogenesis, which required further validation study involving AIS patients of both genders with long-term follow-up.
Collapse
Affiliation(s)
- Huanxiong Chen
- Department of Spine Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Guangpu Yang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Yee Cheuk
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alec Lik-Hang Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
De Salvatore S, Ruzzini L, Longo UG, Marino M, Greco A, Piergentili I, Costici PF, Denaro V. Exploring the association between specific genes and the onset of idiopathic scoliosis: a systematic review. BMC Med Genomics 2022; 15:115. [PMID: 35590413 PMCID: PMC9118580 DOI: 10.1186/s12920-022-01272-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Idiopathic Scoliosis (IS) is the most common spinal deformity in adolescents, accounting for 80% of all spinal deformities. However, the etiology remains uncertain in most cases, being identified as Adolescent Idiopathic Scoliosis (AIS). IS treatments range from observation and sport to bracing or surgery. Several risk factors including sex and familiarity, have been linked with IS. Although there are still many uncertainties regarding the cause of this pathology, several studies report a greater incidence of the defect in families in which at least one other first degree relative is affected. This study systematically reviews the available literature to identify the most significant genes or variants related to the development and onset of IS. Methods The research question was formulated using a PIOS approach on the following databases: Medline, Embase, Cinahl, Scopus, Web of Science and Google Scholar. The search was performed from July to August 2021, and articles from the inception of the database to August 2021 were searched. Results 24 of the 919 initially identified studies were included in the present review. The 24 included studies observed a total of 16,316 cases and 81,567 controls. All the considered studies stated either the affected gene and/or specific SNPs. CHD7, SH2B1, ESR, CALM1, LBX1, MATN1, CHL1, FBN1 and FBN2 genes were associated with IS development. Conclusions Although association can be found in some candidate genes the field of research regarding genetic association with the onset of IS still requires more information.
Collapse
Affiliation(s)
- Sergio De Salvatore
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Laura Ruzzini
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy. .,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Martina Marino
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alessandra Greco
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Ilaria Piergentili
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Pier Francesco Costici
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
5
|
Otomo N, Lu HF, Koido M, Kou I, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Ogura Y, Takahashi Y, Nakajima M, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Kaneko K, Inami S, Kochi Y, Chang WC, Matsumoto M, Watanabe K, Ikegawa S, Terao C. Polygenic Risk Score of Adolescent Idiopathic Scoliosis for Potential Clinical Use. J Bone Miner Res 2021; 36:1481-1491. [PMID: 34159637 DOI: 10.1002/jbmr.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common disease causing three-dimensional spinal deformity in as many as 3% of adolescents. Development of a method that can accurately predict the onset and progression of AIS is an immediate need for clinical practice. Because the heritability of AIS is estimated as high as 87.5% in twin studies, prediction of its onset and progression based on genetic data is a promising option. We show the usefulness of polygenic risk score (PRS) for the prediction of onset and progression of AIS. We used AIS genomewide association study (GWAS) data comprising 79,211 subjects in three cohorts and constructed a PRS based on association statistics in a discovery set including 31,999 female subjects. After calibration using a validation data set, we applied the PRS to a test data set. By integrating functional annotations showing heritability enrichment in the selection of variants, the PRS demonstrated an association with AIS susceptibility (p = 3.5 × 10-40 with area under the receiver-operating characteristic [AUROC] = 0.674, sensitivity = 0.644, and specificity = 0.622). The decile with the highest PRS showed an odds ratio of as high as 3.36 (p = 1.4 × 10-10 ) to develop AIS compared with the fifth in decile. The addition of a predictive model with only a single clinical parameter (body mass index) improved predictive ability for development of AIS (AUROC = 0.722, net reclassification improvement [NRI] 0.505 ± 0.054, p = 1.6 × 10-8 ), potentiating clinical use of the prediction model. Furthermore, we found the Cobb angle (CA), the severity measurement of AIS, to be a polygenic trait that showed a significant genetic correlation with AIS susceptibility (rg = 0.6, p = 3.0 × 10-4 ). The AIS PRS demonstrated a significant association with CA. These results indicate a shared polygenic architecture between onset and progression of AIS and the potential usefulness of PRS in clinical settings as a predictor to promote early intervention of AIS and avoid invasive surgery. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nao Otomo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hsing-Fang Lu
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Kazuki Takeda
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yoji Ogura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Shohei Minami
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Koki Uno
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | | | - Manabu Ito
- Department of Orthopedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopedic & Spine Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Takahiro Iida
- First Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopedic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Fujita Health University, Toyoake, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eijiro Okada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Katsuki Kono
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Kono Orthopaedic Clinic, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsutomu Akazawa
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Teppei Suzuki
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inami
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental and University, Tokyo, Japan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University-Wangfang Hospital, Taipei, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
Tang NLS, Dobbs MB, Gurnett CA, Qiu Y, Lam TP, Cheng JCY, Hadley-Miller N. A Decade in Review after Idiopathic Scoliosis Was First Called a Complex Trait-A Tribute to the Late Dr. Yves Cotrel for His Support in Studies of Etiology of Scoliosis. Genes (Basel) 2021; 12:1033. [PMID: 34356049 PMCID: PMC8306836 DOI: 10.3390/genes12071033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development.
