1
|
Fu Y, Yang L, Liu L, Kong L, Sun H, Sun Y, Yin F, Yan G, Wang X. Rhein: An Updated Review Concerning Its Biological Activity, Pharmacokinetics, Structure Optimization, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1665. [PMID: 39770507 PMCID: PMC11679290 DOI: 10.3390/ph17121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Rhein is a natural active ingredient in traditional Chinese medicine that has attracted much attention due to its wide range of pharmacological activities. However, its clinical application is limited by low water solubility, poor oral absorption, and potential toxicity to the liver and kidneys. Recently, advanced extraction and synthesis techniques have made it possible to develop derivatives of rhein, which have better pharmacological properties and lower toxicity. This article comprehensively summarizes the biological activity and action mechanism of rhein. Notably, we found that TGF-β1 is the target of rhein improving tissue fibrosis, while NF-κB is the main target of its anti-inflammatory effect. Additionally, we reviewed the current research status of the pharmacokinetics, toxicology, structural optimization, and potential drug applications of rhein and found that the coupling and combination therapy of rhein and other active ingredients exhibit a synergistic effect, significantly enhancing therapeutic efficacy. Finally, we emphasize the necessity of further studying rhein's pharmacological mechanisms, toxicology, and development of analogs, aiming to lay the foundation for its widespread clinical application as a natural product and elucidate its prospects in modern medicine.
Collapse
Affiliation(s)
- Yuqi Fu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Lei Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Shang K, Ge C, Fang J, Liu S. Updated pharmaceutical progress on plant antibiotic rhein and its analogs: Bioactivities, structure-activity relationships and future perspectives. Bioorg Med Chem 2024; 113:117895. [PMID: 39259985 DOI: 10.1016/j.bmc.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.
Collapse
Affiliation(s)
- Yindi Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Jing Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| |
Collapse
|
3
|
Li X, Lin Z, Wang P, Zhou C, Xu J, Lin J, Lin D, Zhang D. Tetramethylpyrazine-Rhein Derivative inhibits the migration of canine inflammatory mammary carcinoma cells by mitochondrial damage-mediated apoptosis and cadherins downregulation. Biomed Pharmacother 2023; 162:114731. [PMID: 37086510 DOI: 10.1016/j.biopha.2023.114731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Canine inflammatory mammary carcinoma (CIMC) has a high incidence of metastasis, high lethality, and poor prognosis, which needs novel adjuvant agents. Tetramethylpyrazine-Rhein Derivative (TRD) has been shown to have antitumor activity, which is a potential research direction for CIMC. PURPOSE This study evaluated the efficacy of TRD on CIMC in vitro and in vivo, and provided possibilities for the application of active compounds in traditional Chinese medicine. METHODS In vitro, TRD cytotoxicity was measured with CCK-8. Flow cytometry and transmission electron microscope were used to detect the cell cycle, cell death, and changes in mitochondria. Wound-healing assay, cell invasion assay, and scanning electron microscope were used to evaluate the suppression of cell migration and invasion. Expression changes were detected by RT-qPCR and western blot assay. In vivo, the lung metastasis models were randomly divided into control, low-dose TRD, high-dose TRD, and positive groups. Each group was administered orally once a day for 18 days and took in vivo imaging photos. RESULTS The IC50 of TRD in CHMp and MDCK were 42.59 and 79.37 μM, respectively. TRD mediated cell apoptosis by mitochondrial damage and caused S and G2/M phase arrest by downregulating cyclin B1. Moreover, TRD reduced filopodia and inhibited cell migration by downregulating cadherins. In CIMC lung metastasis models, TRD could effectively inhibit tumor growth (P < 0.001) in the lungs without significant toxicity. CONCLUSION TRD showed potential activity to inhibit CIMC lung metastasis with multi-target and low toxicity.
