1
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Gallego-Yerga L, Chiliquinga AJ, Peláez R. Novel Tetrazole Derivatives Targeting Tubulin Endowed with Antiproliferative Activity against Glioblastoma Cells. Int J Mol Sci 2023; 24:11093. [PMID: 37446273 DOI: 10.3390/ijms241311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Gallego-Yerga L, Ceña V, Peláez R. Potent and Selective Benzothiazole-Based Antimitotics with Improved Water Solubility: Design, Synthesis, and Evaluation as Novel Anticancer Agents. Pharmaceutics 2023; 15:1698. [PMID: 37376146 DOI: 10.3390/pharmaceutics15061698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The design of colchicine site ligands on tubulin has proven to be a successful strategy to develop potent antiproliferative drugs against cancer cells. However, the structural requirements of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting high water solubility. The compounds exerted antiproliferative activity against several human cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities, displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment. Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy. Docking studies support favorable interaction of the synthesized ligands at the colchicine binding site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with improved water solubility.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Cao L, Yao H, Yu L, Ren Y, Liu J, Li X, Jia X. The synthesis and evaluation of sulfonamide derivatives target EGFR790M/L858R mutations and ALK rearrangement as anticancer agents. Bioorg Med Chem 2023; 85:117241. [PMID: 37087886 DOI: 10.1016/j.bmc.2023.117241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Fourteen new compounds bearing sulfonamide groups that target EGFRT790M/L858R mutations and ALK rearrangement were synthesized and evaluated as dual-target tumor inhibitors. The study on the anti-proliferation activity on cancer cells showed that the sulfonamide derivative with pyrimidine nucleus had much better activities compared with those with quinazoline nucleus. Among them, compound 19e exhibited excellent activity against H1975 cancer cell lines (EGFRT790M/L858R high express) and H2228 cells (ALK rearrangement) with the IC50 values of 0.0215 μM and 0.011 μM, respectively. The ALK and EGFR kinase inhibition assays also provided similar results. Genotype selectivity of EGFR on kinase and cell level, cytotoxicity towards human normal cell lines and cell morphology assay implied that 19e had acceptable selectivity and low toxicity. In addition, the inhibitory activity of 19e on H1975 and H2228 cells cloning and its apoptosis-inducing effect on the two cell lines were studied, and its inhibitory effect on the invasion and migration of tumor cells were also investigated. All the results show that 19e is worthy of further study.
Collapse
|
5
|
Wang X, Lu Y, Sun D, Qian J, Tu S, Yue W, Lin H, Tang H, Meng F, He Q, Xie Z, Zhang Y, Chen H, Ma S, Zuo Z, Ye F. Discovery of 4-methoxy-N-(1-naphthyl)benzenesulfonamide derivatives as small molecule dual-target inhibitors of tubulin and signal transducer and activator of transcription 3 (STAT3) based on ABT-751. Bioorg Chem 2022; 125:105864. [PMID: 35584606 DOI: 10.1016/j.bioorg.2022.105864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Overexpressed tubulin and continuously activated STAT3 play important roles in the development of many cancers and are potential therapeutic targets. A series of 4-methoxy-N -(1-naphthalene) benzenesulfonamide derivatives were designed and optimized based on β-tubulin inhibitor ABT-751 to verify whether STAT3 and tubulin dual target inhibitors have better antitumor effects. Compound DL14 showed strong inhibitory activity against A549, MDA-MB-231 and HCT-116 cells in vitro with IC50 values of 1.35 μM, 2.85 μM and 3.04 μM, respectively. Further experiments showed that DL14 not only competitively bound to colchicine binding site to inhibit tubulin polymerization with IC50 values 0.83 μM, but also directly bound to STAT3 protein to inhibit STAT3 phosphorylation with IC50 value of 6.84 μM. Three other compounds (TG03, DL15, and DL16) also inhibit this phosphorylation. In terms of single target inhibition, DL14 is slightly inferior to positive drugs, but it shows a good anti-tumor effect in vivo, and can inhibit >80% of xenograft tumor growth. This study describes a novel 4-methoxy-N-(1-naphthyl) benzenesulfonamide skeleton as an effective double-targeted anticancer agent targeting STAT3 and tubulin.