Collapse
Affiliation(s)
- Nelson L. S. Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Matthew B. Dobbs
- Dobbs Clubfoot Center, Paley Orthopedic and Spine Institute, West Palm Beach, FL 33401, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA;
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - T. P. Lam
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Jack C. Y. Cheng
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80012, USA;
| |
Collapse
|
7
|
Wang Y, Dai Z, Wu Z, Feng Z, Liu Z, Sun X, Xu L, Qiu Y, Zhu Z. Genetic variant of MIR4300HG is associated with progression of adolescent idiopathic scoliosis in a Chinese population. J Orthop Surg Res 2021; 16:311. [PMID: 33985553 PMCID: PMC8117547 DOI: 10.1186/s13018-021-02455-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background A recent genome-wide association study identified a susceptible locus in MIR4300HG gene that was associated with curve progression of adolescent idiopathic scoliosis (AIS) in the Japanese population. However, the association between the gene and curve progression in other populations remains unclear. Methods A cohort of 1952 AIS patients and 2495 healthy controls were included in the case-control analysis. In the case-only analysis, 747 patients were assigned to the progression group and 520 patients were assigned to the non-progression group, respectively. Rs35333564 was genotyped for all the subjects. Paraspinal muscles of 76 patients were collected for the analysis of gene expression. Chi-square test and ANOVA test were used for the intergroup comparison. Pearson correlation analysis was performed to investigate the relationship between the gene expression and curve magnitude. Results Variant rs35333564 was significantly associated with the curve severity of AIS (p = 0.025), but not the development of AIS (p = 0.418). Genotype GG was indicated by remarkably lower expression of MIR4300 (p = 0.020) which was significantly correlated with curve magnitude (p = 0.010). As a predicted target gene of MIR4300, the expression of CRTC1 was negatively correlated with MIR4300 expression (p = 0.012, r = −0.287) and positively correlated with curve severity (p = 0.025, r = 0.257). Conclusions The association between rs35333564 and curve progression was successfully replicated in a Chinese AIS population. CRTC1 may be the target gene of MIR4300 that plays a role in the curve progression of AIS. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02455-w.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Spine Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China.,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhicheng Dai
- Department of Spine Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China.,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhichong Wu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Feng
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Liu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Sun
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Leilei Xu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Department of Spine Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China.,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Department of Spine Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China. .,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
8
|
Luo M, Zhang Y, Huang S, Song Y. The Susceptibility and Potential Functions of the LBX1 Gene in Adolescent Idiopathic Scoliosis. Front Genet 2021; 11:614984. [PMID: 33537061 PMCID: PMC7848184 DOI: 10.3389/fgene.2020.614984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have identified many susceptibility genes for adolescent idiopathic scoliosis (AIS). However, most of the results are hard to be replicated in multi-ethnic populations. LBX1 is the most promising candidate gene in the etiology of AIS. We aimed to appraise the literature for the association of LBX1 gene polymorphisms with susceptibility and curve progression in AIS. We also reviewed the function of the LBX1 gene in muscle progenitor cell migration and neuronal determination processes. Three susceptibility loci (rs11190870, rs625039, and rs11598564) near the LBX1 gene, as well as another susceptibility locus (rs678741), related to LBX1 regulation, have been successfully verified to have robust associations with AIS in multi-ethnic populations. The LBX1 gene plays an essential role in regulating the migration and proliferation of muscle precursor cells, and it is known to play a role in neuronal determination processes, especially for the fate of somatosensory relay neurons. The LBX1 gene is the most promising candidate gene in AIS susceptibility due to its position and possible functions in muscle progenitor cell migration and neuronal determination processes. The causality between susceptibility loci related to the LBX1 gene and the pathogenesis of AIS deserves to be explored with further integrated genome-wide and epigenome-wide association studies.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Zhang
- West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M, Rubio-Belmar PA, García-López E, Garzón MJ, Mena-Mollá S, Pallardó FV, Bas T, Viña JR, García-Giménez JL. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020; 140:115563. [PMID: 32768685 DOI: 10.1016/j.bone.2020.115563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.
