1
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
2
|
Khan S, LeBlanc R, Gyger M, White D, Kaufman J, Jazubowiak A, Gul E, Paul H, Le LW, Lau A, Li Z, Trudel S. A phase-1 trial of linsitinib (OSI-906) in combination with bortezomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Leuk Lymphoma 2021; 62:1721-1729. [PMID: 33509009 DOI: 10.1080/10428194.2021.1876864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We report results of a phase-1 study evaluating the safety and anti-cancer activity of the small molecule insulin-like growth factor-1 receptor (IGF-1R) inhibitor, linsitinib combined with bortezomib, and dexamethasone in relapsed/refractory multiple myeloma. Nineteen patients were enrolled across four dose-escalation cohorts (75-150 mg bid). The maximum tolerated dose of linsitinib was 125 mg. The most frequent Grade 3/4 AEs occurring in ≥10% of patients were thrombocytopenia (53%), bone pain (26%), neutropenia (21%), diarrhea (14%), anemia (14%), rash (10%), and lung infection (10%). Study discontinuation due to treatment-related AEs was low (16%). Across all cohorts the ORR was 61% (95% CI: 28.9-75.6%). Three partial response or greater and one stable disease were observed in proteasome inhibitor (PI) refractory patients (n = 5). Median PFS was 7.1 months (95% CI: 3.6-NA). Linsitinib plus bortezomib and dexamethasone demonstrate a manageable safety profile while the clinical benefit particularly in PI refractory patients warrants further exploration.
Collapse
Affiliation(s)
- Sahar Khan
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | - Darrell White
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Johnathan Kaufman
- Winship Cancer Institute Emory University School of Medicine, Atlanta, GA, USA
| | - Andrzej Jazubowiak
- Division of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Engin Gul
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Harminder Paul
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Lisa W Le
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Anthea Lau
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Zhihua Li
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Suzanne Trudel
- Princess Margaret Cancer Centre Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
3
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leuk Lymphoma 2018; 59:2524-2534. [PMID: 29322846 DOI: 10.1080/10428194.2017.1421760] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most common hematological malignancy. The disease is characterized by the accumulation of abnormal plasma cells in the bone marrow that remains in close association with other cells in the marrow microenvironment. In addition to the genomic alterations that commonly occur in MM, the interaction with cells in the marrow microenvironment promotes signaling events within the myeloma cells that enhances survival of MM cells. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is such a pathway that is aberrantly activated in a large proportion of MM patients through numerous mechanisms and can play a role in resistance to several existing therapies making this a central pathway in MM pathophysiology. Here, we review the pathway, its role in MM, promising preclinical results obtained thus far and the clinical promise that drugs targeting this pathway have in MM.
Collapse
Affiliation(s)
| | - Shaji Kumar
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
5
|
Schaffrath J, Schmoll HJ, Voigt W, Müller LP, Müller-Tidow C, Mueller T. Efficacy of targeted drugs in germ cell cancer cell lines with differential cisplatin sensitivity. PLoS One 2017; 12:e0178930. [PMID: 28591197 PMCID: PMC5462387 DOI: 10.1371/journal.pone.0178930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancies in men between the age of 15 and 35. Although cisplatin-based chemotherapy is highly effective in advanced disease, approximately 20% of patients have an unfavorable prognosis due to primary or acquired cisplatin resistance. For these patients, new therapeutic options are urgently needed. In numerous tumor entities, combinations of monoclonal antibodies or kinase inhibitors with chemotherapy exerted promising preclinical or clinical results, which have led to new treatment concepts. This prompted us to investigate the activity of different targeted agents alone or in combination with cisplatin in a panel of TGCT cell lines.
Collapse
Affiliation(s)
- Judith Schaffrath
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hans-Joachim Schmoll
- Workgroup Clinical Studies in Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wieland Voigt
- Medical Innovations and Management, Innovation in Oncology, Steinbeis University, Berlin, Germany
| | - Lutz P. Müller
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
6
|
Wang H, Huang F, Wang J, Wang P, Lv W, Hong L, Li S, Zhou J. The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle 2015; 14:232-42. [PMID: 25607647 DOI: 10.4161/15384101.2014.977096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.