Collapse
Affiliation(s)
- Xuebao Wang
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Doudou Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jinheng Qian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sijun Tu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weixia Yue
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Humin Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haijie Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fanxi Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin He
- Dong Medicine Key Laboratory of Hunan Province, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuan Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huijun Chen
- Department of Pharmacy, the First People's Hospital of Taizhou, Taizhou, Zhejiang 318020, China.
| | - Shumei Ma
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Zhigui Zuo
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Faqing Ye
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
6
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
7
|
Dehghanian SZ, Pan CT, Lee JM, Shiue YL. ABT-751 Induces Multiple Anticancer Effects in Urinary Bladder Urothelial Carcinoma-Derived Cells: Highlighting the Induction of Cytostasis through the Inhibition of SKP2 at Both Transcriptional and Post-Translational Levels. Int J Mol Sci 2021; 22:ijms22020945. [PMID: 33478005 PMCID: PMC7835924 DOI: 10.3390/ijms22020945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The objective was to investigate the anti-cancer effects and underlying molecular mechanisms of cytostasis which were activated by an anti-microtubule drug, ABT-751, in two urinary bladder urothelial carcinoma (UBUC)-derived cell lines, BFTC905 and J82, with distinct genetic backgrounds. A series of in vitro assays demonstrated that ABT-751 induced G2/M cell cycle arrest, decreased cell number in the S phase of the cell cycle and suppressed colony formation/independent cell growth, accompanied with alterations of the protein levels of several cell cycle regulators. In addition, ABT-751 treatment significantly hurdled cell migration and invasion along with the regulation of epithelial–mesenchymal transition-related proteins. ABT-751 triggered autophagy and apoptosis, downregulated the mechanistic target of rapamycin kinase (MTOR) and upregulated several pro-apoptotic proteins that are involved in extrinsic and intrinsic apoptotic pathways. Inhibition of autophagosome and autolysosome enhanced apoptosis was also observed. Through the inhibition of the NFκB signaling pathway, ABT-751 suppressed S-phase kinase associated protein 2 (SKP2) transcription and subsequent translation by downregulation of active/phospho-AKT serine/threonine kinase 1 (AKT1), component of inhibitor of nuclear factor kappa B kinase complex (CHUK), NFKB inhibitor alpha (NFKBIA), nuclear RELA proto-oncogene, NFκB subunit (RELA) and maintained a strong interaction between NFKBIA and RELA to prevent RELA nuclear translocation for SKP2 transcription. ABT-751 downregulated stable/phospho-SKP2 including pSKP2(S64) and pSKP2(S72), which targeted cyclin-dependent kinase inhibitors for degradation through the inactivation of AKT. Our results suggested that ABT-751 may act as an anti-cancer drug by inhibiting cell migration, invasion yet inducing cell cycle arrest, autophagy and apoptosis in distinct UBUC-derived cells. Particularly, the upstream molecular mechanism of its anticancer effects was identified as ABT-751-induced cytostasis through the inhibition of SKP2 at both transcriptional and post-translational levels to stabilize cyclin dependent kinase inhibitor 1A (CDKN1A) and CDKN1B proteins.
Collapse
Affiliation(s)
- Seyedeh Zahra Dehghanian
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 70 Lienhai Rd, Kaohsiung 80424, Taiwan;
| | - Cheng-Tang Pan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 70 Lienhai Rd, Kaohsiung 80424, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Correspondence: ; Tel.: +886-7-5252000 (ext. 5818); Fax: +886-7-5250197
| |
Collapse
|
8
|
Wei RJ, Wu WR, Pan CT, Yu CY, Li CF, Chen LR, Liang SS, Shiue YL. Inhibition of the formation of autophagosome but not autolysosome augments ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. J Cell Physiol 2019; 234:9551-9563. [PMID: 30367486 DOI: 10.1002/jcp.27643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023]
Abstract
The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel antimicrotubule drug, ABT-751, in a tumor protein p53 ( TP53)-deficient hepatocellular carcinoma-derived Hep-3B cells. A series of in vitro assays indicated that ABT-751 caused the disruption of the mitotic spindle structure, collapse of mitochondrial membrane potential, generation of reactive oxygen species, DNA damage, G 2 /M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Hep-3B cells accompanied by alteration of the expression levels of several DNA damage checkpoint proteins and cell cycle regulators. Subsequently, ABT-751 triggered apoptosis along with markedly upregulated several proapoptotic proteins involving in extrinsic, intrinsic, and caspase-mediated apoptotic pathways. A pan-caspase inhibitor suppressed ABT-751-induced apoptosis. ABT-751 also induced autophagy soon after the occurrence of apoptosis through the suppression of AKT serine/threonine kinase/mechanistic target of rapamycin signaling pathway. Exogenous expression of the TP53 gene significantly incurred both apoptosis and autophagy in Hep-3B cells. Pharmacological inhibition of autophagosome (early autophagy) but not autolysosome (late autophagy) enhanced ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. Our study provided a new strategy to augment ABT-751-induced apoptosis in TP53-deficient cells.