Collapse
Affiliation(s)
| | | | | | - Pedro Antonio Rubio-Belmar
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - María José Garzón
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan R Viña
- INCLIVA Health Research Institute, Valencia, Spain; Department of Biochemistry, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
10
|
Zhang J, Cheuk KY, Xu L, Wang Y, Feng Z, Sit T, Cheng KL, Nepotchatykh E, Lam TP, Liu Z, Hung AL, Zhu Z, Moreau A, Cheng JC, Qiu Y, Lee WY. A validated composite model to predict risk of curve progression in adolescent idiopathic scoliosis. EClinicalMedicine 2020; 18:100236. [PMID: 31922123 PMCID: PMC6948250 DOI: 10.1016/j.eclinm.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In adolescent idiopathic scoliosis (AIS), the continuous search for effective prognostication of significant curve progression at the initial clinical consultation to inform decision for timely treatment and to avoid unnecessary overtreatment remains a big challenge as evidence of the multifactorial etiopathogenic nature is increasingly reported. This study aimed to formulate a composite model composed of clinical parameters and circulating markers in the prediction of curve progression. METHOD This is a two-phase study consisting of an exploration cohort (120 AIS, mean Cobb angle of 25°± 8.5 at their first clinical visit) and a validation cohort (51 AIS, mean Cobb angle of 23° ± 5.0° at the first visit). Patients with AIS were followed-up for a minimum of six years to formulate a composite model for prediction. At the first visit, clinical parameters were collected from routine clinical practice, and circulating markers were assayed from blood. FINDING We constructed the composite predictive model for curve progression to severe Cobb angle > 40° with a high HR of 27.9 (95% CI of 6.55 to 119.16). The area under curve of the composite model is higher than that of individual parameters used in current clinical practice. The model was validated by an independent cohort and achieved a sensitivity of 72.7% and a specificity of 90%. INTERPRETATION This is the first study proposing and validating a prognostic composite model consisting of clinical and circulating parameters which could quantitatively evaluate the probability of curve progression to a severe curvature in AIS at the initial consultation. Further validation in clinic will facilitate application of composite model in assisting objective clinical decision.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-yee Cheuk
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Leilei Xu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhenhua Feng
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tony Sit
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-lo Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Tsz-ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen Liu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Alec L.H. Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zezhang Zhu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack C.Y. Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Co-corresponding author at: Lui Che Woo Clinical Science Bu/F, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Yong Qiu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Co-corresponding author at: Spine Surgery, Nanjing Drum Tower Hospital, Nanjing, China.
| | - Wayne Y.W. Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Corresponding author at: Room 904, 9/F, Li Ka Shing Medical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
11
|
Xu L, Wu Z, Xia C, Tang N, Cheng JCY, Qiu Y, Zhu Z. A Genetic Predictive Model Estimating the Risk of Developing Adolescent Idiopathic Scoliosis. Curr Genomics 2019; 20:246-251. [PMID: 32030084 PMCID: PMC6983957 DOI: 10.2174/1389202920666190730132411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Previous GWASs have revealed several susceptible variants associated with adolescent idiopathic scoliosis (AIS). Risk prediction based on these variants can potentially improve disease prognosis. We aimed to evaluate the combined effects of genetic factors on the development of AIS and to further develop a genetic predictive model. Methods: A total of 914 AIS patients and 1441 normal controls were included in the discovery stage, which was followed by the replication stage composed of 871 patients and 1239 controls. Genotyping assay was performed to analyze 10 previously reported susceptible variants, including rs678741 of LBX1, rs241215 of AJAP1, rs13398147 of PAX3, rs16934784 of BNC2, rs2050157 of GPR126, rs2180439 of PAX1, rs4940576 of BCL2, rs7593846 of MEIS1, rs7633294 of MAGI1 and rs9810566 of TNIK. Logistic regression analysis was performed to generate a risk predictive model. The predicted risk score was calculated for each participant in the replication stage. Results: The association of the 10 variants with AIS was successfully validated. The established model could explain approximately 7.9% of the overall variance. In the replication stage, patients were found to have a remarkably higher risk score as compared to the controls (44.2 ± 14.4 vs. 33.9 ± 12.5, p <0.001). There was a remarkably higher proportion of the risk score i.e. >40 in the patients than in the controls (59% vs. 28.9%, p <0.001). Conclusion: Risk predictive model based on the previously reported genetic variants has a remarkable discriminative power. More clinical and genetic factors need to be studied, to further improve the proba-bility to predict the onset of AIS.
