1
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Kannan MK, Ganeshan M, Arockiam AJV. The absence of cellular glucose triggers oncogene AEG-1 that instigates VEGFC in HCC: A possible genetic root cause of angiogenesis. Gene X 2022; 826:146446. [PMID: 35337853 DOI: 10.1016/j.gene.2022.146446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Astrocyte Elevated Gene-1 (AEG-1) is the master and multi-regulator of the various transcriptional factor primarily regulating chemoresistance, angiogenesis, metastasis, and invasion under the pathological condition, including liver cancer. This study was focused on investigating the process of tumor angiogenesis in liver carcinoma by studying the role of AEG-1 under GD/2DG conditions. METHOD AND RESULTS The PCR and western blot analysis revealed that glucose depletion (GD) induces the overexpression of AEG-1. Further, it leads to the constant expression of VEGFC through the activation of HIF-1α/CCR7 via the stimulations of PI3K/Akt signaling pathways. GLUT2 is the major transporter of a glucose molecule that is highly participating under GD through the expression of AEG-1 and constantly expresses glucokinase (GCK). The obtained data suggest that AEG-1 act as an angiogenesis and glycolysis regulator by modulating the expression of GCK through HIF-1α and GLUT2. 2-deoxy-D-glucose (2DG) is a glycolysis inhibitor that induces impaired glycolysis and cellular apoptosis by cellular oxidative stress. The administration of 2DG has led to the chemoresistance of AEG-1. CONCLUSION The total findings of the study judged that disruption of cellular energy metabolism induced by the absence of glucose or the presence of mutant glucose moiety (2DG) promotes the overexpression of AEG-1. The GD/2DG activates the VEGFC by inducing the HIF-1α and CCR7. Moreover, AEG-1 induces the expression of OPN, which regulates metastasis, angiogenesis, and actively participates in protective autophagy by promoting LC3 a/b.
Collapse
Affiliation(s)
- Devan Umapathy
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mano Chitra Karthikeyan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Food Chemistry and Molecular Cancer Biology Laboratory, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Mahesh Kumar Kannan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mathan Ganeshan
- Cancer Biology Laboratory, Department of Biomedical Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Antony Joseph Velanganni Arockiam
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Arockiam AJV. Transcriptional expression of miRNAs under glucose depletion/2-deoxy-d-glucose in HCC: A possible genetic footprints of angiogenesis and its hallmarks. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020; 13:ph13120432. [PMID: 33260729 PMCID: PMC7760785 DOI: 10.3390/ph13120432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal-dependent pathway for degrading cytoplasmic proteins, macromolecules, and organelles. Autophagy-related genes (Atgs) are the core molecular machinery in the control of autophagy, and several major functional groups of Atgs coordinate the entire autophagic process. Autophagy plays a dual role in liver cancer development via several critical signaling pathways, including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin, p53, and NF-κB pathways. Here, we review the signaling pathways involved in the cross-talk between autophagy and hepatocellular carcinoma (HCC) and analyze the status of the development of novel HCC therapy by targeting the core molecular machinery of autophagy as well as the key signaling pathways. The induction or the inhibition of autophagy by the modulation of signaling pathways can confer therapeutic benefits to patients. Understanding the molecular mechanisms underlying the cross-link of autophagy and HCC may extend to translational studies that may ultimately lead to novel therapy and regimen formation in HCC treatment.
Collapse
|
4
|
Lin Y, Huang G, Jin H, Jian Z. Circular RNA Gprc5a Promotes HCC Progression by Activating YAP1/TEAD1 Signalling Pathway by Sponging miR-1283. Onco Targets Ther 2020; 13:4509-4521. [PMID: 32547082 PMCID: PMC7247601 DOI: 10.2147/ott.s240261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) plays a critical role in tumorigenesis and tumor progression. Many studies indicate that circRNA Gprc5a is significantly upregulated and functions as an oncogene in a variety of cancers. However, the molecular mechanism of circGprc5a in liver cancer remains unclear. METHODS qRT-PCR was used to measure the expression levels of circGprc5a, miR-1283, YAP1 and TEAD1 mRNA in hepatocellular carcinoma (HCC) tissues or cells. YAP1 and TEAD1 protein levels were detected by Western blot. CCK-8 assay, cell colony formation, BrdU incorporation and Annexin V-FITC/PI assays were performed to analyze the effects of circGprc5a and miR-1283 on cell proliferation and apoptosis. The relationship between circGprc5a, miR-1283, YAP1 and TEAD1 was analyzed using bioinformatic analysis and luciferase. The tumor changes in mice were detected by in vivo experiments. RESULTS CircGprc5a was highly expressed in liver cancer, and closely related poor survival of patients with liver cancer. Knockout of circGprc5a inhibited proliferation of HCC and induced apoptosis. CircGprc5a activated the YAP1/TEAD1 signaling pathway by acting as a sponge for miR-1283. Furthermore, overexpression of miR-1283 abolished the promotion of circGprc5a on HCC cells. Therefore, miR-1283 expression correlated negatively with circGprc5a expression yet positively with the expression of YAP1/TEAD1 in liver cancer. CONCLUSION CircGprc5a promoted the development of HCC by inhibiting the expression of miR-1283 and activating the YAP1/TEAD1 signaling pathway.