Collapse
Affiliation(s)
- Ren-Jie Wei
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Ren Wu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Tang Pan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Yen Yu
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lih-Ren Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tanina, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
10
|
Redko B, Tuchinsky H, Segal T, Tobi D, Luboshits G, Ashur-Fabian O, Pinhasov A, Gerlitz G, Gellerman G. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget 2018; 8:757-768. [PMID: 27768593 PMCID: PMC5352194 DOI: 10.18632/oncotarget.12748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvβ3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma.
Collapse
Affiliation(s)
- Boris Redko
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Dror Tobi
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Computer Science, Ariel University, Ariel, Israel
| | - Galia Luboshits
- Department of Chemical Engineering, Ariel University, Ariel, Israel
| | - Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
11
|
Wei RJ, Lin SS, Wu WR, Chen LR, Li CF, Chen HD, Chou CT, Chen YC, Liang SS, Chien ST, Shiue YL. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol 2016; 311:88-98. [PMID: 27678524 DOI: 10.1016/j.taap.2016.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Abstract
The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G2/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G2/M cell cycle regulators, ABT-751 induced G2/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria.
Collapse
Affiliation(s)
- Ren-Jie Wei
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Su-Shuan Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wen-Ren Wu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Lih-Ren Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan
| | - Chien-Feng Li
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-De Chen
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Ting Chou
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ya-Chun Chen
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Tao Chien
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Redko B, Ragozin E, Andreii B, Helena T, Amnon A, Talia SZ, Mor OH, Genady K, Gary G. Synthesis, drug release, and biological evaluation of new anticancer drug-bioconjugates containing somatostatin backbone cyclic analog as a targeting moiety. Biopolymers 2015; 104:743-52. [DOI: 10.1002/bip.22694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Boris Redko
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
- Department of Chemistry; The Julius Spokojny Bioorganic Chemistry Laboratory; Bar Ilan University; Ramat Gan 52900 Israel
| | - Elena Ragozin
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| | - Bazylevich Andreii
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| | - Tuchinsky Helena
- Department of Molecular Biology; Ariel University; Ariel 40700 Israel
| | - Albeck Amnon
- Department of Chemistry; The Julius Spokojny Bioorganic Chemistry Laboratory; Bar Ilan University; Ramat Gan 52900 Israel
| | - Shekhter Zahavi Talia
- Department of Molecular Microbiology and Biotechnology; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv 69978 Israel
| | - Oron-Herman Mor
- The Advanced Technologies Center; Sheba Medical Center; Tel Hashomer 52621 Israel
| | - Kostenich Genady
- The Advanced Technologies Center; Sheba Medical Center; Tel Hashomer 52621 Israel
| | - Gellerman Gary
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| |
Collapse
|
13
|
Nagarajan S, Choi MJ, Cho YS, Min SJ, Keum G, Kim SJ, Lee CS, Pae AN. Tubulin Inhibitor Identification by Bioactive Conformation Alignment Pharmacophore-Guided Virtual Screening. Chem Biol Drug Des 2015; 86:998-1016. [DOI: 10.1111/cbdd.12568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Shanthi Nagarajan
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu Daejeon 305-333 Korea
| | - Min Jeong Choi
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Chemistry & Nano Science; Ewha Womans University; 11-1 Daehyun-Dong Seodaemun-Gu Seoul 120-750 Korea
| | - Yong Seo Cho
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu Daejeon 305-333 Korea
| | - Sun-Joon Min
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu Daejeon 305-333 Korea
| | - Gyochang Keum
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu Daejeon 305-333 Korea
| | - Soo Jin Kim
- Chong Kun Dang Research Institute; CKD Pharmaceuticals; Jung-dong Giheung-gu Yongin-si Gyeonggi-do 464-3 Korea
| | - Chang Sik Lee
- Chong Kun Dang Research Institute; CKD Pharmaceuticals; Jung-dong Giheung-gu Yongin-si Gyeonggi-do 464-3 Korea
| | - Ae Nim Pae
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu Daejeon 305-333 Korea
| |
Collapse
|
14
|
Reddy MVR, Mallireddigari MR, Pallela VR, Cosenza SC, Billa VK, Akula B, Subbaiah DRCV, Bharathi EV, Padgaonkar A, Lv H, Gallo JM, Reddy EP. Design, synthesis, and biological evaluation of (E)-N-aryl-2-arylethenesulfonamide analogues as potent and orally bioavailable microtubule-targeted anticancer agents. J Med Chem 2013; 56:5562-86. [PMID: 23750455 DOI: 10.1021/jm400575x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size, indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used antimitotic agents. Mechanistic studies indicate that 6t and some other analogues disrupted microtubule formation, formation of mitotic spindles, and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin, indicating its binding site on tubulin.