Collapse
Affiliation(s)
- Leilei Xu
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhichong Wu
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chao Xia
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nelson Tang
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jack C Y Cheng
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yong Qiu
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - ZeZhang Zhu
- 1Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing210008, China; 2Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China; 3SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
12
|
Replication Study for the Association of GWAS-associated Loci With Adolescent Idiopathic Scoliosis Susceptibility and Curve Progression in a Chinese Population. Spine (Phila Pa 1976) 2019; 44:464-471. [PMID: 30234802 DOI: 10.1097/brs.0000000000002866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association (replication) study. OBJECTIVE The aim of this study was to replicate and further evaluate the association among seven genome-wide association studies (GWAS)-identified single nucleotide polymorphisms (SNPs) in Chinese girls with adolescent idiopathic scoliosis (AIS) with disease onset, curve types, and progression. SUMMARY OF BACKGROUND DATA AIS is the most common pediatric spinal deformity with a strong genetic predisposition. Recent GWAS identified 10 new disease predisposition loci for AIS. METHODS Three hundred nineteen female AIS patients with Cobb angle ≥ 10 and 201 healthy controls were studied for the association with disease onset. Seven GWAS-identified SNPs (rs11190870 in LBX1, rs12946942 in SOX9/KCNJ2, rs13398147 in PAX3/EPH4, rs241215 in AJAP1, rs3904778 in BNC2, rs6570507 in GPR126, and rs678741 in LBX1-AS1) were analyzed. In subgroup analysis, AIS patients were subdivided by curve types and disease progression to examine for genotype association. RESULTS We replicated the association with disease onset in four common SNPs rs11190870, rs3904778, rs6570507, and rs678741. In addition, rs1190870 and rs678741 remained significantly associated in the right thoracic curves only subgroup. However, no significant difference was observed with both clinical curve progression or Cobb angle. CONCLUSION This study replicated the associations of four GWAS-associated SNPs with occurrence of AIS in our Chinese population. However, none of these SNPs was associated with curve severity and progression. The results suggest that curve progression may be determined by environmental (nongenetic) factor, but further study with a larger sample size is required to address this issue. LEVEL OF EVIDENCE 4.
Collapse
|
13
|
A multiethnic meta-analysis defined the association of rs12946942 with severe adolescent idiopathic scoliosis. J Hum Genet 2019; 64:493-498. [DOI: 10.1038/s10038-019-0575-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
|
14
|
Positive Association between TGFB1 Gene and Susceptibility to Idiopathic Scoliosis in Bulgarian Population. Anal Cell Pathol (Amst) 2018; 2018:6836092. [PMID: 30079294 PMCID: PMC6069583 DOI: 10.1155/2018/6836092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Idiopathic scoliosis (IS) is a common medical condition beginning in childhood and characterized by strong evidence for a genetic susceptibility to three-dimensional spinal deformity. The primary goal of the current case-control study is to examine the association between the TGFB1 (-509C/T) functional polymorphic variant and genetic predisposition to IS in the Bulgarian population and the genotype-phenotype correlations in distinct case-control subgroups based on age at onset, family history, and gender. A total of 127 patients with primary scoliosis and 254 gender-matched control subjects were recruited. The mean Cobb angle was 53.8 ± 21.2°. Genotyping of cases and controls was performed using the TaqMan real-time amplification technique. The results were processed statistically using Pearson's Chi-squared test and Fisher's exact test with a value of p less than 0.05 as statistically significant. The polymorphic T allele and TT genotype were associated with a greater incidence of IS and can be considered as predisposing factors with a moderate effect on deformity development. The current results suggested that there was a genetic predisposition in early and late onset IS and familial, sporadic, and female cases. Nevertheless, replication studies are needed to reveal the relationship between the TGFB1 locus and certain subtypes of IS in different populations.
