1
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Cottrill E, Pennington Z, Sattah N, Jing C, Salven D, Johnson E, Downey M, Varghese S, Rocos B, Richardson W. Gene Therapy and Spinal Fusion: Systematic Review and Meta-Analysis of the Available Data. World Neurosurg 2024; 186:219-234.e4. [PMID: 38583566 DOI: 10.1016/j.wneu.2024.03.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To analyze the extant literature describing the application of gene therapy to spinal fusion. METHODS A systematic review of the English-language literature was performed. The search query was designed to include all published studies examining gene therapy approaches to promote spinal fusion. Approaches were classified as ex vivo (delivery of genetically modified cells) or in vivo (delivery of growth factors via vectors). The primary endpoint was fusion rate. Random effects meta-analyses were performed to calculate the overall odds ratio (OR) of fusion using a gene therapy approach and overall fusion rate. Subgroup analyses of fusion rate were also performed for each gene therapy approach. RESULTS Of 1179 results, 35 articles met criteria for inclusion (all preclinical), of which 26 utilized ex vivo approaches and 9 utilized in vivo approaches. Twenty-seven articles (431 animals) were included in the meta-analysis. Gene therapy use was associated with significantly higher fusion rates (OR 77; 95% confidence interval {CI}: [31, 192]; P < 0.001); ex vivo strategies had a greater effect (OR 136) relative to in vivo strategies (OR 18) (P = 0.017). The overall fusion rate using a gene therapy approach was 80% (95% CI: [62%, 93%]; P < 0.001); overall fusion rates were significantly higher in subjects treated with ex vivo compared to in vivo strategies (90% vs. 42%; P = 0.011). For both ex vivo and in vivo approaches, the effect of gene therapy on fusion was independent of animal model. CONCLUSIONS Gene therapy may augment spinal fusion; however, future investigation in clinical populations is necessary.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Nathan Sattah
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA
| | - Crystal Jing
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA
| | - Dave Salven
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA
| | - Eli Johnson
- Department of Neurosurgery, Duke University Health System, Durham, NC, USA
| | - Max Downey
- Department of Surgery, NYU Grossman School of Medicine, NY, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brett Rocos
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA
| | - William Richardson
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC, USA
| |
Collapse
|
3
|
Abe T, Miyazaki M, Sako N, Kanezaki S, Tsubouchi Y, Kaku N. Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model. Int J Mol Sci 2024; 25:3655. [PMID: 38612467 PMCID: PMC11011974 DOI: 10.3390/ijms25073655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.
Collapse
Affiliation(s)
- Tetsutaro Abe
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (T.A.); (N.K.)
| | - Masashi Miyazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (T.A.); (N.K.)
| | - Noriaki Sako
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (T.A.); (N.K.)
| | - Shozo Kanezaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (T.A.); (N.K.)
| | - Yuta Tsubouchi
- School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka 811-0213, Japan
| | - Nobuhiro Kaku
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (T.A.); (N.K.)
| |
Collapse
|
4
|
Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering (Basel) 2023; 10:1252. [PMID: 38002376 PMCID: PMC10669014 DOI: 10.3390/bioengineering10111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The management of critical-sized bone defects caused by nonunion, trauma, infection, malignancy, pseudoarthrosis, and osteolysis poses complex reconstruction challenges for orthopedic surgeons. Current treatment modalities, including autograft, allograft, and distraction osteogenesis, are insufficient for the diverse range of pathology encountered in clinical practice, with significant complications associated with each. Therefore, there is significant interest in the development of delivery vehicles for growth factors to aid in bone repair in these settings. This article reviews innovative strategies for the management of critical-sized bone loss, including novel scaffolds designed for controlled release of rhBMP, bioengineered extracellular vesicles for delivery of intracellular signaling molecules, and advances in regional gene therapy for sustained signaling strategies. Improvement in the delivery of growth factors to areas of significant bone loss has the potential to revolutionize current treatment for this complex clinical challenge.
