1
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
2
|
Osako Y, Yoshino H, Sakaguchi T, Sugita S, Yonemori M, Nakagawa M, Enokida H. Potential tumor‑suppressive role of microRNA‑99a‑3p in sunitinib‑resistant renal cell carcinoma cells through the regulation of RRM2. Int J Oncol 2019; 54:1759-1770. [PMID: 30816432 DOI: 10.3892/ijo.2019.4736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Sunitinib is the most common primary molecular‑targeted agent for metastatic clear cell renal cell carcinoma (ccRCC); however, intrinsic or acquired sunitinib resistance has become a significant problem in medical practice. The present study focused on microRNA (miR)‑99a‑3p, which was significantly downregulated in clinical sunitinib‑resistant ccRCC tissues in previous screening analyses, and investigated the molecular network associated with it. The expression levels of miR‑99a‑3p and its candidate target genes were evaluated in RCC cells, including previously established sunitinib‑resistant 786‑o (SU‑R‑786‑o) cells, and clinical ccRCC tissues, using reverse transcription‑quantitative polymerase chain reaction. Gain‑of‑function studies demonstrated that miR‑99a‑3p significantly suppressed cell proliferation and colony formation in RCC cells, including the SU‑R‑786‑o cells, by inducing apoptosis. Based on in silico analyses and RNA sequencing data, followed by luciferase reporter assays, ribonucleotide reductase regulatory subunit‑M2 (RRM2) was identified as a direct target of miR‑99a‑3p in the SU‑R‑786‑o cells. Loss‑of‑function studies using small interfering RNA against RRM2 revealed that cell proliferation and colony growth were significantly inhibited via induction of apoptosis, particularly in the SU‑R‑786‑o cells. Furthermore, the RRM2 inhibitor Didox (3,4‑dihydroxybenzohydroxamic acid) exhibited anticancer effects in the SU‑R‑786‑o cells and other RCC cells. To the best of our knowledge, this is the first report demonstrating that miR‑99a‑3p directly regulates RRM2. Identifying novel genes targeted by tumor‑suppressive miR‑99a‑3p in sunitinib‑resistant RCC cells may improve our understanding of intrinsic or acquired resistance and facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
3
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
4
|
Yang S, Yang X, Liu Y, Zheng B, Meng L, Lee RJ, Xie J, Teng L. Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery. Colloids Surf B Biointerfaces 2015; 135:274-282. [PMID: 26263216 PMCID: PMC4856292 DOI: 10.1016/j.colsurfb.2015.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/09/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
Abstract
Polyethylenimine (PEI) was conjugated to oleic acid (PEI-OA) and evaluated as a delivery agent for LOR-2501, an antisense oligonucleotide against ribonucleotide reductase R1 subunit. PEI-OA/LOR-2501 complexes were further coated with folic acid (FA/PEI-OA/LOR-2501) and evaluated in tumor cells. The level of cellular uptake of FA/PEI-OA/LOR-2501 was more than double that of PEI/LOR-2501 complexes, and was not affected by the expression level of folate receptor (FR) on the cell surface. Efficient delivery was seen in several cell lines. Furthermore, pathway specific cellular internalization inhibitors and markers were used to reveal the principal mechanism of cellular uptake. FA/PEI-OA/LOR-2501 significantly induced the downregulation of R1 mRNA and R1 protein. This novel formulation of FA/PEI-OA provides a reliable and highly efficient method for delivery of oligonucleotide and warrants further investigation.
Collapse
Affiliation(s)
- Shuang Yang
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Xuewei Yang
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Liu
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Zheng
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Lingjun Meng
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Robert J Lee
- College of Life Sciences, Jilin University, Changchun 130012, China; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Xie
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lesheng Teng
- College of Life Sciences, Jilin University, Changchun 130012, China; State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai 264000, China.
| |
Collapse
|
5
|
Yang Z, Yu B, Zhu J, Huang X, Xie J, Xu S, Yang X, Wang X, Yung BC, Lee LJ, Lee RJ, Teng L. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. NANOSCALE 2014; 6:9742-9751. [PMID: 25003978 PMCID: PMC4312591 DOI: 10.1039/c4nr01510j] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for the targeted delivery of LOR-1284 siRNA into acute myeloid leukemia (AML) cells. The in vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4-11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than the free LOR-1284 in reducing the R2 mRNA and protein levels. The Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to the free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with the decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific therapeutic delivery of LOR-1284 into AML cells.