Collapse
|
15
|
High Ghrelin Level Predicts the Curve Progression of Adolescent Idiopathic Scoliosis Girls. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9784083. [PMID: 30079352 PMCID: PMC6069699 DOI: 10.1155/2018/9784083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is common deformity with unknown cause. Previous studies have suggested the abnormal serum leptin and ghrelin level in AIS girls. The aim of present study was to evaluate whether the serum leptin and ghrelin level could serve as risk factor in predicting the curve progression in AIS girls. The associations between them and the physical characteristics were also investigated. Materials and Methods Circulating leptin and ghrelin levels from 105 AIS girls and 40 age-matched non-AIS girls were examined by enzyme-linked immunosorbent assay. The correlations between ghrelin and leptin levels and growth-related parameters (age, weight, corrected height, corrected BMI, main Cobb angle, and Risser sign) were analyzed in AIS group. Multivariate logistic regression was used to investigate factors predicting curve progression in AIS girls. Results A significantly lower leptin level (6.55 ± 2.88 vs. 8.01 ± 3.12 ng/ml, p < 0.05) and a higher ghrelin level (6.33 ± 2.46 vs. 4.46 ± 2.02 ng/ml, p < 0.05) were found in all AIS patients, as compared with normal controls. Curve progression patients had a higher ghrelin level than stable curve patients (7.61 ± 2.48 vs. 5.54 ± 2.11 ng/ml, p < 0.01); for leptin level, there was no significant difference between progression and stable group. The results of multivariate logistic stepwise regression showed that premenarche status, initial main Cobb magnitude that was more than or equal to 23°, high ghrelin level (≥7.30 ng/ml), and lower Risser grade (grades 0 to 2) were identified as risk factors in predicting curve progression. Ghrelin levels of >6.48 ng/ml were predictive for curve progression with 70.00 % sensitivity and 72.31 % specificity, and the area under the curve (AUC) was 0.741 (95 % confidence interval 0.646-0.821). Conclusions High ghrelin level may serve as a new quantitative indicator for predicting curve progression in AIS girls.
Collapse
|
16
|
A Replication Study for the Association of rs11190870 With Curve Severity in Adolescent Idiopathic Scoliosis in Japanese. Spine (Phila Pa 1976) 2018; 43:688-692. [PMID: 28902104 DOI: 10.1097/brs.0000000000002413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-only study. OBJECTIVE The aim of this study was to confirm the association of rs11190870 with adolescent idiopathic scoliosis (AIS) severity in Japanese patients with AIS. SUMMARY OF BACKGROUND DATA Although the association of rs11190870 with AIS susceptibility is replicated in multiple ethnics, the association of rs11190870 with curve severity is controversial. Since the previous studies are of small, we performed a replication study using far larger number of patients than previous studies. METHODS A total of 1860 Japanese patients with AIS who had reached skeletal maturity or undergone surgical fusion were included in the study. We evaluated the association between rs11190870 and AIS progression for the entire group, and then for patients grouped according to a severe curve (a Cobb angle of ≥40°) or mild curve (a Cobb angle <30°). Because braces could affect the results of the present study, patients in the mild-curve group were divided according to whether or not they had worn a brace. We then evaluated associations between rs11190870 genotype and curve severity in these groups. RESULTS The mean Cobb angles were 54.8° ± 12.1° in the severe-curve group and 24.4° ± 4.0° in the mild-curve group. The difference in rs11190870 risk-allele frequency between the severe- and mild-curve groups was evaluated. No significant differences were observed. We then examined the association of rs11190870 risk-allele frequency between patients in the mild- and severe-curve groups using the χ test for three models, and found a marginal association between rs11190870 and curve severity in the dominant model (P = 0.035, odds ratio = 1.51). CONCLUSION We found no association between rs11190870 and curve severity using the criteria of previous study. However, we found a marginal association between rs11190870 and curve severity. Large-scale replication studies that consider skeletal maturity and brace history, including replication studies in other ethnic groups, would be helpful for clarifying the association. LEVEL OF EVIDENCE 4.