Collapse
Affiliation(s)
- M V Ramana Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029-6514, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim KW, Lee JM, Jeon YS, Lee IJ, Choi Y, Park J, Kiefer B, Kim C, Han JK, Choi BI. Vascular disrupting effect of CKD-516: preclinical study using DCE-MRI. Invest New Drugs 2013; 31:1097-106. [PMID: 23299389 DOI: 10.1007/s10637-012-9915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Abstract
Vascular disrupting agents (VDAs) are new class of anti-cancer drugs targeting pre-existing tumor vasculature which lead to tumor ischemia and necrosis. An innovative tubulin polymerization inhibitor, CKD-516, was recently developed as a VDA. We attempted to evaluate its tubulin destabilizing effect using immunofluorescence staining on human endothelial cells (HUVECs) and to ascertain its antivascular effect in a rabbit VX2 tumor model using dynamic contrast-enhanced (DCE) MRI by measuring the changes in kinetic parameters such as K-trans and IAUGC. Immunofluorescence staining using anti-tubulin and anti-actin antibodies on HUVECs showed that CKD-516 selectively disrupted tubulin component of the endothelial cytoskeleton. Serial DCE-MRI showed a significant decrease in K-trans and IAUGC parameters from baseline at 4 h (39.9 % in K-trans; -45.0 % in IAUGC) and at 24 h (-32.2 % in K-trans; -36.5 % in IAUGC), and a significant recovery at 48 h (22.9 % in K-trans; 34.8 % in IAUGC) following administration of CKD-516 at a 0.7-mg/kg dose. When the tumors were stratified according to the initial K-trans value of 0.1, tumors with a high K-trans > 0.1 which was indicative of having well-developed pre-existing vessels, showed greater reduction in K-trans and IAUGC values. On histologic examination, the degree of necrosis of treated tumors was significantly greater than that of untreated tumors. In summary, CKD-516 is an effective VDA which results in rapid vascular shutdown by targeting the tubulin component of tumor vessels and thus leads to necrosis.
Collapse
|
16
|
Abstract
Vascular disrupting agents (VDAs) are a relatively new class of drugs that target tumor vasculature and induce tumor blood flow shutdown and subsequent necrosis in the tumor core. The first generation of these agents is actively evaluated in clinical trials, whereas new molecules are developed in order to enhance efficacy and to overcome resistance mechanisms. VDA used as a single agent only cause a moderate tumor growth delay. So, strategy aiming at combining VDA to conventional cancer treatments is undergoing extensive investigations. A special emphasis has been put on combination with chemotherapeutic agents. Besides, numerous preclinical studies have also clearly established that the association of VDA to radiotherapy can improve antitumor treatment and may lead to a therapeutic gain. However, up to date, there is a lack of clinical trials evaluating such combinations, whereas it would be of great interest since radiotherapy is widely used as anticancer treatment.