Collapse
Affiliation(s)
- Jacob R. Ball
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, 1500 San Pablo St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
5
|
Broussolle T, Roux JP, Chapurlat R, Barrey C. Murine models of posterolateral spinal fusion: A systematic review. Neurochirurgie 2023; 69:101428. [PMID: 36871885 DOI: 10.1016/j.neuchi.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Rodent models are commonly used experimentally to assess treatment effectiveness in spinal fusion. Certain factors are associated with better fusion rates. The objectives of the present study were to report the protocols most frequently used, to evaluate factors known to positively influence fusion rate, and to identify new factors. METHOD A systematic literature search of PubMed and Web of Science found 139 experimental studies of posterolateral lumbar spinal fusion in rodent models. Data for level and location of fusion, animal strain, sex, weight and age, graft, decortication, fusion assessment and fusion and mortality rates were collected and analyzed. RESULTS The standard murine model for spinal fusion was male Sprague Dawley rats of 295g weight and 13 weeks' age, using decortication, with L4-L5 as fusion level. The last two criteria were associated with significantly better fusion rates. On manual palpation, the overall mean fusion rate in rats was 58% and the autograft mean fusion rate was 61%. Most studies evaluated fusion as a binary on manual palpation, and only a few used CT and histology. Average mortality was 3.03% in rats and 1.56% in mice. CONCLUSIONS These results suggest using a rat model, younger than 10 weeks and weighing more than 300 grams on the day of surgery, to optimize fusion rates, with decortication before grafting and fusing the L4-L5 level.
Collapse
Affiliation(s)
- T Broussolle
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France.
| | - Jean-Paul Roux
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - R Chapurlat
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - C Barrey
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Arts et métiers ParisTech, ENSAM, 151, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
6
|
Abe T, Miyazaki M, Ishihara T, Kanezaki S, Tsubouchi Y, Tsumura H. Optimal intermittent administration interval of parathyroid hormone 1-34 for bone morphogenetic protein-induced bone formation in a rat spinal fusion model. JOR Spine 2021; 4:e1168. [PMID: 34611590 PMCID: PMC8479526 DOI: 10.1002/jsp2.1168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Both bone morphogenetic protein 2 (BMP-2) and teriparatide (parathyroid hormone [PTH] 1-34) are used to enhance bone healing. There is still no established opinion regarding the optimum dose and administration method. We investigated the optimal administration method for the combination of BMP-2 and PTH 1-34 in a rat spinal fusion model. METHODS Group I was implanted with a control carrier. Groups II, III, and IV were implanted with a carrier containing 3 μg of recombinant human BMP-2 (rhBMP-2). In addition, following implantation, PTH 1-34 injections were administered to Group III thrice a week (total, 180 μg/kg/week) and Group IV six times a week (total, 180 μg/kg/week). The rats were euthanized after 8 weeks, and their spines were explanted; assessed by manual palpation, radiographs, and high-resolution micro-computed tomography (micro-CT); and subjected to histological analysis. Serum markers of bone metabolism were also analyzed. RESULTS Manual palpation tests showed that the fusion rates in Groups III and IV were considerably higher than those in Group I. They also had higher radiographic scores than Group I and II. Micro-CT analysis revealed Tb.Th in the Group IV had higher values than that in the Group I, II, III with significant differences and Tb.Sp in the Group IV had lower values than that in the Group I, II, III with significant differences. Serum marker analysis revealed that Group IV had higher osteocalcin and lower tartrate-resistant acid phosphatase-5b than Group III. Histological analysis indicated that Group IV had enhanced trabecular bone structure. CONCLUSIONS Frequent administration of PTH may be better in making thicker and strengthening the trabecular bone structure in newly formed bone in the rat spinal fusion model using insufficient BMP-2.
Collapse
Affiliation(s)
- Tetsutaro Abe
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Masashi Miyazaki
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Toshinobu Ishihara
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Shozo Kanezaki
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | | | - Hiroshi Tsumura
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| |
Collapse
|
7
|
Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275:120901. [PMID: 34091300 DOI: 10.1016/j.biomaterials.2021.120901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.