Collapse
|
17
|
Ogura Y, Kou I, Takahashi Y, Takeda K, Minami S, Kawakami N, Uno K, Ito M, Yonezawa I, Kaito T, Yanagida H, Watanabe K, Taneichi H, Harimaya K, Taniguchi Y, Kotani T, Tsuji T, Suzuki T, Sudo H, Fujita N, Yagi M, Chiba K, Kubo M, Kamatani Y, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S, Tsuyoshi S, Katsuki K, Tsutomu A, Kotaro N, Kenichiro K, Hideki S, Takahiro I, Satoru D, Naobumi H, Eijiro O. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet 2017; 26:4086-4092. [DOI: 10.1093/hmg/ddx291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoji Ogura
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan,
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan,
| | - Yohei Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan,
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan,
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan,
| | - Koki Uno
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe 654-0155 Japan,
| | - Manabu Ito
- Department of Orthopaedic Surgery, National Hospital Organization, Hokkaido Medical Center, Hokkaido 063-0005 Japan,
| | - Ikuho Yonezawa
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo 113-8431, Japan,
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan,
| | - Haruhisa Yanagida
- Department of Orthopaedic Surgery, Fukuoka Children's Hospital, Fukuoka 810-0063, Japan,
| | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Hospital, Niigata 951-8520, Japan,
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan,
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan,
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan,
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan,
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe 654-0155 Japan,
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan,
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Mitsuru Yagi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, National Defense Medical College, Saitama 359-8513, Japan,
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan,
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan,
| | - Sakuma Tsuyoshi
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan
| | - Kono Katsuki
- Department of Orthopaedic Surgery, Kono Othopaedic Clinic, Tokyo 156-0053, Japan
| | - Akazawa Tsutomu
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Nishida Kotaro
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kakutani Kenichiro
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shigematsu Hideki
- Department of Orthopaedic Surgery, Nara Medical University, Nara 634-8521, Japan
| | - Iida Takahiro
- Department of Orthopaedic Surgery, Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Japan,
| | - Demura Satoru
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8641, Japan
| | - Hosogane Naobumi
- Department of Orthopaedic Surgery, National Defense Medical College, Saitama 359-8513, Japan,
| | - Okada Eijiro
- Department of Orthopaedic Surgery, Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | | | | |
Collapse
|
18
|
Moreau A. The next personalized medicine evolution in orthopedics: how diagnosing and treating scoliosis are about to change. Per Med 2017; 14:89-92. [PMID: 28757885 PMCID: PMC5480784 DOI: 10.2217/pme-2016-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
Affiliation(s)
- Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, 3175 Cote-Ste-Catherine Road, Montreal, Québec, H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Department of Biochemistry & Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
19
|
Walker CT, Bonney PA, Martirosyan NL, Theodore N. Genetics Underlying an Individualized Approach to Adult Spinal Disorders. Front Surg 2016; 3:61. [PMID: 27921035 PMCID: PMC5118450 DOI: 10.3389/fsurg.2016.00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022] Open
Abstract
Adult spinal disorders are a significant cause of morbidity across the world and carry significant health and economic burdens. Genetic predispositions are increasingly considered for these conditions and are becoming understood. Advances in molecular technologies since the mid-1990s have made possible genetic characterizations of these diseases in many populations, and recent findings have provided insight into the underlying pathophysiologic mechanisms. These studies have made clear the genetic heterogeneity producing clinical phenotypes and suggest that individualized treatments are possible in the future. We review the genetics and heritability of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament and perform a systematic review of the genetics of adult lumbar degenerative scoliotic deformity, highlighting recent discoveries and the potential for personalized future therapeutics for these patients.
Collapse
Affiliation(s)
- Corey T Walker
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Phillip A Bonney
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Nicholas Theodore
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| |
Collapse
|
20
|
Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. SCOLIOSIS AND SPINAL DISORDERS 2016; 11:45. [PMID: 27933320 PMCID: PMC5125035 DOI: 10.1186/s13013-016-0105-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/15/2016] [Indexed: 03/06/2023]
Abstract
Idiopathic scoliosis (IS), the most common spinal deformity, affects otherwise healthy children and adolescents during growth. The aetiology is still unknown, although genetic factors are believed to be important. The present review corroborates the understanding of IS as a complex disease with a polygenic background. Presumably IS can be due to a spectrum of genetic risk variants, ranging from very rare or even private to very common. The most promising candidate genes are highlighted.