Collapse
|
17
|
Ma T, Fuld AD, Rigas JR, Hagey AE, Gordon GB, Dmitrovsky E, Dragnev KH. A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy 2012; 58:321-9. [PMID: 23147218 DOI: 10.1159/000343165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND ABT-751 is a novel antimitotic agent that exerted cytotoxic effects in preclinical studies. Carboplatin has efficacy in treating advanced non-small cell lung cancer (NSCLC) in combination with other drugs. METHODS Lung cancer cell lines were treated with ABT-751 and/or carboplatin to investigate their impact on cell growth. A phase I study with an expansion cohort was conducted in previously treated NSCLC patients. The primary objective was the maximum tolerated dose (MTD); secondary objectives were objective response rates, median survival, time to tumor progression, dose-limiting toxicities (DLTs), and pharmacodynamic evaluation of buccal swabs. RESULTS Combining ABT-751 with carboplatin significantly reduced growth and induced apoptosis of lung cancer cell lines. Twenty advanced NSCLC patients were enrolled. MTD was ABT-751 125 mg orally twice daily for 7 days with carboplatin AUC 6. DLTs included fatigue, ileus, neutropenia and pneumonitis. Two patients had confirmed partial responses. Median overall survival was 11.7 months (95% CI 5.9-27.0). Time to tumor progression was 2.8 months (95% CI 2.0-2.7). Four of 6 patients showed decreased cyclin D1 protein in posttreatment versus pretreatment buccal swabs. CONCLUSION Combining ABT-751 with carboplatin suppressed growth of lung cancer cell lines and had modest clinical antitumor activity in advanced NSCLC previously treated predominantly with carboplatin. Further studies of this combination are not recommended while investigations of biomarkers in different patient populations, alternative schedules and combinations may be pursued.
Collapse
Affiliation(s)
- Tian Ma
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Preclinical Studies of Antivascular Treatments. Pharmaceutics 2012; 4:563-89. [PMID: 24300371 PMCID: PMC3834929 DOI: 10.3390/pharmaceutics4040563] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
Antivascular treatments can either be antiangiogenic or targeting established tumour vasculature. These treatments affect the tumour microvasculature and microenvironment but may not change clinical measures like tumour volume and growth. In research on antivascular treatments, information on the tumour vasculature is therefore essential. Preclinical research is often used for optimization of antivascular drugs alone or in combined treatments. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an in vivo imaging method providing vascular information, which has become an important tool in both preclinical and clinical research. This review discusses common DCE-MRI imaging protocols and analysis methods and provides an overview of preclinical research on antivascular treatments utilizing DCE-MRI.
Collapse
|
19
|
Burns CJ, Fantino E, Powell AK, Shnyder SD, Cooper PA, Nelson S, Christophi C, Malcontenti-Wilson C, Dubljevic V, Harte MF, Joffe M, Phillips ID, Segal D, Wilks AF, Smith GD. The microtubule depolymerizing agent CYT997 causes extensive ablation of tumor vasculature in vivo. J Pharmacol Exp Ther 2011; 339:799-806. [PMID: 21917561 DOI: 10.1124/jpet.111.186965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orally active microtubule-disrupting agent (S)-1-ethyl-3-(2-methoxy-4-(5-methyl-4-((1-(pyridin-3-yl)butyl)amino)pyrimidin-2-yl)phenyl)urea (CYT997), reported previously by us (Bioorg Med Chem Lett 19:4639-4642, 2009; Mol Cancer Ther 8:3036-3045, 2009), is potently cytotoxic to a variety of cancer cell lines in vitro and shows antitumor activity in vivo. In addition to its cytotoxic activity, CYT997 possesses antivascular effects on tumor vasculature. To further characterize the vascular disrupting activity of CYT997 in terms of dose and temporal effects, we studied the activity of the compound on endothelial cells in vitro and on tumor blood flow in vivo by using a variety of techniques. In vitro, CYT997 is shown to potently inhibit the proliferation of vascular endothelial growth factor-stimulated human umbilical vein endothelial cells (IC(50) 3.7 ± 1.8 nM) and cause significant morphological changes at 100 nM, including membrane blebbing. Using the method of corrosion casting visualized with scanning electron microscopy, a single dose of CYT997 (7.5 mg/kg i.p.) in a metastatic cancer model was shown to cause destruction of tumor microvasculature in metastatic lesions. Furthermore, repeat dosing of CYT997 at 10 mg/kg and above (intraperitoneally, b.i.d.) was shown to effectively inhibit development of liver metastases. The time and dose dependence of the antivascular effects were studied in a DLD-1 colon adenocarcinoma xenograft model using the fluorescent dye Hoechst 33342. CYT997 demonstrated rapid and dose-dependent vascular shutdown, which persists for more than 24 h after a single oral dose. Together, the data demonstrate that CYT997 possesses potent antivascular activity and support continuing development of this promising compound.