Collapse
Affiliation(s)
- Hongtao Wang
- a Laboratory of Medical Molecular Biology; Beijing Institute of Biotechnology ; Beijing , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 2013; 31:805. [PMID: 24338270 DOI: 10.1007/s12032-013-0805-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Insulin and insulin-like growth factor (IGF) signaling system, commonly known for fine-tuning numerous biological processes, has lately made its mark as a much sought-after therapeutic targets for diabetes and cancer. These receptors make an attractive anticancer target owing to their overexpression in variety of cancer especially in prostate and breast cancer. Inhibitors of IGF signaling were subjected to clinical cancer trials with the main objective to confirm the effectiveness of these receptors as a therapeutic target. However, the results that these trials produced proved to be disappointing as the role played by the cross talk between IGF and insulin receptor (IR) signaling pathways at the receptor level or at downstream signaling level became more lucid. Therapeutic strategy for IGF-1R and IR inhibition mainly encompasses three main approaches namely receptor blockade with monoclonal antibodies, tyrosine kinase inhibition (ATP antagonist and non-ATP antagonist), and ligand neutralization via monoclonal antibodies targeted to ligand or recombinant IGF-binding proteins. Other drug-discovery approaches are employed to target IGF-1R, and IR includes antisense oligonucleotides and recombinant IGF-binding proteins. However, therapies with monoclonal antibodies and tyrosine kinase inhibition targeting the IGF-1R are not evidenced to be satisfactory as expected. Factors that are duly held responsible for the unsuccessfulness of these therapies include (a) the existence of the IR isoform A overexpressed on a variety of cancers, enhancing the mitogenic signals to the nucleus leading to the endorsement of cell growth, (b) IGF-1R and IR that form hybrid receptors sensitive to the stimulation of all three IGF axis ligands, and (c) IGF-1R and IR that also have the potential to form hybrid receptors with other tyrosine kinase to potentiate the cellular transformation, tumorigenesis, and tumor vascularization. This mini review is a concerted effort to explore and fathom the well-recognized roles of the IRA signaling system in human cancer phenotype and the main strategies that have been so far evaluated to target the IR and IGF-1R.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | | | |
Collapse
|
8
|
Nordstrand A, Lundholm M, Larsson A, Lerner UH, Widmark A, Wikström P. Inhibition of the insulin-like growth factor-1 receptor enhances effects of simvastatin on prostate cancer cells in co-culture with bone. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:231-40. [PMID: 23335094 PMCID: PMC3855371 DOI: 10.1007/s12307-013-0129-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 01/26/2023]
Abstract
Prostate cancer (PC) bone metastases show weak responses to conventional therapies. Bone matrix is rich in growth factors, with insulin-like growth factor-1 (IGF-1) being one of the most abundant. IGF-1 acts as a survival factor for tumor cells and we speculate that bone-derived IGF-1 counteracts effects of therapies aimed to target bone metastases and, consequently, that therapeutic effects could be enhanced if given in combination with IGF-1 receptor (IGF-1R) inhibitors. Simvastatin inhibits the mevalonate pathway and has been found to induce apoptosis of PC cells. The aims of this study were to confirm stimulating effects of bone-derived IGF-1 on PC cells and to test if IGF-1R inhibition enhances growth inhibitory effects of simvastatin on PC cells in a bone microenvironment. The PC-3 and 22Rv1 tumor cell lines showed significantly induced cell growth when co-cultured with neonatal mouse calvarial bones. The tumor cell IGF-1R was activated by calvariae-conditioned media and neutralization of bone-derived IGF-1 abolished the calvarium-induced PC-3 cell growth. Treatment of PC-3 and 22Rv1 cells with simvastatin, or the IGF-1R inhibitor NVP-AEW541, reduced tumor cell numbers and viability, and induced apoptosis. Combined simvastatin and NVP-AEW541 treatment resulted in enhanced growth inhibitory effects compared to either drug given alone. Effects of simvastatin involved down-regulation of IGF-1R in PC-3 and of constitutively active androgen receptor variants in 22Rv1 cells. In conclusion, we suggest that IGF-1 inhibition may be a way to strengthen effects of apoptosis-inducing therapies on PC bone metastases; a possibility that needs to be further tested in pre-clinical models.