Collapse
|
8
|
Notani N, Miyazaki M, Toyoda M, Kanezaki S, Ishihara T, Tsumura H. Enhancing the effects of exfoliated carbon nanofibers using bone morphogenetic protein in a rat spinal fusion model. J Orthop Res 2018; 36:2892-2900. [PMID: 29917272 DOI: 10.1002/jor.24073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/11/2018] [Indexed: 02/04/2023]
Abstract
Exfoliated carbon nanofibers (ExCNFs) are expected to serve as excellent scaffolds for promoting and guiding bone-tissue regeneration. We aimed to enhance the effects of ExCNFs using bone morphogenetic proteins (BMPs) and examined their feasibility and safety in clinical applications using a rat spinal fusion model. Group I (n = 15) animals were implanted with the control carrier; Group II (n = 16) animals were implanted with carrier containing 1 μg ExCNFs; Group III (n = 16) animals were implanted with carrier containing 1 μg recombinant human (rh) BMP-2; and Group IV (n = 17) animals were implanted with carrier containing 1 μg rhBMP-2 and 1 μg ExCNFs. The rats were euthanized after 4 or 8 weeks and their spines were explanted and assessed by manual palpation, radiographs, and high-resolution microcomputerized tomography (micro-CT); the spines were also subjected to histological analysis. The fusion rates in Group IV (25.0%: 4-week, 45.5%: 8-week) were considerably higher than in Groups I (0%: 4-week, 0%: 8-week), II (0%: 4-week, 15.0%: 8-week), and III (16.7%: 4-week, 30.0%: 8-week). These results demonstrated the enhancement of ExCNF bone fusion effects by BMP in a rat spinal fusion model. Our results suggest that the enhancement of ExCNFs effects by BMP makes this combination a possible attractive therapy for spinal fusion surgeries. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2892-2900, 2018.
Collapse
Affiliation(s)
- Naoki Notani
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Masashi Miyazaki
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Masahiro Toyoda
- Faculty of Engineering, Department of Applied Chemistry, Oita University, Oita, Japan
| | - Shozo Kanezaki
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Toshinobu Ishihara
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| |
Collapse
|
9
|
Ruan S, Deng J, Yan L, Huang W. Evaluation of the effects of the combination of BMP-2-modified BMSCs and PRP on cartilage defects. Exp Ther Med 2018; 16:4569-4577. [PMID: 30542406 PMCID: PMC6257496 DOI: 10.3892/etm.2018.6776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/20/2018] [Indexed: 01/28/2023] Open
Abstract
Articular cartilage is avascular and aneural, and has limited capacity for self-regeneration when injured. Tissue engineering has emerged as a promising approach in repairing cartilage defects. To improve the therapy of cartilage healing, the present study investigated the efficacy of the combination of lentivirus-mediated bone morphogenetic protein-2 (BMP2) in bone marrow-derived stromal cells (BMSCs) and platelet-rich plasma (PRP) on cartilage and bone healing in a cartilage defect model using the rabbit knee. The BMSCs were harvested from New Zealand rabbits and transduced with lentivirus carrying BMP-2. Standard bone defects were introduced in the femoral groove of patellofemoral joints of 48 New Zealand rabbits. The cartilage defects were subjected to synthetic scaffold mosaicplasty with chitosan/silk fibroin/nanohydroxyapatite particles tri-component scaffolds soaked in BMSCs and PRP. After 16 weeks, the tissue specimens were assessed by micro-computed tomography (micro-CT) and macroscopic examination. The results showed that lentivirus-mediated BMP-2 and PRP increased the cell viability of the BMSCs, induced the expression of associated genes and enhanced osteogenic differentiation in vitro. In vivo, the expression of BMP-2 was observed for 16 weeks. The combination of BMP-2 and PRP treatment led to optimal results, compared with the other groups on micro-CT and gross observations. The results of the present study present a novel therapy using the lentivirus-mediated BMP-2 gene together with PRP for cartilage healing.
Collapse
Affiliation(s)
- Shiqiang Ruan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Jiang Deng
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Ling Yan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Wenliang Huang
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
10
|
In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther 2018; 25:260-268. [PMID: 29907876 DOI: 10.1038/s41434-018-0024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023]
Abstract
In this study, we developed a lentiviral two-step transcriptional amplification (TSTA) system expressing bone morphogenetic protein-2 (BMP-2) under the control of a GAL4FF transactivator to enhance gene expression and limit toxicity for bone repair applications. To this end human MSCs, isolated from bone marrow or adipose tissue, were transduced overnight with a LV-TSTA system (GAL4FF or GAL4vp16) expressing BMP-2 or GFP and evaluated in vitro for transduction efficiency, mean fluorescence intensity, cell viability, and BMP-2 production. FACS analysis of GFP-transduced MSCs confirmed successful transduction with the GAL4FF+GFP vector. Moreover, ELISA demonstrated abundant BMP-2 production by GAL4FF+BMP2-transduced human MSCs over a period of 8 weeks, with minimal cytotoxicity at all time points. Compared to GAL4vp16, GAL4FF was superior with respect to BMP production at 1, 2, 4, 6, and 8 weeks in BMSCs. In ASCs, GAL4FF was still associated with higher BMP-2 production at weeks 2-8, but this difference was not as prominent as in BMSCs. To our knowledge, this is the first report of GAL4FF-mediated BMP-2 production by human BMSCs and ASCs. Compared to the standard GAL4vp16TSTA vector, GAL4FF was associated with lower cytotoxicity and higher in vitro gene expression in both BMSCs and ASCs.