Collapse
Affiliation(s)
- Ye Lin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, People’s Republic of China
| | - Guanqun Huang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou510700, People’s Republic of China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, People’s Republic of China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, People’s Republic of China
| |
Collapse
|
5
|
Kroh A, Walter J, Schüler H, Nolting J, Eickhoff R, Heise D, Neumann UP, Cramer T, Ulmer TF, Fragoulis A. A Newly Established Murine Cell Line as a Model for Hepatocellular Cancer in Non-Alcoholic Steatohepatitis. Int J Mol Sci 2019; 20:ijms20225658. [PMID: 31726709 PMCID: PMC6888677 DOI: 10.3390/ijms20225658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has become a major risk factor for hepatocellular cancer (HCC) due to the worldwide increasing prevalence of obesity. However, the pathophysiology of NASH and its progression to HCC is incompletely understood. Thus, the aim of this study was to generate a model specific NASH-derived HCC cell line. A murine NASH-HCC model was conducted and the obtained cancer cells (N-HCC25) were investigated towards chromosomal aberrations, the expression of cell type-specific markers, dependency on nutrients, and functional importance of mTOR. N-HCC25 exhibited several chromosomal aberrations as compared to healthy hepatocytes. Hepatocytic (HNF4), EMT (Twist, Snail), and cancer stem cell markers (CD44, EpCAM, CK19, Sox9) were simultaneously expressed in these cells. Proliferation highly depended on the supply of glucose and FBS, but not glutamine. Treatment with a second generation mTOR inhibitor (KU-0063794) resulted in a strong decrease of cell growth in a dose-dependent manner. In contrast, a first generation mTOR inhibitor (Everolimus) only slightly reduced cell proliferation. Cell cycle analyses revealed that the observed growth reduction was most likely due to G1/G0 cell cycle arrest. These results indicate that N-HCC25 is a highly proliferative HCC cell line from a NASH background, which might serve as a suitable in vitro model for future investigations of NASH-derived HCC.
Collapse
Affiliation(s)
- Andreas Kroh
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Correspondence: ; Tel.: +49-241-80-89-501
| | - Jeanette Walter
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Herdit Schüler
- Institute of Human Genetics, Uniklinik RWTH Aachen, 52074 Aachen, Germany;
| | - Jochen Nolting
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Roman Eickhoff
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Daniel Heise
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- ESCAM—European Surgery Center Aachen Maastricht, 52074 Aachen, Germany
- ESCAM—European Surgery Center Aachen Maastricht, 6200 MD Maastricht, The Netherlands
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- ESCAM—European Surgery Center Aachen Maastricht, 52074 Aachen, Germany
- ESCAM—European Surgery Center Aachen Maastricht, 6200 MD Maastricht, The Netherlands
| | - Tom Florian Ulmer
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Athanassios Fragoulis
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
6
|
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S, Jian Z. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem 2018; 119:9419-9432. [PMID: 30015355 DOI: 10.1002/jcb.27259] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
Abstract
Human cancers, including hepatocellular carcinoma (HCC), are characterized by a high degree of drug resistance in chemotherapy. However, the underlying molecular mechanism remains unknown. To the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the regulation of macrophage polarization, M1-type and M2-type macrophages were separately induced using lipopolysaccharide and interleukin-4 (IL-4), and we found that the IL-6/STAT3 signaling pathway was inhibited in M1-type macrophages but activated in M2-type macrophages. After anti-IL-6-treated macrophages were separately induced by lipopolysaccharide and IL-4, we found that the inhibition of IL-6/STAT3 signaling pathway turned macrophages into M1-type. Co-culture with M1-type macrophages reduced HCC cell viability, proliferation, invasion, migration, drug resistance, but increased apoptosis. Co-culture with M2-type macrophages yielded reciprocal results. The inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was shown to significantly enhance the effects of M1-type macrophages on HCC cells and rescue HCC cells from co-culture with M2-type macrophages. Tumor xenografts of co-cultured HCC cells were established in nude mice and the results showed that the inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was found to reduce tumor formation of HCC cells co-cultured with M1- or M2-type macrophages and lung metastases. The current study reveals a novel mechanism of IL-6/STAT3 signaling pathway in the regulation of macrophage polarization, thus contributing to HCC metastasis and drug resistance in chemotherapy.