Collapse
Affiliation(s)
- Annika Nordstrand
- Department of Radiation Sciences, Oncology, Umeå University, 901 85 Umeå, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| | | | - Ulf H. Lerner
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, 901 85 Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| |
Collapse
|
9
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jung S, Kim S, Gale M, Cherni I, Fonseca R, Carpten J, Salhia B. DNA methylation in multiple myeloma is weakly associated with gene transcription. PLoS One 2012; 7:e52626. [PMID: 23285118 PMCID: PMC3527579 DOI: 10.1371/journal.pone.0052626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022] Open
Abstract
Previous studies have now demonstrated that both genic and global hypomethylation characterizes the multiple myeloma (MM) epigenome. Whether these methylation changes are associated with global and corresponding increases (or decreases) in transcriptional activity are poorly understood. The purpose of our current study was to correlate DNA methylation levels in MM to gene expression. We analyzed matching datasets generated by the GoldenGate methylation BeadArray and Affymetrix gene expression platforms in 193 MM samples. We subsequently utilized two independent statistical approaches to identify methylation-expression correlations. In the first approach, we used a linear correlation parameter by computing a Pearson correlation coefficient. In the second approach, we discretized samples into low and high methylation groups and then compared the gene expression differences between the groups. Only methylation of 2.1% and 25.3% of CpG sites on the methylation array correlated to gene expression by Pearson correlation or the discretization method, respectively. Among the genes with methylation-expression correlations were IGF1R, DLC1, p16, and IL17RB. In conclusion, DNA methylation may directly regulate relatively few genes and suggests that additional studies are needed to determine the effects of genome-wide methylation changes in MM.
Collapse
Affiliation(s)
- Sungwon Jung
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Seungchan Kim
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Molly Gale
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Irene Cherni
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rafael Fonseca
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - John Carpten
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Bodour Salhia
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
11
|
Shimura Y, Kuroda J, Ri M, Nagoshi H, Yamamoto-Sugitani M, Kobayashi T, Kiyota M, Nakayama R, Mizutani S, Chinen Y, Sakamoto N, Matsumoto Y, Horiike S, Shiotsu Y, Iida S, Taniwaki M. RSK2(Ser227) at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol Cancer Ther 2012; 11:2600-9. [PMID: 23012246 DOI: 10.1158/1535-7163.mct-12-0605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is an entity of cytogenetically and genetically heterogenous plasma cell neoplasms. Despite recent improvement in the treatment outcome of multiple myeloma by novel molecular-targeted chemotherapeutics, multiple myeloma remains incurable. The identification of a therapeutic target molecule in which various signaling for cell-survival converge is a core component for the development of new therapeutic strategies against multiple myeloma. RSK2 is an essential mediator of the ERK1/2 signaling pathway for cell survival and proliferation. In this study, we discovered that RSK2(Ser227), which is located at the N-terminal kinase domain and is one site responsible for substrate phosphorylation, is activated through phosphorylation regardless of the type of cytogenetic abnormalities or upstream molecular signaling in all 12 multiple myeloma-derived cell lines examined and 6 of 9 patient-derived CD138-positive primary myeloma cells. The chemical inhibition of RSK2(Ser227) by BI-D1870 or gene knockdown of RSK2 inhibits myeloma cell proliferation through apoptosis induction, and this anti-myeloma effect was accompanied by downregulation of c-MYC, cyclin D, p21(WAF1/CIP1), and MCL1. RSK2(Ser227) inhibition resulting from BI-D1870 treatment restored lenalidomide-induced direct cytotoxicity of myeloma cells from interleukin-6-mediated cell protection, showed no cross-resistance to bortezomib, and exerted additive/synergistic antiproliferative effects in conjunction with the mTOR, histone deacetylase, and BH3-mimicking BCL2/BCLX(L) inhibitors. These results suggest that RSK2(Ser227) is a potential therapeutic target not only for newly diagnosed but also for patients with later phase multiple myeloma who are resistant or refractory to currently available anti-myeloma therapies.