Collapse
|
11
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
12
|
Clough BH, McNeill EP, Palmer D, Krause U, Bartosh TJ, Chaput CD, Gregory CA. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses. Spine J 2017; 17:418-430. [PMID: 27765715 PMCID: PMC5309156 DOI: 10.1016/j.spinee.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND CONTEXT Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%-40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. PURPOSE This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. DESIGN/SETTING This is an in vitro and in vivo preclinical study of a novel human stem cell-derived construct for efficacy in posterolateral lumbar spine fusion. METHODS Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. RESULTS Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). CONCLUSIONS Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM.
Collapse
Affiliation(s)
- Bret H. Clough
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Eoin P. McNeill
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Daniel Palmer
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Ulf Krause
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA,Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, 11 Domagkstr, Muenster 48149, Germany
| | - Thomas J. Bartosh
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA
| | - Carl A. Gregory
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA,Corresponding author. Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA. Tel.: (979) 436-9643; fax: (979) 436-9679. (C.A. Gregory)
| |
Collapse
|
13
|
Ishida W, Elder BD, Holmes C, Lo SFL, Witham TF. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-analysis. Ann Biomed Eng 2016; 44:3186-3201. [PMID: 27473706 DOI: 10.1007/s10439-016-1701-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
The rat posterolateral spinal fusion model with autogenic/allogenic bone graft (rat PFABG) has been increasingly utilized as an experimental model to assess the efficacy of novel fusion treatments. The objective of this study was to investigate the reliability of the rat PFABG model and examine the effects of different variables on spinal fusion. A web-based literature search from January, 1970 to September, 2015, yielded 26 studies, which included 40 rat PFABG control groups and 449 rats. Data regarding age, weight, sex, and strain of rats, graft volume, graft type, decorticated levels, surgical approach, institution, the number of control rats, fusion rate, methods of fusion assessment, and timing of fusion assessment were collected and analyzed. The primary outcome variable of interest was fusion rate, as evaluated by manual palpation. Fusion rates varied widely, from 0 to 96%. The calculated overall fusion rate was 46.1% with an I 2 value of 62.4, which indicated moderate heterogeneity. Weight >300 g, age >14 weeks, male rat, Sprague-Dawley strain, and autogenic coccyx grafts increased fusion rates with statistical significance. Additionally, an assessment time-point ≥8 weeks had a trend towards statistical significance (p = 0.070). Multi-regression analysis demonstrated that timing of assessment and age as continuous variables, as well as sex as a categorical variable, can predict the fusion rate with R 2 = 0.82. In an inter-institution reliability analysis, the pooled overall fusion rate was 50.0% [44.8, 55.3%], with statistically significant differences among fusion outcomes at different institutions (p < 0.001 and I 2 of 72.2). Due to the heterogeneity of fusion outcomes, the reliability of the rat PFABG model was relatively limited. However, selection of adequate variables can optimize its use as a control group in studies evaluating the efficacy of novel fusion therapies.
Collapse
Affiliation(s)
- Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA.
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| |
Collapse
|
14
|
Houdek MT, Wyles CC, Sierra RJ. Osteonecrosis of the femoral head: treatment with ancillary growth factors. Curr Rev Musculoskelet Med 2015; 8:233-9. [PMID: 25985987 PMCID: PMC4596200 DOI: 10.1007/s12178-015-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteonecrosis (ON) of the femoral head, also known as avascular necrosis (AVN) of the femoral head, is a progressive disease that predominantly affects younger patients. During early stage of ON, decompression of the femoral head has been commonly used to improve pain. The decompression has been augmented with nonvascularized or vascularized bone grafts, mesenchymal stems cells, and growth factors. The use of adjuvant growth factors to supplement the core decompression has mainly been limited to animal models in an attempt to regenerate the necrotic lesion of ON. Factors utilized include bone morphogenetic proteins, vascular endothelial growth factors, hepatocyte growth factors, fibroblast growth factors, granulocyte colony-stimulating factors, and stem cells factors. In animal models, the use of these factors has been shown to increase bone formation and angiogenesis. Although promising, the use of these growth factors and cell-based therapies clinically remains limited.
