1
|
Avetisian H, Prasad A, Mathew K, McCavitt D, Karakash WJ, Patel D, Wang JC, Hah RJ, Alluri RK. Polyetheretherketone vs Titanium Cages in Spinal Fusion: Spin Bias in Abstracts of Systematic Reviews and Meta-Analyses. Global Spine J 2025:21925682251336750. [PMID: 40239031 PMCID: PMC12003342 DOI: 10.1177/21925682251336750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Study DesignCross sectional.ObjectiveSpin bias, where authors distort findings to overstate efficacy, is prevalent in the medical literature. The comparative superiority of polyetheretherketone (PEEK) and titanium (Ti) cages in spinal fusion remains controversial. This study aims to assess the prevalence of spin bias in meta-analyses and systematic reviews comparing PEEK vs Ti cages in spinal fusion.MethodsThe PubMed, Embase, and Web of Science databases were searched to identify meta-analyses and systematic reviews comparing PEEK and titanium cages in spinal fusion. Included studies were assessed for the presence of the 9 most severe types of spin bias. This study also graded the quality of these articles using A Measurement Tool to Assess systematic Reviews 2 (AMSTAR 2) criteria.ResultsThe search resulted in 2352 articles, of which 13 met the inclusion criteria. Spin bias was identified in 8/13 (61.54%) of the included studies, with the most prevalent types being Type 3 (38.46%) and Type 5 (30.77%). Using AMSTAR 2, 1/13 (7.69%) studies were rated as critically low quality, 4/13 (30.77%) as low, 8/13 (61.54%) as moderate, with none rated as high.ConclusionsSpin was found in 61.54% of the reviews comparing PEEK and Ti cages in spinal fusion, with none achieving a high-quality rating. Surgeons must critically evaluate these articles for bias prior to utilizing them in clinical decision making.
Collapse
Affiliation(s)
- Henry Avetisian
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Apurva Prasad
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kevin Mathew
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - David McCavitt
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - William J. Karakash
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dil Patel
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jeffrey C. Wang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Raymond J. Hah
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ram K. Alluri
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Jacob CC, Eaton R, Ward J, Sette K, Wilson S, Weber MD, Duru O, Keister A, Harrigan ME, Grossbach AJ, Viljoen S. 3D printed titanium banana interbody cages versus titanium-coated PEEK bullet cages for TLIF. Clin Neurol Neurosurg 2025; 249:108731. [PMID: 39799792 DOI: 10.1016/j.clineuro.2025.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Lumbar degenerative spinal disease is a common, major cause of pain and disability. Titanium and polyetheretherketone (PEEK) are popular materials for interbody implants although evidence is mixed on which material is superior in terms of fusion and subsidence. The purpose of this study was to evaluate the clinical outcome of 3D printed titanium (3DPT) cages in patients undergoing TLIFs, as well as complication profiles based on widely used outcome metrics and reoperation events. METHODS A retrospective review was conducted for patients receiving 1- or 2-level TLIF at an academic medical center between January 2018 and May 2022. Patients were divided into two cohorts according to the material of interbody cage(s), either 3DPT banana or titanium-coated PEEK bullet. Radiographs, patient-reported outcome measures (PROMs), and complications were analyzed and compared. All included patients had radiographic and clinical follow-up of at least one year. RESULTS 200 patients with 277 interbody cage-implanted levels were included. Patients received either 3DPT (n = 140) or PEEK (n = 60) interbody cages with 202 and 75 instrumented vertebral levels per cohort, respectively. At one year, the 3DPT cohort demonstrated a higher fusion rate of 93.3 % compared to the PEEK cohort's fusion rate of 73.2 % (p < 0.0001). Subsidence rates were 6.0 % and 25.0 % for the 3DPT and PEEK groups, respectively (p < 0.0001). CONCLUSION While 3DPT and PEEK interbody cages demonstrated few adverse events at short- and long-term follow-up, 3DPT exhibited a higher rate of fusion and lower rate of subsidence at one year.
Collapse
Affiliation(s)
- Connor C Jacob
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States.