Collapse
Affiliation(s)
- Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10:868-80. [PMID: 22037041 DOI: 10.1038/nrd3531] [Citation(s) in RCA: 763] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.
Collapse
|
13
|
Liang SB, Yang XZ, Trieu Y, Li Z, Zive J, Leung-Hagesteijn C, Wei E, Zozulya S, Coss CC, Dalton JT, Fantus IG, Trudel S. Molecular target characterization and antimyeloma activity of the novel, insulin-like growth factor 1 receptor inhibitor, GTx-134. Clin Cancer Res 2011; 17:4693-704. [PMID: 21632854 DOI: 10.1158/1078-0432.ccr-10-3097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic strategies that target insulin-like growth factor 1 receptor (IGF-1R) hold promise in a wide variety of cancers including multiple myeloma (MM). In this study, we describe GTx-134, a novel small-molecule inhibitor of IGF-1R and insulin receptor (IR) and characterized its antitumor activity in preclinical models of MM. EXPERIMENTAL DESIGN The activity of GTx-134 as a single agent and in combination was tested in MM cell lines and primary patient samples. Downstream effector proteins and correlation with apoptosis was evaluated. Cytotoxcity in bone marrow stroma coculture experiments was assessed. Finally, the in vivo efficacy was evaluated in a human myeloma xenograft model. RESULTS GTx-134 inhibited the growth of 10 of 14 myeloma cell lines (<5 μmol/L) and induced apoptosis. Sensitivity to GTx-134 correlated with IGF-1R signal inhibition. Expression of MDR-1 and CD45 were associated with resistance to GTx-134. Coculture with insulin-growth factor-1 (IGF-1) or adherence to bone marrow stroma conferred modest resistance, but did not overcome GTx-134-induced cytotoxicity. GTx-134 showed in vitro synergies when combined with dexamethasone or lenalidomide. Further, GTx-134 enhanced the activity of PD173074, a fibroblast growth factor receptor 3 (FGFR3) inhibitor, against t(4;14) myeloma cells. Therapeutic efficacy of GTx-134 was shown against primary cells and xenograft tumors. Although dysregulation of glucose homeostasis was observed in GTx-134-treated mice, impairment of glucose tolerance was modest. CONCLUSIONS These studies support the potential therapeutic efficacy of GTx-134 in MM. Further, they provide a rationale for clinical application in combination with established antimyeloma treatments and novel targeted therapies.
Collapse
Affiliation(s)
- Sheng-Ben Liang
- Department of Medical Oncology-Hematology, Princess Margaret Hospital, McLaughlin Centre for Molecular Medicine, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers (Basel) 2011; 3:2478-500. [PMID: 24212820 PMCID: PMC3757428 DOI: 10.3390/cancers3022478] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, extensive studies have been made to understand the role played by the mammalian target of rapamycin (mTOR) in cancer. Knowledge in this field has been gained from discoveries in basic research as well as from observations made in patients treated with allosteric mTOR inhibitors such as rapamycin. Despite promising preclinical studies, targeting mTOR in cancer therapy has shown limited clinical benefits so far. However, recent findings have revealed the complexity of the functions of mTOR in cancer and have helped develop new strategies to improve the anticancer efficacy of mTOR inhibitors. In particular, a complex network between mTOR and other signaling pathways has been identified that influences the anticancer efficacy of mTOR inhibitors. In addition, an emerging role of mTOR in the tumor microenvironment has been suggested. In this review, we confront the major findings that have been made in the past, both in experimental settings as well as in clinical trials. We further review the strategies that have been designed to further improve the efficacy of therapies targeting mTOR.