Collapse
Affiliation(s)
- A Grauers
- Department of Orthopaedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden ; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - E Einarsdottir
- Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland ; Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - P Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden ; Department of Orthopaedics, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| |
Collapse
|
21
|
Zamecnik J, Krskova L, Hacek J, Stetkarova I, Krbec M. Etiopathogenesis of adolescent idiopathic scoliosis: Expression of melatonin receptors 1A/1B, calmodulin and estrogen receptor 2 in deep paravertebral muscles revisited. Mol Med Rep 2016; 14:5719-5724. [DOI: 10.3892/mmr.2016.5927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/11/2016] [Indexed: 11/05/2022] Open
|
22
|
Xu L, Qin X, Sun W, Qiao J, Qiu Y, Zhu Z. Replication of Association Between 53 Single-Nucleotide Polymorphisms in a DNA-Based Diagnostic Test and AIS Progression in Chinese Han Population. Spine (Phila Pa 1976) 2016; 41:306-310. [PMID: 26579958 DOI: 10.1097/brs.0000000000001203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A case-only study. OBJECTIVE The aim of this study was to evaluate the association of the 53 single-nucleotide polymorphisms (SNPs) in a prognostic test with curve progression in Chinese adolescent idiopathic scoliosis (AIS) patients. SUMMARY OF BACKGROUND DATA "ScoliScore" was the first diagnostic kit developed for curve progression of AIS in the white population. To date, there is still a paucity of validation of ScoliScore in Chinese Han population. METHODS A total of 670 AIS patients were included in the study, with 313 patients assigned to the nonprogression group and the other 357 patients assigned to the progression group. A panel of 53 SNPs encompassed in ScoliScore were genotyped using the PCR-based Invader assay. The allele frequencies were compared between AIS patients with progressive curve and those with nonprogressive curve. RESULTS SNP rs9945359 and rs17044552 are the only 2 SNPs that had significantly different allele frequencies between the 2 groups. Allele A of rs9945359 was significantly higher in the progression group than in the nonprogression group (25.7% vs 19.5%, P = 0.01), and allele A of rs17044552 was significantly lower in the progression group (11.5% vs 16.4%, P = 0.01). The odds ratio (OR) of these 2 SNPs were 1.42 [95% confidence interval (95% CI) 1.09-1.88] and 0.65 (95% CI 0.47-0.91), respectively. As for the allele frequencies of the other 51 SNPs, no significant difference was found between the 2 groups. CONCLUSION ScoliScore could not be able to predict the curve progression of AIS in Chinese Han population. However, the role of this test in other populations cannot be totally excluded, and additional replication studies in other ethnic groups are warranted to evaluate the significance of these SNPs. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | |
Collapse
|
23
|
Noshchenko A, Hoffecker L, Lindley EM, Burger EL, Cain CMJ, Patel VV, Bradford AP. Predictors of spine deformity progression in adolescent idiopathic scoliosis: A systematic review with meta-analysis. World J Orthop 2015; 6:537-558. [PMID: 26301183 PMCID: PMC4539477 DOI: 10.5312/wjo.v6.i7.537] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate published data on the predictors of progressive adolescent idiopathic scoliosis (AIS) in order to evaluate their efficacy and level of evidence.
METHODS: Selection criteria: (1) study design: randomized controlled clinical trials, prospective cohort studies and case series, retrospective comparative and none comparative studies; (2) participants: adolescents with AIS aged from 10 to 20 years; and (3) treatment: observation, bracing, and other. Search method: Ovid MEDLINE, Embase, the Cochrane Library, PubMed and patent data bases. All years through August 2014 were included. Data were collected that showed an association between the studied characteristics and the progression of AIS or the severity of the spine deformity. Odds ratio (OR), sensitivity, specificity, positive and negative predictive values were also collected. A meta-analysis was performed to evaluate the pooled OR and predictive values, if more than 1 study presented a result. The GRADE approach was applied to evaluate the level of evidence.
RESULTS: The review included 25 studies. All studies showed statistically significant or borderline association between severity or progression of AIS with the following characteristics: (1) An increase of the Cobb angle or axial rotation during brace treatment; (2) decrease of the rib-vertebral angle at the apical level of the convex side during brace treatment; (3) initial Cobb angle severity (> 25o); (4) osteopenia; (5) patient age < 13 years at diagnosis; (6) premenarche status; (7) skeletal immaturity; (8) thoracic deformity; (9) brain stem vestibular dysfunction; and (10) multiple indices combining radiographic, demographic, and physiologic characteristics. Single nucleotide polymorphisms of the following genes: (1) calmodulin 1; (2) estrogen receptor 1; (3) tryptophan hydroxylase 1; (3) insulin-like growth factor 1; (5) neurotrophin 3; (6) interleukin-17 receptor C; (7) melatonin receptor 1B, and (8) ScoliScore test. Other predictors included: (1) impairment of melatonin signaling in osteoblasts and peripheral blood mononuclear cells (PBMC); (2) G-protein signaling dysfunction in PBMC; and (3) the level of platelet calmodulin. However, predictive values of all these findings were limited, and the levels of evidence were low. The pooled result of brace treatment outcomes demonstrated that around 27% of patents with AIS experienced exacerbation of the spine deformity during or after brace treatment, and 15% required surgical correction. However, the level of evidence is also low due to the limitations of the included studies.