Collapse
Affiliation(s)
- Zi Yin
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tingting Ma
- Gynaecology and Obstetrics Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Lin
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Lu
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sheng Chen
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Ye M, Wang S, Wan T, Jiang R, Qiu Y, Pei L, Pang N, Huang Y, Huang Y, Zhang Z, Yang L. Combined Inhibitions of Glycolysis and AKT/autophagy Can Overcome Resistance to EGFR-targeted Therapy of Lung Cancer. J Cancer 2017; 8:3774-3784. [PMID: 29151965 PMCID: PMC5688931 DOI: 10.7150/jca.21035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Efficacy of EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, to treat human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR is not persistent due to drug resistance. Reprogramming in energy (especially glucose) metabolism plays an important role in development and progression of acquired resistance in cancer cells. We hypothesize that glucose metabolism in EGFR-TKI sensitive HCC827 cells and erlotinib-resistant sub-line of HCC827 (which we name it as erlotinib-resistant 6, ER6 cells in this study) is different and targeting glucose metabolism might be a treatment strategy for erlotinib-resistant NSCLCs. In this study, we found increased glucose uptakes, significant increase in glycolysis rate and overexpression of glucose transporter 1 in ER6 cells compared to its parental cells HCC827. We also found AKT and autophagy of ER6 cells were more activated than HCC827 cells after glucose starvation. Combining glucose deprivation and AKT or autophagy inhibitor could synergize and overcome the acquired resistance against EGFR-targeted therapy for NSCLCs. Our data suggest that the combinations of inhibitors of AKT or autophagy together with glucose deprivation could be novel treatment strategies for NSCLC with acquired resistance to targeted therapy.
Collapse
Affiliation(s)
- Mingtong Ye
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
- The First Women and Children's Hospital of Huizhou, Huizhou, Guangdong, PR China
| | - Sufan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Ting Wan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Rui Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Yun Qiu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Lei Pei
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Nengzhi Pang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Yuanling Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| | - Yufeng Huang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Lili Yang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, PR China
| |
Collapse
|
8
|
Ding G, Li W, Liu J, Zeng Y, Mao C, Kang Y, Shang J. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomed Pharmacother 2017; 94:326-331. [PMID: 28772210 DOI: 10.1016/j.biopha.2017.07.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND GHET1 is one of tumor-related lncRNAs. We aimed to explore the functional involvement of GHET1 in hepatocellular carcinoma (HCC). METHODS In this study, HCC tissues and the paired normal tissues were collected for the detection of target molecules. The expression level of target molecules in HCC tissues or cell lines was determined by qRT-PCR and western blot, respectively. The expression of endogenous GHET1 and ATF1 was modulated by using cell transfection. RNA pull down assay was performed to examine the interaction between GHET1 and ATF1. ChIP assay was conducted to determine the H3K27Ac acetylation of GHET1 promoter. RESULTS H3K27 acetylation activated-GHET1 was upregulated in HCC tissues and cell lines. Moreover, GHET1 silencing could inhibit the proliferation, migration, invasion and EMT of HCC cells in vitro. GHET1 could regulate the expression of ATF1 mRNA and protein; RNA pull-down assays supported that GHET1 could bind to ATF1 protein. Furthermore, overexpression of ATF1 almost completely reversed the GHET1 knockdown mediated inhibition on the proliferation, migration, invasion and EMT of HCC cells. CONCLUSION LncRNA GHET1 was intimately involved in the occurrence and development of HCC through regulating ATF1.
Collapse
Affiliation(s)
- Gangqiang Ding
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Wei Li
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Junping Liu
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yanli Zeng
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Chongshan Mao
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yi Kang
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jia Shang
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|