Collapse
|
15
|
Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 2010; 24:1686-99. [PMID: 20703258 DOI: 10.1038/leu.2010.170] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a protein kinase implicated in the regulation of various cellular processes, including those required for tumor development, such as the initiation of mRNA translation, cell-cycle progression and cellular proliferation. In a wide range of hematological malignancies, the mTORC1 signaling pathway has been found to be deregulated and has been designed as a major target for tumor therapy. Given that pre-clinical studies have clearly established the therapeutic value of mTORC1 inhibition, numerous clinical trials of rapamycin and its derivates (rapalogs) are ongoing for treatment of these diseases. At this time, although disease stabilization and tumor regression have been observed, objective responses in some tumor types have been modest. Nevertheless, some of the mechanisms underlying cancer-cell resistance to rapamycin have now been described, thereby leading to the development of new strategy to efficiently target mTOR signaling in these diseases. In this review, we discuss the rationale for using mTOR inhibitors as novel therapies for a variety of hematological, malignancies with a focus on promising new perspectives for these approaches.
Collapse
Affiliation(s)
- N Chapuis
- Département d'Immunologie-Hématologie, Institut Cochin, Université Paris Descartes, CNRS, UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wolf S, Lorenz J, Mössner J, Wiedmann M. Treatment of biliary tract cancer with NVP-AEW541: Mechanisms of action and resistance. World J Gastroenterol 2010; 16:156-66. [PMID: 20066734 PMCID: PMC2806553 DOI: 10.3748/wjg.v16.i2.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate in vitro treatment with NVP-AEW541, a small molecule inhibitor of insulin-like growth factor-1 receptor (IGF-1R), in biliary tract cancer (BTC), since this disease is associated with a poor prognosis due to wide resistance to chemotherapeutic agents and radiotherapy.
METHODS: Cell growth inhibition by NVP-AEW541 was studied in vitro in 7 human BTC cell lines by automated cell counting. In addition, the anti-tumoral mechanism of NVP-AEW541 was studied by Western blotting, cell cycle analysis and reverse transcription-polymerase chain reaction (RT-PCR). Anti-tumoral drug effect in combination with gemcitabine, 5-fluorouracil (5-FU) and Polo-like kinase 1 inhibitor BI2536 was also studied.
RESULTS: In vitro treatment with NVP-AEW541 suppressed growth in all human BTC cell lines, however response was lower in gallbladder cancer. Treatment with NVP-AEW541 was associated with dephosphorylation of IGF-1R and AKT. In contrast, phosphorylation of p42/p44 and Stat3 and expression of Bcl-xL were inconsistently downregulated. In addition, treated cells showed cell cycle arrest at the G1/S-checkpoint and an increase in sub-G1 peak. Moreover, IGF-1R and its ligands IGF-1 and IGF-2 were co-expressed in RT-PCR, suggesting an autocrine loop of tumor cell activation. Combined with gemcitabine, NVP-AEW541 exerted synergistic effects, particularly at low concentrations, while effects of combination with 5-FU or BI 2536 were only additive.
CONCLUSION: Our findings suggest that NVP-AEW541 is active against BTC in vitro and potentiates the efficacy of gemcitabine.
Collapse
|
17
|
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) has emerged as an attractive cancer therapeutic target. Accordingly, several mTOR inhibitors (e.g., rapamycin and its analogs; rapalogs) are currently being tested in many cancer clinical trials. Despite the encouraging results showing that some rapalogs improved overall survival among patients with metastatic renal-cell carcinoma, the single-agent activity of rapalogs in most other tumor-types has been modest, at best. OBJECTIVE To review the current understanding of the mTOR axis and discuss potential strategies to enhance mTOR-targeted cancer therapy. METHODS Preclinical and clinical data in peer-reviewed reports on the novel biological and therapeutic parts of the mTOR axis are discussed. CONCLUSION The mTOR axis involves complex regulatory networks. Inhibition of the mTOR axis with a rapalog induces feedback activation of several survival signaling pathways such as Akt activation, which, in turn, blunt rapalogs' anticancer efficacy. Thus, blockage or prevention of the activation of these survival signaling pathways may enhance mTOR-targeted cancer therapy.
Collapse
Affiliation(s)
- Xuerong Wang
- Emory University School of Medicine, Winship Cancer Institute, Department of Hematology, Atlanta, GA 30322, USA
| | | |
Collapse
|