| | - Ryan Eaton
- Department of Neurosurgery, The Ohio State University, 410 W 10th Ave, Columbus, OH 43210, United States
| | - Jacob Ward
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Katelyn Sette
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Seth Wilson
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Matthieu D Weber
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Olivia Duru
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Alexander Keister
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Markus E Harrigan
- College of Medicine, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Andrew J Grossbach
- Department of Neurosurgery, The Ohio State University, 410 W 10th Ave, Columbus, OH 43210, United States
| | - Stephanus Viljoen
- Department of Neurosurgery, The Ohio State University, 410 W 10th Ave, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
4
|
Zacher AT, Mirza K, Thieme L, Nietzsche S, Senft C, Schwarz F. Biofilm formation of Staphylococcus aureus on various implants used for surgical treatment of destructive spondylodiscitis. Sci Rep 2024; 14:19364. [PMID: 39169088 PMCID: PMC11339328 DOI: 10.1038/s41598-024-70244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The incidence of spondylodiscitis has witnessed a significant increase in recent decades. Surgical intervention becomes necessary in case of bone destruction to remove infected tissue and restore spinal stability, often involving the implantation of a cage. Despite appropriate treatment, relapses occur in up to 20 percent of cases, resulting in substantial economic and social burdens. The formation of biofilm has been identified as a major contributor to relapse development. Currently, there is no consensus among German-speaking spinal surgeons or in the existing literature regarding the preferred choice of material to minimize relapse rates. Thus, the objective of this study is to investigate whether certain materials used in spinal implants exhibit varying degrees of susceptibility to bacterial attachment, thereby providing valuable insights for improving treatment outcomes.Eight cages of each PEEK, titanium-coated PEEK (Ti-PEEK), titanium (Ti), polyetherketoneketone (PEKK), tantalum (Ta) and antibiotic-loaded bone cement were incubated with 20% human plasma for 24 h. Subsequently, four implants were incubated with S. aureus for 24 h or 48 h each. The biofilm was then removed by sonication and the attained solution plated for Colony Forming Units (CFU) counting. Scanning electron microscopy was used to confirm bacterial attachment. The CFUs have been compared directly and in relation to the cages surface area. The surface area of the implants was PEEK 557 mm2, Ti-PEEK 472 mm2, Ti 985 mm2, PEKK 594 mm2, Ta 706 mm2, bone cement 123 mm2. The mean CFU count per implant and per mm2 surface area after 24 h and after 48 h was calculated. Bone cement was found to have significantly more CFUs per mm2 surface area than the other materials tested. When comparing the CFU count per implant, bone cement was statistically significantly more prone to biofilm formation than PEEK after 48 h. There was no statistical significance between the other materials when comparing both CFU count per mm2 surface area and CFU count per implant. The electron microscopic analysis showed the attachment of the bacteria, as well as production of extracellular polymeric substances (EPS) as a sign for beginning biofilm formation. Antibiotic-loaded bone cement has shown statistically significantly more bacterial attachment than the other examined materials. No difference was found between the other materials regarding bacterial attachment after 24 h and 48 h. Proposed hypotheses for further studies include testing whether differences become apparent after longer incubation or with different pathogens involved in the pathogenesis of pyogenic spondylodiscitis.
Collapse
Affiliation(s)
- Amrei T Zacher
- Department of Neurosurgery, Jena University Hospital, Friedrich-Schiller-University of Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Kamran Mirza
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University of Jena, Erlanger Allee 103, 07747, Jena, Germany
- Leibnitz Center for Photonics in Infection Research, Jena University Hospital, Friedrich- Schiller-University of Jena, Erlanger Allee 103, 07747, Jena, Germany
| | - Lara Thieme
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University of Jena, Erlanger Allee 103, 07747, Jena, Germany
- Leibnitz Center for Photonics in Infection Research, Jena University Hospital, Friedrich- Schiller-University of Jena, Erlanger Allee 103, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich-Schiller-University of Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Christian Senft
- Department of Neurosurgery, Jena University Hospital, Friedrich-Schiller-University of Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Falko Schwarz
- Department of Neurosurgery, Jena University Hospital, Friedrich-Schiller-University of Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
5
|
Duan Y, Feng D, Li T, Wang Y, Jiang L, Huang Y. Comparison of Lumbar Interbody Fusion with 3D-Printed Porous Titanium Cage Versus Polyetheretherketone Cage in Treating Lumbar Degenerative Disease: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 183:144-156. [PMID: 38145654 DOI: 10.1016/j.wneu.2023.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To compare the safety and radiological effectiveness of lumbar interbody fusion with a 3D-printed porous titanium (3D-PPT) cage versus a polyetheretherketone (PEEK) cage for the treatment of lumbar degenerative disease. METHODS This study was registered at PROSPERO (CRD42023461511). We systematically searched the PubMed, Embase, and Web of Science databases for related studies from inception to September 3, 2023. Review Manager 5.3 was used to conduct this meta-analysis. The reoperation rate, complication rate, fusion rate, and subsidence rate were assessed using relative risk and 95% confidence intervals. RESULTS Ten articles reporting 9 studies comparing lumbar interbody fusion with 3D-PPT cages versus PEEK cages for the treatment of lumbar degenerative disease were included. The subsidence rate at the 1-year follow-up in the 3D-PPT cage was significantly lower than that in the PEEK cage. The fusion rate in the 3D-PPT cage was significantly higher than that in the PEEK cage at the 6-month follow-up. No significant difference was identified between the 2 groups at the 12-month follow-up. No significant difference was identified between the 2 groups in terms of the complication rate and reoperation rate. There was a trend toward a lower complication rate and reoperation rate with the 3D-PPT cage. CONCLUSIONS Compared with the PEEK cage, the 3D-PPT cage may be a safer implant. The 3D-PPT cage was associated with a higher fusion rate and lower subsidence rate. The 3D-PPT cage may accelerate the intervertebral fusion process, improve the quality of fusion and prevent the occurrence of subsidence.