Collapse
Affiliation(s)
- Xinqiu Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zixiang Lin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Chaoyu Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jiawei Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Di Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Kulkarni-Dwivedi N, Patel PR, Shravage BV, Umrani RD, Paknikar KM, Jadhav SH. Hyperthermia and doxorubicin release by Fol-LSMO nanoparticles induce apoptosis and autophagy in breast cancer cells. Nanomedicine (Lond) 2022; 17:1929-1949. [PMID: 36645007 DOI: 10.2217/nnm-2022-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Studies on the anticancer effects of lanthanum strontium manganese oxide (LSMO) nanoparticles (NPs)-mediated hyperthermia at cellular and molecular levels are scarce. Materials & methods: LSMO NPs conjugated with folic acid (Fol-LSMO NPs) were synthesized, followed by doxorubicin-loading (DoxFol-LSMO NPs), and their effects on breast cancer cells were investigated. Results: Hyperthermia (45°C) and combination treatments exhibited the highest (∼95%) anticancer activity with increased oxidative stress. The involvement of intrinsic mitochondria-mediated apoptotic pathway and induction of autophagy was noted. Cellular and molecular evidence confirmed the crosstalk between apoptosis and autophagy, involving Beclin1, Bcl2 and Caspase-3 genes with free reactive oxygen species presence. Conclusion: The study confirmed hyperthermia and doxorubicin release by Fol-LSMO NPs induces apoptosis and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Neha Kulkarni-Dwivedi
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Pratikshkumar R Patel
- Polymer Science & Engineering, CSIR - National Chemical Laboratory, Pune, 411008, Maharashtra, India.,Academy of Scientific & Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Bhupendra V Shravage
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.,Developmental Biology Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India
| | - Rinku D Umrani
- LJ Institute of Pharmacy, LJ University, LJ Campus, Ahmedabad, 382210, Gujarat, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Indian Institute of Technology, Powai, Mumbai, 400076, India
| | - Sachin H Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| |
Collapse
|
5
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Photosensitization of a subcutaneous tumour by the natural anthraquinone parietin and blue light. Sci Rep 2021; 11:23820. [PMID: 34893702 PMCID: PMC8664885 DOI: 10.1038/s41598-021-03339-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer treatment involving administration of a tumour-localizing photosensitizer, followed by activation by light of a suitable wavelength. In previous work, we showed that the natural anthraquinone (AQ) Parietin (PTN), was a promising photosensitizer for photodynamic therapy of leukemic cells in vitro. The present work aimed to analyze the photosensitizing ability of PTN in the mammary carcinoma LM2 cells in vitro and in vivo in a model of subcutaneously implanted tumours. Photodynamic therapy mediated by parietin (PTN-PDT) (PTN 30 µM, 1 h and 1.78 J/cm2 of blue light) impaired cell growth and migration of LM2 cells in vitro. PTN per se induced a significant decrease in cell migration, and it was even more marked after illumination (migration index was 0.65 for PTN and 0.30 for PTN-PDT, *p < 0.0001, ANOVA test followed by Tukey's multiple comparisons test), suggesting that both PTN and PTN-PDT would be potential inhibitors of metastasis. Fluorescence microscopy observation indicated cytoplasmic localization of the AQ and no fluorescence at all was recorded in the nuclei. When PTN (1.96 mg) dissolved in dimethyl sulfoxide was topically applied on the skin of mice subcutaneously implanted with LM2 cells, PTN orange fluorescence was strongly noticed in the stratum corneum and also in the inner layers of the tumour up to approximately 5 mm. After illumination with 12.74 J/cm2 of blue light, one PDT dose at day 1, induced a significant tumour growth delay at day 3, which was not maintained in time. Therefore, we administered a second PTN-PDT boost on day 3. Under these conditions, the delay of tumour growth was 28% both on days 3 and 4 of the experiment (*p < 0.05 control vs. PTN-PDT, two-way ANOVA, followed by Sidak's multiple comparisons test). Histology of tumours revealed massive tumour necrosis up to 4 mm of depth. Intriguingly, a superficial area of viable tumour in the 1 mm superficial area, and a quite conserved intact skin was evidenced. We hypothesize that this may be due to PTN aggregation in contact with the skin and tumour milieu of the most superficial tumour layers, thus avoiding its photochemical properties. On the other hand, normal skin treated with PTN-PDT exhibited slight histological changes. These preliminary findings encourage further studies of natural AQs administered in different vehicles, for topical treatment of cutaneous malignancies.
Collapse
|
7
|
Li GM, Chen JR, Zhang HQ, Cao XY, Sun C, Peng F, Yin YP, Lin Z, Yu L, Chen Y, Tang YL, Xie XF, Peng C. Update on Pharmacological Activities, Security, and Pharmacokinetics of Rhein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4582412. [PMID: 34457021 PMCID: PMC8387172 DOI: 10.1155/2021/4582412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Rhein, belonging to anthraquinone compounds, is one of the main active components of rhubarb and Polygonum multiflorum. Rhein has a variety of pharmacological effects, such as cardiocerebral protective effect, hepatoprotective effect, nephroprotective effect, anti-inflammation effect, antitumor effect, antidiabetic effect, and others. The mechanism is interrelated and complex, referring to NF-κB, PI3K/Akt/MAPK, p53, mitochondrial-mediated signaling pathway, oxidative stress signaling pathway, and so on. However, to some extent, its clinical application is limited by its poor water solubility and low bioavailability. Even more, rhein has potential liver and kidney toxicity. Therefore, in this paper, the pharmacological effects of rhein and its mechanism, pharmacokinetics, and safety studies were reviewed, in order to provide reference for the development and application of rhein.