Collapse
Affiliation(s)
- Matthew T. Houdek
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Cody C. Wyles
- />Mayo Clinic Medical School, 200 First St. SW, Rochester, MN 55909 USA
| | - Rafael J. Sierra
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
15
|
Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, III SFEA. Bone graft substitutes for spine fusion: A brief review. World J Orthop 2015; 6:449-456. [PMID: 26191491 PMCID: PMC4501930 DOI: 10.5312/wjo.v6.i6.449] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins (recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice.
Collapse
|
16
|
Montgomery SR, Nargizyan T, Meliton V, Nachtergaele S, Rohatgi R, Stappenbeck F, Jung ME, Johnson JS, Aghdasi B, Tian H, Weintraub G, Inoue H, Atti E, Tetradis S, Pereira RC, Hokugo A, Alobaidaan R, Tan Y, Hahn TJ, Wang JC, Parhami F. A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding. J Bone Miner Res 2014; 29:1872-85. [PMID: 24591126 PMCID: PMC4457783 DOI: 10.1002/jbmr.2213] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/31/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8X-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN, and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on X-ray after 4 weeks and confirmed with manual assessment, micro-CT (µCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater bone volume/tissue volume (BV/TV) ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development.
Collapse
Affiliation(s)
- Scott R Montgomery
- Department of Orthopedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Spinal fusion in the next generation: gene and cell therapy approaches. ScientificWorldJournal 2014; 2014:406159. [PMID: 24672316 PMCID: PMC3927763 DOI: 10.1155/2014/406159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.
Collapse
|
18
|
Yamaguchi T, Inoue N, Sah RL, Lee YP, Taborek AP, Williams GM, Moseley TA, Bae WC, Masuda K. Micro-computed tomography-based three-dimensional kinematic analysis during lateral bending for spinal fusion assessment in a rat posterolateral lumbar fusion model. Tissue Eng Part C Methods 2014; 20:578-87. [PMID: 24199634 DOI: 10.1089/ten.tec.2013.0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rat posterolateral lumbar fusion (PLF) models have been used to assess the safety and effectiveness of new bone substitutes and osteoinductive growth factors using palpation, radiography, micro-computed tomography (μCT), and histology as standard methods to evaluate spinal fusion. Despite increased numbers of PLF studies involving alternative bone substitutes and growth factors, the quantitative assessment of treatment efficacy during spinal motion has been limited. The purpose of this study was to evaluate the effect of spinal fusion on lumbar spine segment stability during lateral bending using a μCT-based three-dimensional (3D) kinematic analysis in the rat PLF model. Fourteen athymic male rats underwent PLF surgery at L4/5 and received bone grafts harvested from the ilium and femurs of syngeneic rats (Isograft, n=7) or no graft (Sham, n=7). At 8 weeks after the PLF surgery, spinal fusion was assessed by manual palpation, plain radiography, μCT, and histology. To determine lumbar segmental motions at the operated level during lateral bending, 3D kinematic analysis was performed. The Isograft group, but not the Sham group, showed spinal fusion on manual palpation (6/7), solid fusion mass in radiographs (6/7), as well as bone bridging in μCT and histological images (5/7). Compared to the Sham group, the Isograft group revealed limited 3D lateral bending angular range of motion and lateral translation during lateral bending at the fused segment where disc height narrowing was observed. This μCT-based 3D kinematic analysis can provide a quantitative assessment of spinal fusion in a rat PLF model to complement current gold standard methods used for efficacy assessment of new therapeutic approaches.
