1
|
Kinesin Eg5 Selective Inhibition by Newly Synthesized Molecules as an Alternative Approach to Counteract Breast Cancer Progression: An In Vitro Study. BIOLOGY 2022; 11:biology11101450. [PMID: 36290354 PMCID: PMC9598199 DOI: 10.3390/biology11101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Recently, a promising target for BC treatment was found in kinesin Eg5, a mitotic motor protein that allows bipolar spindle formation and cell replication. Thus, the aim of this work was to evaluate the effects of novel thiadiazoline-based Eg5 inhibitors, analogs of K858, in an in vitro model of BC (MCF7 cell line). Compounds 2 and 41 were selected for their better profile as they reduce MCF7 viability at lower concentrations and with minimal effect on non-tumoral cells with respect to K858. Compounds 2 and 41 counteract MCF7 migration by negatively modulating the NF-kB/MMP-9 pathway. The expression of HIF-1α and VEGF appeared also reduced by 2 and 41 administration, thus preventing the recruitment of the molecular cascade involved in angiogenesis promotion. In addition, 2 provokes an increased caspase-3 activation thus triggering the MCF7 apoptotic event, while 41 and K858 seem to induce the necrosis axis, as disclosed by the increased expression of PARP. These results allow us to argue that 2 and 41 are able to simultaneously intervene on pivotal molecular signaling involved in breast cancer progression, leading to the assumption that Eg5 inhibition can represent a valid approach to counteract BC progression.
Collapse
|
2
|
Garcia-Saez I, Skoufias DA. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharmacol 2020; 184:114364. [PMID: 33310050 DOI: 10.1016/j.bcp.2020.114364] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
3
|
Zhou J, Chen WR, Yang LC, Wang J, Sun JY, Zhang WW, He ZY, Wu SG. KIF11 Functions as an Oncogene and Is Associated with Poor Outcomes from Breast Cancer. Cancer Res Treat 2018; 51:1207-1221. [PMID: 30590004 PMCID: PMC6639218 DOI: 10.4143/crt.2018.460] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose The study aimed to search and identify genes that were differentially expressed in breast cancer, and their roles in cancer growth and progression. Materials and Methods The Gene Expression Omnibus (Oncomine) and The Cancer Genome Atlas databases (https://cancergenome.nih.gov/) were screened for genes that were expressed differentially in breast cancer and were closely related to a poor prognosis. Gene expressions were verified by quantitative real-time polymerase chain reaction, and genes were knocked down by a lentivirus-based system. Cell growth and motility were evaluated and in vivo nude mice were used to confirm the in vitro roles of genes. Markers of epithelial-to-mesenchymal transition and the associations of KIF11 with the classical cancer signaling pathways were detected by Western blot. Results A series of genes expressed differentially in patients with breast cancer. The prognosis associated with high KIF11 expression was poor, and the expression of KIF11 increased significantly in high stage and malignant tumor cells. Inhibiting KIF11 expression in lentivirus-suppressed cells revealed that KIF11 inhibition significantly reduced cell viability and colony formation, inhibited migration and invasion, but promoted apoptosis. The sizes and weights of KIF11-inhibited tumors in nude mice were significantly lower than in the negative controls. Western blot showed that E-cadherin in breast cancer was significantly upregulated in KIF-inhibited cells and tumor tissues, whereas N-cadherin and vimentin were significantly downregulated. BT549 and MDA231 cells with KIF11 knockdown exhibited decreased ERK, AMPK, AKT, and CREB phosphorylation. Conclusion KIF11 acts as a potential oncogene that regulates the development and progression of breast cancer.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wei-Rong Chen
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Li-Chao Yang
- Department of Basic Medical Science, Medical College of Xiamen University, Xiamen, China
| | - Jun Wang
- Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jia-Yuan Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wen-Wen Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Jin Q, Huang F, Wang X, Zhu H, Xian Y, Li J, Zhang S, Ni Q. High Eg5 expression predicts poor prognosis in breast cancer. Oncotarget 2017; 8:62208-62216. [PMID: 28977938 PMCID: PMC5617498 DOI: 10.18632/oncotarget.19215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Eg5 is a motor protein belonging to the kinesin-5 family and has been suggested to exert important function in tumors. In this study, we determined the mRNA and protein expression levels of Eg5 in cancerous and non-cancerous breast tissue by quantitative real-time polymerase chain reaction (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. The results of 20 fresh-frozen BC samples demonstrated that Eg5 mRNA levels were significantly higher in BC tissues compared with corresponding non-cancerous tissue (p = 0.0009). TMA-IHC analysis in 127 BC tissues revealed that Eg5 expression obviously correlated with clinicopathologial parameters, including tumor grade (p = 0.004), ER status (p = 0.030), Ki67 status (p = 0.005), molecular classification (p = 0.026), N stage (p = 0.015), and TNM stage (p = 0.001). Kaplan-Meier survival curve indicated that high Eg5 expression (p = 0.012), Ki67 status (p = 0.014) and TNM stage (p = 0.026) were independent factors to predict poor prognosis for patients with breast cancer. Our data suggest that Eg5 is not only overexpressed in BC, it may be also served as a potential prognostic marker.
Collapse
Affiliation(s)
- Qin Jin
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Fang Huang
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xudong Wang
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Huijun Zhu
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Xian
- Health Insurance Office, Nantong University, Nantong 226001, Jiangsu, China
| | - Jieying Li
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shu Zhang
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
5
|
Ma C, Chen HIH, Flores M, Huang Y, Chen Y. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S5. [PMID: 24564956 PMCID: PMC4029357 DOI: 10.1186/1752-0509-7-s5-s5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. METHOD Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. RESULT BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. CONCLUSIONS The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates.
Collapse
Affiliation(s)
- Chifeng Ma
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Hung-I Harry Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|