Collapse
Affiliation(s)
- Gang-Min Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun-Ren Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hui-Qiong Zhang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao-Yu Cao
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chen Sun
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fu Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Peng Yin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ziwei Lin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lei Yu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yan Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun-Li Tang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Xiao-Fang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
8
|
Li Z, Zhou X, Zhu H, Song X, Gao H, Niu Z, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. J Biochem Mol Toxicol 2021; 35:e22665. [PMID: 33368780 DOI: 10.1002/jbt.22665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the leading type of diagnosed cancer; globally, it resides in the fourth-leading origin of cancer-interrelated mortality in the globe. The treatment strategies were chemotherapy and potent radiotherapy. Although chemotherapy treatment can eliminate tumor cells, it remains with unnecessary toxic effects in cancer patients. Therefore, the identification of natural-based compounds, which have selectively inhibiting target proteins with limited toxicity that can facilitate the therapeutic approaches against CRC. In this existing approach, which highlights the binding efficacy of our anthraquinone compound, purpurin against phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) protein restrains the CRC cell growth by inhibiting phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), cell proliferation, and inducing apoptosis signaling. Primarily, purpurin (36 μM) exposed to HCT-116 cells and incubated for 24 and 48 h could induce reactive oxygen species production, subsequently alter mitochondrion membrane, and increase the apoptotic cells in HCT-116. LHPP, a kind of histidine phosphatase protein, has been considered as a tumor suppressor in numerous carcinomas. However, purpurin-mediated LHPP proteins and its associated molecular events in CRC remain unclear. In our docking studies revealed that purpurin has been strongly interacts with LHPP via hydrophobic and hydrophilic binding interaction. Western blot results confirmed that purpurin enhances the expression of LHPP protein, thereby inhibits the expression of phosphorylated-PI3K/AKT, EGFR, cyclin-D1, PCNA in HCT-116 cells. Moreover, purpurin induces messenger RNA expression of apoptotic genes (Bax, CASP-9, and CASP-3) in HCT-116 cells. Thus, we conclude that purpurin could be a natural and useful compound, which inhibits the growth of CRC cells through the activation of LHPP proteins.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Colorectal and Anal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
9
|
Cheng L, Chen Q, Pi R, Chen J. A research update on the therapeutic potential of rhein and its derivatives. Eur J Pharmacol 2021; 899:173908. [PMID: 33515540 DOI: 10.1016/j.ejphar.2021.173908] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Rhein is one of the anthraquinones components of Rheum. It shows excellent clinical efficacy and is widely used in the management of several disease conditions including tumors, inflammation, diabetic nephropathy, and viral infections. In this review, we summarize the recent studies on the pharmacological activities of rhein and its derivatives, as well as their association with different diseases and possible mechanisms based on our previous review. This review serves as an updated and a supplement to our previous report highlighting the use of rhein in nanotechnology. It also serves as a reference study and offers an overall picture of the use of rhein and its derivatives in nanotechnology.