Collapse
Affiliation(s)
- Tomonori Yamaguchi
- 1 Department of Orthopaedic Surgery, School of Medicine, University of California , San Diego, La Jolla, California
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Im GI. Nonviral gene transfer strategies to promote bone regeneration. J Biomed Mater Res A 2013; 101:3009-18. [PMID: 23554051 DOI: 10.1002/jbm.a.34576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Korea
| |
Collapse
|
20
|
Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH, Huard J. BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell Transplant 2012; 22:2393-408. [PMID: 23244588 DOI: 10.3727/096368912x658854] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle-derived cells have been successfully isolated using a variety of different methods and have been shown to possess multilineage differentiation capacities, including an ability to differentiate into articular cartilage and bone in vivo; however, the characterization of human muscle-derived stem cells (hMDSCs) and their bone regenerative capacities have not been fully investigated. Genetic modification of these cells may enhance their osteogenic capacity, which could potentially be applied to bone regenerative therapies. We found that hMDSCs, isolated by the preplate technique, consistently expressed the myogenic marker CD56, the pericyte/endothelial cell marker CD146, and the mesenchymal stem cell markers CD73, CD90, CD105, and CD44 but did not express the hematopoietic stem cell marker CD45, and they could undergo osteogenic, chondrogenic, adipogenic, and myogenic differentiation in vitro. In order to investigate the osteoinductive potential of hMDSCs, we constructed a retroviral vector expressing BMP4 and GFP and a lentiviral vector expressing BMP2. The BMP4-expressing hMDSCs were able to undergo osteogenic differentiation in vitro and exhibited enhanced mineralization compared to nontransduced cells; however, when transplanted into a calvarial defect, they failed to regenerate bone. Local administration of BMP4 protein and cell pretreatment with N-acetylcysteine (NAC), which improves cell survival, did not enhance the osteogenic capacity of the retro-BMP4-transduced cells. In contrast, lenti-BMP2-transduced hMDSCs not only exhibited enhanced in vitro osteogenic differentiation but also induced robust bone formation and nearly completely healed a critical-sized calvarial defect in CD-1 nude mice 6 weeks following transplantation. Herovici's staining of the regenerated bone demonstrated that the bone matrix contained a large amount of type I collagen. Our findings indicated that the hMDSCs are likely mesenchymal stem cells of muscle origin and that BMP2 is more efficient than BMP4 in promoting the bone regenerative capacity of the hMDSCs in vivo.
Collapse
Affiliation(s)
- Xueqin Gao
- Stem Cell Research Center, Growth and Developmental Laboratory, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ishihara A, Bertone AL. Cell-mediated and direct gene therapy for bone regeneration. Expert Opin Biol Ther 2012; 12:411-23. [PMID: 22324829 DOI: 10.1517/14712598.2012.661709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone regeneration is required for the treatment of fracture non/delayed-unions and bone defects. However, most current treatment modalities have limited efficacy, and newer therapeutic strategies, such as gene therapy, have substantial benefit for bone repair and regeneration. AREAS COVERED This review discusses experimental and clinical applications of cell-mediated and direct gene therapy for bone regeneration. The review covers literature on this subject from 2000 to February 2012. EXPERT OPINION Direct gene therapy using various viral and non-viral vectors of cell-mediated genes has been demonstrated to induce bone regeneration, although use of such vectors has shown some risk in human application. Osteoinductive capability of a number of progenitor cells isolated from bone marrow, fat, muscle and skin tissues, has been demonstrated by genetic modification with osteogenic genes. Cell-mediated gene therapy using such osteogenic gene-expressing progenitor cells has shown promising results in promoting bone regeneration in extensive animal work in recent years.
Collapse
Affiliation(s)
- Akikazu Ishihara
- The Ohio State University, Department of Veterinary Clinical Sciences, Comparative Orthopedic Research Laboratories, Columbus, OH 43210, USA
| | | |
Collapse
|
22
|
Zhu C, Chang Q, Zou D, Zhang W, Wang S, Zhao J, Yu W, Zhang X, Zhang Z, Jiang X. LvBMP-2 gene-modified BMSCs combined with calcium phosphate cement scaffolds for the repair of calvarial defects in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1965-1973. [PMID: 21681654 DOI: 10.1007/s10856-011-4376-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 05/30/2023]
Abstract
The study aims to evaluate the effect of bone marrow stromal cells (BMSCs) expressing bone morphogenic protein-2 (BMP-2) mediated by lentiviral (Lv) gene transduction combined with calcium phosphate cement (CPC) scaffolds for the repair of critical size calvarial defects in rats. BMSCs derived from Fisher 344 rats were transduced with LvBMP-2 or lentivirus encoding enhanced green fluorescent protein (LvEGFP) in vitro. Obvious osteogenic differentiation of BMSCs in the LvBMP-2 group was demonstrated by alkaline phosphatase staining and alizarin red staining. Enzyme-linked immunosorbent assay results show that LvBMP-2 gene expression in vitro can last for at least 8 weeks. Gene-transduced or untransduced BMSCs were seeded onto CPC scaffolds to repair rat calvarial defects with a diameter of 5 mm. Scanning electron microscope analysis indicated that porous CPC scaffolds facilitated initial adhesion and spreading of BMSCs onto its surface. Calvarial defects were successfully repaired with LvBMP-2-transduced BMSCs/CPC constructs 8 weeks postoperatively. The percentage of new bone formation in the LvBMP-2 group was significantly higher than in other control groups. Lentiviral mediated BMP-2 gene therapy together with CPC scaffolds can be used successfully in calvarial repair and bone regeneration.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Johnson JS, Meliton V, Kim WK, Lee KB, Wang JC, Nguyen K, Yoo D, Jung ME, Atti E, Tetradis S, Pereira RC, Magyar C, Nargizyan T, Hahn TJ, Farouz F, Thies S, Parhami F. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J Cell Biochem 2011; 112:1673-84. [PMID: 21503957 PMCID: PMC3080246 DOI: 10.1002/jcb.23082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARγ activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARγ, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation.