Collapse
|
20
|
Kashiwagi Y, Nodaira M, Amitani M, Murase K, Abe K. Assessment of peripheral tissue perfusion disorder in streptozotocin-induced diabetic rats using dynamic contrast-enhanced MRI. Magn Reson Imaging 2011; 30:254-60. [PMID: 22055847 DOI: 10.1016/j.mri.2011.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/01/2011] [Accepted: 09/18/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE To assess peripheral tissue perfusion disorder in streptozotocin (STZ)-induced diabetic rats by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS A rat diabetes model was produced by intravenous injection of STZ. Diabetic rats were sustainably treated with either saline or insulin using an Alzet osmotic pump. Hind paw tissue perfusion was measured by signal intensity (SI) enhancement after gadolinium diethylenetriaminepentaacetic acid injection in DCE-MRI study and quantified using the initial area under the SI-time curve (IAUC). Peripheral tissue uptake of [(14)C]iodoantipyrine (IAP) was also determined as a marker of tissue blood flow for comparison with the IAUC value indicating tissue perfusion. RESULTS STZ caused hyperglycemia at 1 and 2 weeks after injection. Treatment with insulin significantly alleviated hyperglycemia. At 2 weeks after STZ injection, peripheral tissue perfusion was clearly reduced in the diabetic rats and its reduction was significantly improved in the insulin-treated diabetic rats. Tissue perfusion evaluated by DCE-MRI was similar to the tissue blood flow measured by [(14)C]IAP uptake. CONCLUSION Our findings demonstrated that DCE-MRI can assess peripheral tissue perfusion disorder in diabetes. DCE-MRI could be suitable for noninvasive evaluation of peripheral tissue perfusion in both preclinical and clinical studies. It may also be useful for developing novel drugs to protect against diabetic vascular complications.
Collapse
Affiliation(s)
- Yuto Kashiwagi
- Department of Innovative Drug Discovery Technologies, Innovative Drug Discovery Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan.
| | | | | | | | | |
Collapse
|
21
|
Lu Y, Li CM, Wang Z, Chen J, Mohler ML, Li W, Dalton JT, Miller DD. Design, synthesis, and SAR studies of 4-substituted methoxylbenzoyl-aryl-thiazoles analogues as potent and orally bioavailable anticancer agents. J Med Chem 2011; 54:4678-93. [PMID: 21557538 DOI: 10.1021/jm2003427] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a continued effort to improve upon the previously published 4-substituted methoxybenzoyl-aryl-thiazole (SMART) template, we explored chemodiverse "B" rings and "B" to "C" ring linkage. Further, to overcome the poor aqueous solubility of this series of agents, we introduced polar and ionizable hydrophilic groups to obtain water-soluble compounds. For instance, based on in vivo pharmacokinetic (PK) studies, an orally bioavailable phenyl-amino-thiazole (PAT) template was designed and synthesized in which an amino linkage was inserted between "A" and "B" rings of compound 1. The PAT template maintained nanomolar (nM) range potency against cancer cell lines via inhibiting tubulin polymerization and was not susceptible to P-glycoprotein mediated multidrug resistance in vitro, and markedly improved solubility and bioavailability compared with the SMART template (45a-c (PAT) vs 1 (SMART)).
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, Tennessee 38163, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
23
|
Mason RP, Zhao D, Liu L, Trawick ML, Pinney KG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr Biol (Camb) 2011; 3:375-87. [PMID: 21321746 PMCID: PMC3071431 DOI: 10.1039/c0ib00135j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment provides a rich source of potential targets for selective therapeutic intervention with properly designed anticancer agents. Significant physiological differences exist between the microvessels that nourish tumors and those that supply healthy tissue. Selective drug-mediated damage of these tortuous and chaotic microvessels starves a tumor of necessary nutrients and oxygen and eventually leads to massive tumor necrosis. Vascular targeting strategies in oncology are divided into two separate groups: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). The mechanisms of action between these two classes of compounds are profoundly distinct. The AIAs inhibit the actual formation of new vessels, while the VDAs damage and/or destroy existing tumor vasculature. One subset of small-molecule VDAs functions by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature, triggered by a cascade of cell signaling events. Ultimately this results in catastrophic damage to the vessels feeding the tumor. The rapid emergence and subsequent development of the VDA field over the past decade has led to the establishment of a synergistic combination of preclinical state-of-the-art tumor imaging and biological evaluation strategies that are often indicative of future clinical efficacy for a given VDA. This review focuses on an integration of the appropriate biochemical and biological tools necessary to assess (preclinically) new small-molecule, tubulin active VDAs for their potential to be clinically effective anticancer agents.
