1
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res 2024; 23:653-662. [PMID: 38170682 DOI: 10.1021/acs.jproteome.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
Collapse
Affiliation(s)
- Hongen Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - ShuWen Lv
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoping Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Man Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Albaik M, Sheikh Saleh D, Kauther D, Mohammed H, Alfarra S, Alghamdi A, Ghaboura N, Sindi IA. Bridging the gap: glucose transporters, Alzheimer's, and future therapeutic prospects. Front Cell Dev Biol 2024; 12:1344039. [PMID: 38298219 PMCID: PMC10824951 DOI: 10.3389/fcell.2024.1344039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Glucose is the major source of chemical energy for cell functions in living organisms. The aim of this mini-review is to provide a clearer and simpler picture of the fundamentals of glucose transporters as well as the relationship of these transporters to Alzheimer's disease. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic databases (PubMed and ScienceDirect) were used to search for relevant studies mainly published during the period 2018-2023. This mini-review covers the two main types of glucose transporters, facilitated glucose transporters (GLUTs) and sodium-glucose linked transporters (SGLTs). The main difference between these two types is that the first type works through passive transport across the glucose concentration gradient. The second type works through active co-transportation to transport glucose against its chemical gradient. Fluctuation in glucose transporters translates into a disturbance of normal functioning, such as Alzheimer's disease, which may be caused by a significant downregulation of GLUTs most closely associated with insulin resistance in the brain. The first sign of Alzheimer's is a lack of GLUT4 translocation. The second sign is tau hyperphosphorylation, which is caused by GLUT1 and 3 being strongly upregulated. The current study focuses on the use of glucose transporters in treating diseases because of their proven therapeutic potential. Despite this, studies remain insufficient and inconclusive due to the complex and intertwined nature of glucose transport processes. This study recommends further understanding of the mechanisms related to these vectors for promising future therapies.
Collapse
Affiliation(s)
- Mai Albaik
- Department of Chemistry Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | - Dana Kauther
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hajira Mohammed
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shurouq Alfarra
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Adel Alghamdi
- Department of Biology Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Kim TH, Kwak Y, Song C, Lee HS, Kim DW, Oh HK, Kim JW, Lee KW, Kang SB, Kim JS. GLUT-1 may predict metastases and death in patients with locally advanced rectal cancer. Front Oncol 2023; 13:1094480. [PMID: 36968998 PMCID: PMC10036037 DOI: 10.3389/fonc.2023.1094480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Glucose transporter-1 (GLUT-1) has been studied as a possible predictor for survival outcomes in locally advanced rectal cancer (LARC). Methods We aimed to investigate the prognostic role of GLUT-1 in LARC using the data of 208 patients with clinical T3-4 stage and/or node-positive rectal adenocarcinoma, all of whom underwent neoadjuvant chemoradiotherapy (CRT) and subsequent total mesorectal excision (TME). Both pre-CRT and post-CRT specimens were immunohistologically stained for GLUT-1. Patients were classified into GLUT-1-positive and GLUT-1-negative groups and distant metastasis-free survival (DMFS) and overall survival (OS) was analyzed and compared. Results At a median follow-up of 74 months, post-CRT GLUT-1 status showed a significant correlation with worse DMFS (p=0.027, HR 2.26) and OS (p=0.030, HR 2.30). When patients were classified into 4 groups according to yp stage II/III status and post-CRT GLUT-1 positivity [yp stage II & GLUT-1 (-), yp stage II & GLUT-1 (+), yp stage III & GLUT-1 (-), yp stage III & GLUT-1 (+)], the 5-year DMFS rates were 92.3%, 63.9%, 65.4%, and 46.5%, respectively (p=0.013). GLUT-1 (-) groups showed markedly better outcomes for both yp stage II and III patients compared to GLUT-1 (+) groups. A similar tendency was observed for OS. Discussion In conclusion, post-CRT GLUT-1 may serve as a prognostic marker in LARC.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changhoon Song
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
5
|
Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int J Biol Macromol 2022; 216:768-778. [PMID: 35878663 DOI: 10.1016/j.ijbiomac.2022.07.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
Abstract
Glucose transporter (GLUT) is a group of membrane proteins which transport extracellular glucoses into cytoplasm, amongst GLUT1 is widely up-regulated in tumor cells. However, no FDA approved GLUT drug has been developed. In this study, we synthesized and identified a novel GLUT1 inhibitor (SMI277) based on in vitro assays and in vivo experiments. Compared with a known GLUT1 inhibitor, SMI277 showed stronger inhibitory activity to glucose uptake, and the inhibition was increased by 40 %. Lactate secretions were decreased by SMI277 in a dose dependent manner. SMI277 was able to inhibit cell proliferations and induce apoptosis of tumor cells. Compared to that of the control group, the tumor growth in mouse model with the administration of 10 mg/kg SMI277 was significantly alleviated and the tumor size was reduced by 58 % on day 21 after inoculation. Interestingly, SMI277 could negatively regulate the expression of GLUT1 protein. Ex vivo experiments showed that SMI277 was capable to enhance CD8+ T cell response. Residues Q283, F379 and E380 were identified as contact residues for GLUT1/SMI277 interactions by mutagenesis based binding affinity measurement. In conclusion, SMI277 appeared to be a good lead compound for drug development with specific GLUT1+ cancer treatment.
Collapse
|
6
|
Yang Y, Li G, Lu Z, Liu Y, Kong J, Liu J. Progression of Prothrombin Induced by Vitamin K Absence-II in Hepatocellular Carcinoma. Front Oncol 2021; 11:726213. [PMID: 34900676 PMCID: PMC8660097 DOI: 10.3389/fonc.2021.726213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer-related death worldwide. Due to the lack of efficient tools for early detection, asymptomatic HCC patients are diagnosed at an advanced stage, leading to a poor prognosis. To improve survival, serum biomarker prothrombin induced by vitamin K absence-II (PIVKA-II) was under investigation. PIVKA-II is an abnormal protein produced in HCC. The coagulation function was insufficient due to the lack of Gla residues. Elevated PIVKA-II was associated with bad tumor behavior in terms of proliferation, metastasis, and invasion. Three major signaling pathways were proposed to clarify the mechanism. With the advantages including affordability, minimal invasiveness, convenience, and efficiency, PIVKA-II could improve HCC management consisting of four aspects. First, PIVKA-II was an effective and dynamic tool for improving HCC surveillance in high-risk population. Changes in the serum levels of PIVKA-II provided valuable molecular alteration information before imaging discovery. Second, PIVKA-II offered a complementary approach for HCC early detection. Compared to traditional diagnostic approaches, the combination of PIVKA-II and other biomarkers had better performance. Third, PIVKA-II was an indicator for the assessment of response to treatment in HCC. Preoperative assessment was for selecting personalized therapy, and postoperative measurement was for assessing treatment efficacy. Fourth, PIVKA-II was considered as a prognostic predictor for HCC. Patients with elevated PIVKA-II were more likely to develop microvascular invasion, metastasis, and recurrence.
Collapse
Affiliation(s)
- Yang Yang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangbing Li
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziwen Lu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|