Collapse
Affiliation(s)
- Jared S. Johnson
- Department of Orthopedic Surgery, UCLA, Los Angeles, California, USA
| | - Vicente Meliton
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Woo Kyun Kim
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kwang-Bok Lee
- Department of Orthopedic Surgery, UCLA, Los Angeles, California, USA
| | - Jeffrey C. Wang
- Department of Orthopedic Surgery, UCLA, Los Angeles, California, USA
| | - KhanhLinh Nguyen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Dongwon Yoo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Elisa Atti
- School of Dentistry, UCLA, Los Angeles, California, USA
| | | | - Renata C. Pereira
- Department of Pediatric Nephrology, UCLA, Los Angeles, California, USA
| | - Clara Magyar
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Taya Nargizyan
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Theodore J. Hahn
- VA Greater Los Angeles Healthcare System and Geriatric Research, Education, and Clinical Center, Los Angeles, California, USA
| | | | - Scott Thies
- Fate Therapeutics, Inc., San Diego, California, USA
| | - Farhad Parhami
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
24
|
Affiliation(s)
- Jeffrey C Wang
- Department of Orthopedics, David Geffen School of Medicine at UCLA, 1250 16th St, Suite 745, Santa Monica, CA 90404, USA.
| |
Collapse
|
25
|
Abstract
Gene transfer technologies offer the prospect of enhancing bone regeneration by delivering osteogenic gene products locally to osseous defects. In most cases the gene product will be a protein, which will be synthesized endogenously within and around the lesion in a sustained fashion. It will have undergone authentic post-translational processing and lack the alterations that occur when recombinant proteins are synthesized in bioreactors and stored. Several different ex vivo and in vivo gene delivery strategies have been developed for this purpose, using viral and non-viral vectors. Proof of principle has been established in small animal models using a variety of different transgenes, including those encoding morphogens, growth factors, angiogenic factors, and transcription factors. A small number of studies demonstrate efficacy in large animal models. Developing these promising findings into clinical trials will be a long process, constrained by economic, regulatory and practical considerations. Nevertheless, the overall climate for gene therapy is improving, permitting optimism that applications in bone regeneration will eventually become available.
Collapse
Affiliation(s)
- Christopher Evans
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, BIDMC-RN-115, 330, Brookline Avenue, Boston, MA 02215, United States.
| |
Collapse
|
26
|
Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y, Spagnoli A. Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 2010; 10:1663-79. [PMID: 21058931 PMCID: PMC3057936 DOI: 10.1517/14712598.2010.531257] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD Mesenchymal stem cells have the ability to differentiate into osteoblasts, chondrocytes and adipocytes. Along with differentiation, MSCs can modulate inflammation, home to damaged tissues and secrete bioactive molecules. These properties can be enhanced through genetic-modification that would combine the best of both cell and gene therapy fields to treat monogenic and multigenic diseases. AREAS COVERED IN THIS REVIEW Findings demonstrating the immunomodulation, homing and paracrine activities of MSCs followed by a summary of the current research utilizing MSCs as a vector for gene therapy, focusing on skeletal disorders, but also cardiovascular disease, ischemic damage and cancer. WHAT THE READER WILL GAIN MSCs are a possible therapy for many diseases, especially those related to the musculoskeletal system, as a standalone treatment, or in combination with factors that enhance the abilities of these cells to migrate, survive or promote healing through anti-inflammatory and immunomodulatory effects, differentiation, angiogenesis or delivery of cytolytic or anabolic agents. TAKE HOME MESSAGE Genetically-modified MSCs are a promising area of research that would be improved by focusing on the biology of MSCs that could lead to identification of the natural and engrafting MSC-niche and a consensus on how to isolate and expand MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Timothy J. Myers
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Froilan Granero-Molto
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Lara Longobardi
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Tieshi Li
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Yun Yan
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Anna Spagnoli
- University of North Carolina at Chapel Hill, Pediatrics, 103 Mason Farm Road, 3341 Medical Biomolecular Resarch Building, CB#7039, Chapel Hill, 27599-7039, USA
| |
Collapse
|
27
|
Dewan AK, Dewan RA, Calderon N, Fuentes A, Lazard Z, Davis AR, Heggeness M, Hipp JA, Olmsted-Davis EA. Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model. J Orthop Surg Res 2010; 5:58. [PMID: 20727195 PMCID: PMC2933711 DOI: 10.1186/1749-799x-5-58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice. METHODS Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion. RESULTS Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 +/- 0.2 degrees during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5 degrees intervertebral motion had fusions documented by micro-CT inspection. CONCLUSIONS Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (<$100), clinically relevant, and fast test for assessing the mechanical success of spinal fusion in mice that compared favorably to the standard, micro-CT.