Collapse
Affiliation(s)
- Ralph P. Mason
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Dawen Zhao
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Li Liu
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| |
Collapse
|
24
|
Risinger AL, Westbrook CD, Encinas A, Mülbaier M, Schultes CM, Wawro S, Lewis JD, Janssen B, Giles FJ, Mooberry SL. ELR510444, a novel microtubule disruptor with multiple mechanisms of action. J Pharmacol Exp Ther 2011; 336:652-60. [PMID: 21148249 PMCID: PMC3061540 DOI: 10.1124/jpet.110.175331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/08/2010] [Indexed: 11/22/2022] Open
Abstract
Although several microtubule-targeting drugs are in clinical use, there remains a need to identify novel agents that can overcome the limitations of current therapies, including acquired and innate drug resistance and undesired side effects. In this study, we show that ELR510444 has potent microtubule-disrupting activity, causing a loss of cellular microtubules and the formation of aberrant mitotic spindles and leading to mitotic arrest and apoptosis of cancer cells. ELR510444 potently inhibited cell proliferation with an IC(50) value of 30.9 nM in MDA-MB-231 cells, inhibited the rate and extent of purified tubulin assembly, and displaced colchicine from tubulin, indicating that the drug directly interacts with tubulin at the colchicine-binding site. ELR510444 is not a substrate for the P-glycoprotein drug transporter and retains activity in βIII-tubulin-overexpressing cell lines, suggesting that it circumvents both clinically relevant mechanisms of drug resistance to this class of agents. Our data show a close correlation between the concentration of ELR510444 required for inhibition of cellular proliferation and that required to cause significant loss of cellular microtubule density, consistent with its activity as a microtubule depolymerizer. ELR510444 also shows potent antitumor activity in the MDA-MB-231 xenograft model with at least a 2-fold therapeutic window. Studies in tumor endothelial cells show that a low concentration of ELR510444 (30 nM) rapidly alters endothelial cell shape, similar to the effect of the vascular disrupting agent combretastatin A4. These results suggest that ELR510444 is a novel microtubule-disrupting agent with potential antivascular effects and in vivo antitumor efficacy.
Collapse
Affiliation(s)
- A L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer. World J Radiol 2011; 3:1-16. [PMID: 21286490 PMCID: PMC3030722 DOI: 10.4329/wjr.v3.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
Collapse
|
26
|
Edwards DJ, Hadfield JA, Wallace TW, Ducki S. Tubulin-binding dibenz[c,e]oxepines as colchinol analogues for targeting tumour vasculature. Org Biomol Chem 2011; 9:219-31. [DOI: 10.1039/c0ob00500b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Bertino EM, Otterson GA. Benefits and limitations of antiangiogenic agents in patients with non-small cell lung cancer. Lung Cancer 2010; 70:233-46. [DOI: 10.1016/j.lungcan.2010.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
|
28
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:466-74. [PMID: 20827086 DOI: 10.1097/moo.0b013e32833f3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Nagaiah G, Remick SC. Combretastatin A4 phosphate: a novel vascular disrupting agent. Future Oncol 2010; 6:1219-28. [DOI: 10.2217/fon.10.90] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combretastatin A4 phosphate (CA4P) is the lead compound of a relatively new class of agents termed vascular disrupting agents that target existing tumor blood vessels. Rapid tumor blood flow shutdown has been demonstrated in preclinical models and patients by various techniques such as dynamic contrast-enhanced MRI, perfusion computed tomography and PET scans following CA4P infusion. CA4P typically induces rapid tumor necrosis in the center of the tumor and leaves a rim of viable cells in the periphery. In oncology, CA4P does not appear to be that active by itself, but may be more efficacious when combined with chemotherapy, antiangiogenic therapy and radiation therapy. Studies are currently underway, which combine CA4P with antiangiogenic agents. Side effects have included hypertension, tumor pain and occasional cardiovascular toxicity, without any significant myelosuppression or disabling systemic symptoms. The utility of CA4P for conditions other than cancer, which involves neovascularization such as macular degeneration, is also being explored.
Collapse
Affiliation(s)
- Govardhanan Nagaiah
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, 1801 Health Sciences South, PO Box 9300, Morgantown, WV 26506, USA
| | | |
Collapse
|
30
|
Chen SM, Meng LH, Ding J. New microtubule-inhibiting anticancer agents. Expert Opin Investig Drugs 2010; 19:329-43. [DOI: 10.1517/13543780903571631] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|