CONCLUSION: This review did not reveal any methods for the prediction of progression in AIS that could be recommended for clinical use as diagnostic criteria.
Collapse
|
24
|
Zhao L, Roffey DM, Chen S. Genetics of adolescent idiopathic scoliosis in the post-genome-wide association study era. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S35. [PMID: 26046082 DOI: 10.3978/j.issn.2305-5839.2015.03.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 11/14/2022]
Affiliation(s)
- Linlu Zhao
- 1 Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada ; 2 University of Ottawa Spine Program, The Ottawa Hospital, Ottawa, ON, Canada ; 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Darren M Roffey
- 1 Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada ; 2 University of Ottawa Spine Program, The Ottawa Hospital, Ottawa, ON, Canada ; 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Suzan Chen
- 1 Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada ; 2 University of Ottawa Spine Program, The Ottawa Hospital, Ottawa, ON, Canada ; 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
25
|
A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine (Phila Pa 1976) 2015; 40:537-43. [PMID: 25646748 DOI: 10.1097/brs.0000000000000807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A replication association study that used genomic data generated from French-Canadian case and control cohorts. OBJECTIVES To determine whether the 53 single nucleotide polymorphisms (SNPs) that were previously associated with spinal deformity progression in an American Caucasian cohort are similarly associated in French-Canadian population. SUMMARY OF BACKGROUND DATA It is widely accepted that genetic factors contribute to adolescent idiopathic scoliosis. The identification of genetic variants associated with the predisposition or progression of curvature could facilitate diagnostic/prognostic tool development. Although 53 SNPs have been associated with spinal curve progression in Caucasian cohorts in the United States, these associations were not replicated in a large Japanese population study, arguing that such a discrepancy could be explained by ethnicity, thus raising the importance of a replication study in an independent Caucasian population of European descent. METHODS Genomic data were collected from the French-Canadian population, using the Illumina HumanOmni 2.5M BeadChip. Fifty-two SNPs, tested in ScoliScore or in high linkage disequilibrium with SNPs in the test, were selected to assess their association with scoliosis generally, and with spinal curve progression. One SNP in ScoliScore, rs16909285, could not be evaluated in our Genome-Wide association study. RESULTS None of the SNPs used in ScoliScore were associated with adolescent idiopathic scoliosis curve progression or curve occurrence in French-Canadian population. We evaluated 52 SNPs in severe patients by comparing risk allele frequencies with those in nonsevere patients and with those in control individuals. There was no significant difference between the severe group and the nonsevere group or between the severe group and the control group. CONCLUSION Although the 52 SNPs studied here were previously associated with curve progression in an American population of European descent, we found no association in French-Canadian patients with adolescent idiopathic scoliosis. This second replication cohort suggests that the lack of association of these SNPs in a Japanese cohort is not due to ethnicity. LEVEL OF EVIDENCE 4.
Collapse
|
26
|
Abstract
Scoliosis in children poses serious problems including respiratory problems, trunk imbalance, and depression, as well as detracting from the child's appearance. Scoliosis can also contribute to back pain later in life. Advanced surgical techniques allow for good correction and maintenance of progressive curves, and growth-sparing treatments are now available for patients with early-onset scoliosis (EOS). Posterior corrective surgeries using pedicle screw (PS) constructs, which allow curves to be corrected in three dimensions, has become the most popular surgical treatment for scoliosis. Several navigation systems and probes have been developed to aid in accurate PS placement. For thoracolumbar and lumbar curves, anterior surgery remains the method of choice. Growth-sparing techniques for treating EOS include growing rods, the Shilla method, anterior stapling, and vertical expandable prosthetic titanium rib, which was originally designed to treat thoracic insufficiency syndrome. However, these advanced surgical techniques do not always offer a perfect solution for pediatric scoliosis, and they are associated with complications such as infections and problems with instrumentation. Surgeons have developed several techniques in efforts to address these complications. We here review historic and recent advances in the surgical treatment of scoliosis in children, the problems associated with various techniques, and the challenges that remain to be overcome.
Collapse
Affiliation(s)
- Morio Matsumoto
- Department of Orthopedic Surgery, Keio University, Shinanomachi 35, Shinjuku, Tokyo, 160-8582, Japan,
| | | | | | | |
Collapse
|