Collapse
Affiliation(s)
- Ashvin K Dewan
- Spine Research Lab, Baylor College of Medicine, Houston, TX USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Seo HS, Jung JK, Lim MH, Hyun DK, Oh NS, Yoon SH. Evaluation of Spinal Fusion Using Bone Marrow Derived Mesenchymal Stem Cells with or without Fibroblast Growth Factor-4. J Korean Neurosurg Soc 2009; 46:397-402. [PMID: 19893733 DOI: 10.3340/jkns.2009.46.4.397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/24/2009] [Accepted: 10/15/2009] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE In this study, the authors assessed the ability of rat bone marrow derived mesenchymal stem cells (BMDMSCs), in the presence of a growth factor, fibroblast growth factor-4 (FGF-4) and hydroxyapatite, to act as a scaffold for posterolateral spinal fusion in a rat model. METHODS Using a rat posterolateral spine fusion model, the experimental study comprised 3 groups. Group 1 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite only. Group 2 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing 1 x 10(6)/ 60 microL rat of BMDMSCs. Group 3 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing 1 x 10(6)/ 60 microL of rat BMDMSCs and FGF-4 1 microG to induce the bony differentiation of the BMDMSCs. Rats were assessed using radiographs obtained at 4, 6, and 8 weeks postoperatively. After sacrifice, spines were explanted and assessed by manual palpation, high-resolution microcomputerized tomography, and histological analysis. RESULTS Radiographic, high-resolution microcomputerized tomographic, and manual palpation revealed spinal fusion in five rats (83%) in Group 2 at 8 weeks. However, in Group 1, three (60%) rats developed fusion at L4-L5 by radiography and two (40%) by manual palpation in radiographic examination. In addition, in Group 3, bone fusion was observed in only 50% of rats by manual palpation and radiographic examination at this time. CONCLUSION The present study demonstrates that 0.08 gram of hydroxyapatite with 1 x 10(6)/ 60 microL rat of BMDMSCs induced bone fusion. FGF-4, added to differentiate primitive 1 x 10(6)/ 60 microL rat of BMDMSCs did not induce fusion. Based on histologic data, FGF-4 appears to induce fibrotic change rather than differentiation to bone by 1 x 10(6)/ 60 microL rat of BMDMSCs.
Collapse
Affiliation(s)
- Hyun Sung Seo
- Department of Neurosurgery, School of Medicine, Inha University, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 18:783-99. [PMID: 19280232 DOI: 10.1007/s00586-009-0924-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/07/2008] [Accepted: 02/20/2009] [Indexed: 02/06/2023]
Abstract
With the current advances in spinal surgery, an understanding of the precise biological mechanism of each bone substitute is necessary for inducing successful spinal fusion. In this review, the categories of bone substitutes include allografts, ceramics, demineralized bone matrix, osteoinductive factors, autogenous platelet concentrate, mesenchymal stem cells, and gene therapy. Further, clinical studies have been evaluated by their levels of evidence in order to elucidate the precise effect of the bone substitute employed and to establish clinical guidance. This article will review both clinical studies based on evidence and basic research in current advances in order to avoid as far as possible any chances of failure in the future and to understand cellular biology in novel technologies.
Collapse
Affiliation(s)
- Masashi Miyazaki
- Department of Orthopaedic Surgery, Oita University, Oita, 879-5593, Japan
| | | | | | | |
Collapse
|