Collapse
Affiliation(s)
- Zhaogang Yang
- College of Pharmacy, The Ohio State University, 500 W 12th Ave, 43210, Columbus, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2014; 34:2011-21. [PMID: 24909171 DOI: 10.1038/onc.2014.155] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 12/16/2022]
Abstract
Accurate DNA replication and repair is essential for proper development, growth and tumor-free survival in all multicellular organisms. A key requirement for the maintenance of genomic integrity is the availability of adequate and balanced pools of deoxyribonucleoside triphosphates (dNTPs), the building blocks of DNA. Notably, dNTP pool alterations lead to genomic instability and have been linked to multiple human diseases, including mitochondrial disorders, susceptibility to viral infection and cancer. In this review, we discuss how a key regulator of dNTP biosynthesis in mammals, the enzyme ribonucleotide reductase (RNR), impacts cancer susceptibility and serves as a target for anti-cancer therapies. Because RNR-regulated dNTP production can influence DNA replication fidelity while also supporting genome-protecting DNA repair, RNR has complex and stage-specific roles in carcinogenesis. Nevertheless, cancer cells are dependent on RNR for de novo dNTP biosynthesis. Therefore, elevated RNR expression is a characteristic of many cancers, and an array of mechanistically distinct RNR inhibitors serve as effective agents for cancer treatment. The dNTP metabolism machinery, including RNR, has been exploited for therapeutic benefit for decades and remains an important target for cancer drug development.
Collapse
Affiliation(s)
- Y Aye
- 1] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA [2] Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - M Li
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - M J C Long
- Graduate Program in Biochemistry, Brandeis University, Waltham, MA, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol 2010; 131:453-60. [PMID: 20944646 DOI: 10.1038/jid.2010.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemically delivered small interfering RNA (siRNA) therapies for cancer have begun clinical development. The effects of siRNA-mediated knockdown of ribonucleotide reductase subunit-2 (RRM2), a rate-limiting enzyme in cell replication, were investigated in malignant melanoma, a cancer with a paucity of effective treatment options. A panel of human melanoma cell lines was transfected with siRNA to induce the knockdown of RRM2. Sequence-specific, siRNA-mediated inhibition of RRM2 effectively blocked cell proliferation and induced G1/S-phase cell cycle arrest. This effect was independent of the activating oncogenic mutations in the tested cell lines. Synergistic inhibition of melanoma cell proliferation was achieved using the combination of siRNA targeting RRM2 and temozolomide, an analog of the current standard of care for melanoma chemotherapy. In conclusion, siRNA-mediated RRM2 knockdown significantly inhibits proliferation of melanoma cell lines with different oncogenic mutations with synergistic enhancement in combination with temozolomide.
Collapse
|
8
|
Evaluation of mRNA by Q-RTPCR and protein expression by AQUA of the M2 subunit of ribonucleotide reductase (RRM2) in human tumors. Cancer Chemother Pharmacol 2008; 64:79-86. [PMID: 18941749 DOI: 10.1007/s00280-008-0845-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate baseline RRM2 protein and gene expression in tumors of patients receiving 3-AP. METHODS Tumor blocks from patients enrolled in phase I and II clinical studies using 3-AP, were evaluated for RRM2 gene and protein expression by quantitative real time polymerase chain reaction (Q-RTPCR) and automated quantitative analysis (AQUA). RESULTS Esophageal and gastric cancers overexpressed RRM2 protein when compared to prostate cancer (Z-score, 0.68 +/- 0.94 SD, vs 0.41 +/- 0.84 SD, respectively; p = 0.04). Esophageal and gastric cancers also overexpressed RRM2 mRNA when compared to prostate cancer (relative gene expression 2.56 +/- 1.49 SD, vs 0.29 +/- 0.20 SD, respectively; p = 0.02). Protein and gene expression were moderately associated (Spearman's rank correlation = 0.30; p = 0.12). CONCLUSION RRM2 gene and protein expression varies by tumor type.
Collapse
|
9
|
Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng 2008; 99:975-85. [PMID: 17929316 DOI: 10.1002/bit.21668] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study addresses issues of relevance for siRNA nanoparticle delivery by investigating the functional impact of tumor-specific targeting and dosing schedule. The investigations are performed using an experimental system involving a syngeneic mouse cancer model and a theoretical system based on our previously described mathematical model of siRNA delivery and function. A/J mice bearing subcutaneous Neuro2A tumors approximately 100 mm(3) in size were treated by intravenous injection with siRNA-containing nanoparticles formed with cyclodextrin-containing polycations (CDP). Three consecutive daily doses of transferrin (Tf)-targeted nanoparticles carrying 2.5 mg/kg of two different siRNA sequences targeting ribonucleotide reductase subunit M2 (RRM2) slowed tumor growth, whereas non-targeted nanoparticles were significantly less effective when given at the same dose. Furthermore, administration of the three doses on consecutive days or every 3 days did not lead to statistically significant differences in tumor growth delay. Mathematical model calculations of siRNA-mediated target protein knockdown and tumor growth inhibition are used to elucidate possible mechanisms to explain the observed effects and to provide guidelines for designing more effective siRNA-based treatment regimens regardless of delivery methodology and tumor type.
Collapse
Affiliation(s)
- Derek W Bartlett
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 210-41, Pasadena, California 91125, USA
| | | |
Collapse
|