Collapse
Affiliation(s)
- Yuchen Duan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dagang Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tong Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yiran Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Leiming Jiang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yong Huang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Li Q, Gao Q, Wang L, Liu L, Yang H, Song Y. Comparison of Long-term Follow-Up of n-HA PA66 Cage and PEEK Cage of Lumbar Interbody Fusion in Multi-level Degenerative Lumbar Diseases: A Stepwise Propensity Score Matching Analysis. Orthop Surg 2024; 16:17-28. [PMID: 37953456 PMCID: PMC10782257 DOI: 10.1111/os.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
OBJECTIVE Previous studies have confirmed that the nanohydroxyapatite/polyamide-66 (n-HA/PA66) cage is an ideal alternative material for degenerative lumbar disease (DLD) comparable to the polyether ether ketone (PEEK) cage due to its similar radiographic fusion, subsidence rate, and clinical results. However, these studies were restricted to one-level surgery. The aim of this study was to analyze the long-term clinical and radiologic outcomes between n-HA PA66 cage and PEEK cage for patients with multi-level degenerative lumbar diseases (DLDs). METHODS We retrospectively reviewed all patients who underwent multi-level transforaminal lumbar interbody fusion (TLIF) from June 2010 to December 2016 with a minimum 6-year follow-up. Matched-pair analysis was performed using a 1-to-1 closest neighbor approach to match patients who received an n-HA PA66 cage with those who received a PEEK cage. Clinical outcomes and radiographic evaluations were compared between the two groups. The independent student's t-test and χ2 -test were applied to compare the differences between groups. RESULTS At the end of the propensity score matching (PSM) analysis, 48 patients from n-HA/PA66 group were matched to 48 patients in the PEEK group. No significant difference was observed in cage subsidence and bony fusion except for adjacent segment degeneration (ASD). The occurrence of ASD was 14.58% (7/48) in the n-HA/PA 66 group, which was significantly less than that in the PEEK group (33.33% [16/48]) (p = 0.031). Although the intervertebral space height (IH), segmental angle (SA) and lumbar lordosis (LL) significantly increased after surgery in both groups, there was no significant difference at any time point after surgery (p > 0.05). The visual analogue scale (VAS) and Oswestry disability index (ODI) scores significantly improved in both groups at 3m postoperative, 1y postoperative and at final follow-up. However, there were no significant differences in the VAS and ODI score at any time point (p > 0.05). The total complications and re-admission rate were not different between the two groups. CONCLUSION Overall, our data suggest that the outcomes of n-HA/PA66 cage group are comparable to those of the PEEK cage group, with a similar high fusion rate and low cage subsidence rate as PEEK cages, except its lower rate of ASD occurrence.
Collapse
Affiliation(s)
- Qiujiang Li
- Department of Orthopedics, Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Qingyang Gao
- Department of Burn and Plastic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Lei Wang
- Department of Orthopedics, Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Limin Liu
- Department of Orthopedics, Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Huiliang Yang
- Department of Orthopedics, Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Yueming Song
- Department of Orthopedics, Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Foley D, Hardacker P, McCarthy M. Emerging Technologies within Spine Surgery. Life (Basel) 2023; 13:2028. [PMID: 37895410 PMCID: PMC10608700 DOI: 10.3390/life13102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
New innovations within spine surgery continue to propel the field forward. These technologies improve surgeons' understanding of their patients and allow them to optimize treatment planning both in the operating room and clinic. Additionally, changes in the implants and surgeon practice habits continue to evolve secondary to emerging biomaterials and device design. With ongoing advancements, patients can expect enhanced preoperative decision-making, improved patient outcomes, and better intraoperative execution. Additionally, these changes may decrease many of the most common complications following spine surgery in order to reduce morbidity, mortality, and the need for reoperation. This article reviews some of these technological advancements and how they are projected to impact the field. As the field continues to advance, it is vital that practitioners remain knowledgeable of these changes in order to provide the most effective treatment possible.
Collapse
Affiliation(s)
- David Foley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pierce Hardacker
- Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | | |
Collapse
|