Collapse
Affiliation(s)
- Li Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Qiuhe Chen
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Li X, Liu Y, Zhao Y, Tian W, Zhai L, Pang H, Kang J, Hou H, Chen Y, Li D. Rhein Derivative 4F Inhibits the Malignant Phenotype of Breast Cancer by Downregulating Rac1 Protein. Front Pharmacol 2020; 11:754. [PMID: 32547389 PMCID: PMC7274043 DOI: 10.3389/fphar.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background Triple-negative breast cancer is a common malignant tumor with unfavorable prognosis affecting women worldwide; thus, there is an urgent need for novel therapeutic drugs with improved anti-tumor activity. Rac family small GTPase 1 (Rac1) plays an important role in malignant behavior and is a promising therapeutic target. We reported an anthraquinone compound, Rhein, and its derivative, 4F, and investigated their downregulation effects on Rac1 in breast cancer cells in vitro. Methods The inhibition of cell proliferation by derivative 4F was investigated in two breast cancer (MDA-MB-231 and MCF-7) and normal breast (MCF-10A) cell lines by cell counting kit-8 assay and growth curves. The role of 4F in cell migration and invasion and cytoskeletal change were assessed by Transwell chamber assay and F-actin staining, respectively. The affinity of Rhein and its derivative for Rac1 protein and the regulation of Rac1 promoter activity were evaluated by molecular docking software and luciferase reporter gene assay, respectively. Rac1 protein expression was determined by western blot assay. Results Compared to Rhein, derivative 4F more strongly inhibited breast cancer cell proliferation, migration, and invasion and also cause cytoskeletal changes like those in paclitaxel. Derivative 4F not only bound more stably to Rac1 but also inhibited Rac1 promoter activity in cells and downregulated Rac1 protein expression. Conclusions Rhein derivative 4F is a new anthraquinone compound with better anti-tumor activity than that of the lead compound Rhein in breast cancer. It down-regulated Rac1 expression and may be a small molecule inhibitor of Rac1.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yunfeng Liu
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yuhua Zhao
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei Tian
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Lina Zhai
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Huifeng Pang
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiankang Kang
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yanhua Chen
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Danrong Li
- Department of Basic Research, Guangxi Medical University Cancer Hospital, Nanning, China.,Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
12
|
Ma Q, Liao H, Xu L, Li Q, Zou J, Sun R, Xiao D, Liu C, Pu W, Cheng J, Zhou X, Huang G, Yao L, Zhong X, Guo X. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin Med 2020; 15:37. [PMID: 32351616 PMCID: PMC7183693 DOI: 10.1186/s13020-020-00318-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Dihydroartemisinin (DHA), a derivate of artemisinin, is an effective antimalarial agent. DHA has been shown to exert anticancer activities to numerous cancer cells in the past few years, while the exact molecular mechanisms remain to be elucidated, especially in esophageal cancer. Methods Crystal violet assay was conducted to determine the cell viability of human esophageal cancer cell line Eca109 treated with DHA. Tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Soft agar and crystal violet assays were used to measure the tumorigenicity of Eca109 cells. Flow cytometry was performed to evaluate ROS or cell cycle distribution. GFP-LC3 plasmids were delivered into Eca109 cells to visualize autophagy induced by DHA under a fluorescence microscope. The mRNA and protein levels of each gene were tested by qRT-PCR and western blot, respectively. Results Our results proved that DHA significantly reduced the viability of Eca109 cells in a dose- and time-dependent manner. Further investigation showed that DHA evidently induced cell cycle arrest at the G2/M phase in Eca109 cells. Mechanistically, DHA induced intracellular ROS generation and autophagy in Eca109 cells, while blocking ROS by an antioxidant NAC obviously inhibited autophagy. Furthermore, we found that telomere shelterin component TRF2 was down-regulated in Eca109 cells exposed to DHA through autophagy-dependent degradation, which could be rescued after autophagy was blocked by ROS inhibition. Moreover, the DNA damage response (DDR) was induced obviously in DHA treated cells. To further explore whether ROS or autophagy played a vital role in DHA induced cell cycle arrest, the cell cycle distribution of Eca109 cells was evaluated after ROS or autophagy blocking, and the results showed that autophagy, but not ROS, was essential for cell cycle arrest in DHA treated cells. Conclusion Taken together, DHA showed anticancer effect on esophageal cancer cells through autophagy-dependent cell cycle arrest at the G2/M phase, which unveiled a novel mechanism of DHA as a chemotherapeutic agent, and the degradation of TRF2 followed by DDR might be responsible for this cell phenotype.
Collapse
Affiliation(s)
- Qiang Ma
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Hebin Liao
- 2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Lei Xu
- 2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Qingrong Li
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Jiang Zou
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Ru Sun
- 3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,4Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Dan Xiao
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Chang Liu
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Wenjie Pu
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Jibing Cheng
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xi Zhou
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Guangcheng Huang
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Lihua Yao
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xiaowu Zhong
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xiaolan Guo
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| |
Collapse
|
13
|
Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem 2020; 12:627-644. [PMID: 32175770 DOI: 10.4155/fmc-2019-0322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthraquinones exhibit a unique anticancer activity. Since their discovery, medicinal chemists have made several structural modifications, resulting in the design and synthesis of a large number of novel anthraquinone compounds with different biological activities. In general, anthraquinone compounds have been considered to have anticancer activity mainly through DNA damage, cycle arrest and apoptosis. However, recent studies have shown that novel anthraquinone compounds may also inhibit cancer through paraptosis, autophagy, radiosensitising, overcoming chemoresistance and other methods. This Review article provides an overview of novel anthraquinone compounds that have been developed as anticancer agents in recent years and focuses on their anticancer mechanism.
Collapse
Affiliation(s)
- Wei Tian
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunmiao Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Danrong Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|