1
|
De Luca A, Capuana E, Carbone C, Raimondi L, Carfì Pavia F, Brucato V, La Carrubba V, Giavaresi G. Three-dimensional (3D) polylactic acid gradient scaffold to study the behavior of osteosarcoma cells under dynamic conditions. J Biomed Mater Res A 2024; 112:841-851. [PMID: 38185851 DOI: 10.1002/jbm.a.37665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.
Collapse
Affiliation(s)
- Angela De Luca
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Capuana
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Camilla Carbone
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Lavinia Raimondi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Valerio Brucato
- Department of Engineering, University of Palermo, Palermo, Italy
| | | | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
2
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
He P, Wang Z, Sheng B, Xu Y, Feng S, Huang Y, Gong F, Tang L, Xie L. Diallyl trisulfide regulates cell apoptosis and invasion in human osteosarcoma U2OS cells through regulating PI3K/AKT/GSK3β signaling pathway. Histol Histopathol 2020; 35:1511-1520. [PMID: 33372687 DOI: 10.14670/hh-18-299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the effects and the mechanisms of action of Diallyl trisulfide (DATS) on the proliferation and metastasis of human osteosarcoma (OS) U2OS. METHODS U2OS cells were treated by different concentrations of DATS at different time points. Cell proliferations were measured by MTT assay. DATS induced cell cycle distribution and apoptosis were evaluated by flow cytometry (FCM) with Annexin-V. Cell migration and invasion were detected by wound healing assay and transwell assay. The effects of DATS in U2OS cell growth and metastasis were also detected in a mouse OS xenograft model. RESULTS A time- and concentration-dependent cytotoxic effect of DATS was observed in U2OS cells. FCM with PI staining and Annexin-V -FITC indicated that DATS induces apoptosis and a G0/G1 cell cycle arrest of U2OS cells at all concentrations from 25 μmol/l to 100 μmol/l. DATS also inhibits the migration and invasion of U2OS cells. Western blot showed that the expression levels of p-AKT, p-GSK3β, Bcl-2, Vimentin and β-catenin were decreased, while the expression levels of Bad, Bax and E-cadherin were significantly increased in DATS treated U2OS cells. Analysis using a mouse xenograft model indicated that xenografts of DATS treatment group had a significant decrease in tumor volume and weight compared to the control group. Lung metastasis models in mice demonstrated that treatment of DATS inhibits lung metastasis of OS in vivo. CONCLUSIONS These data suggested that DATS inhibits OS development and progression through the regulation of PI3K/AKT/GSK3β signaling pathways, accompanied by downregulation of Bcl-2, Vimentin and β-catenin, as well as upregulation of Bad, Bax and E-cadherin. Therefore, our data demonstrated that DATS exerted its anticancer effects by inhibiting cell proliferation, migration and invasion in vitro and in vivo. These results provide evidence for the use of the natural product DATS either alone or in combination with standard therapy for OS.
Collapse
Affiliation(s)
- Pan He
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China.
| | - Zhijun Wang
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China
| | - Bin Sheng
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China
| | - Yongqiang Xu
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China
| | - Siyin Feng
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China
| | - Yan Huang
- The Department of Traumatic and Osteopathology, Hunan provincial people's hospital, Changsha, Hunan, China
| | - Fuqiang Gong
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Liting Tang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Liming Xie
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Li YS, Liu Q, Tian J, He HB, Luo W. Angiogenesis Process in Osteosarcoma: An Updated Perspective of Pathophysiology and Therapeutics. Am J Med Sci 2019; 357:280-288. [DOI: 10.1016/j.amjms.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
6
|
Xie WP, Zhang Y, Zhang YK, Li G, Xin J, Bi RX, Li CJ. Treatment of Saos-2 osteosarcoma cells with diallyl trisulfide is associated with an increase in calreticulin expression. Exp Ther Med 2018; 15:4737-4742. [PMID: 29844798 PMCID: PMC5958869 DOI: 10.3892/etm.2018.6037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Diallyl trisulfide (DATS) is a natural organic sulfur compound that may be isolated from garlic and has strong anticancer activity. DATS has been demonstrated to upregulate the expression of calreticulin (CRT) in various types of human cancers, which is associated with the prognosis of cancer and its response to therapy. However, whether DATS has the same effect on human osteosarcoma cells is not known. Therefore, in the present study, Saos-2 human osteosarcoma cells were cultured with different concentrations of DATS (0, 25, 50 and 100 µmol/l) for 24 h, or with 50 µmol/l DATS for different time periods (0, 12, 24 and 36 h). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescent staining were used to detect CRT mRNA and protein in the Saos-2 cells. Exposure to DATS changed the morphology and inhibited the growth of the Saos-2 cells, and its effects appeared to be concentration- and exposure time-dependent. The optimum concentration and exposure time of DATS were 50 µmol/l and 24 h, respectively. The levels of CRT mRNA and protein in the Saos-2 cells were significantly upregulated following exposure to DATS. The upregulation of CRT expression by DATS may be a mechanism underlying the ability of DATS to inhibit the growth of human osteosarcoma Saos-2 cells.
Collapse
Affiliation(s)
- Wen-Peng Xie
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yue Zhang
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yong-Kui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Gang Li
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Jian Xin
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong-Xiu Bi
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Chuan-Jie Li
- Department of Orthopedics, Laiwu Central Hospital of Xinwen Mining Group, Laiwu, Shandong 271103, P.R. China
| |
Collapse
|
7
|
Wang H, Sun N, Li X, Li K, Tian J, Li J. Diallyl trisulfide induces osteosarcoma cell apoptosis through reactive oxygen species-mediated downregulation of the PI3K/Akt pathway. Oncol Rep 2016; 35:3648-58. [PMID: 27035545 DOI: 10.3892/or.2016.4722] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS) is a natural organosulfur compound isolated from garlic, and has been reported to possess anticancer activities. However, the cancer growth inhibitory effects and molecular mechanisms in human osteosarcoma cells have not been well studied. The present study demonstrated that DATS significantly reduced cell viability in a dose- and time-dependent manner in MG63 and MNNG/HOS cells. DATS-induced G0/G1 phase arrest was found to correlate with a decrease in cyclin D1 in concomitance with an increase in p21 and p27. DATS induced a marked increase in reactive oxygen species (ROS) levels and collapse of mitochondrial membrane potential (Δψm) in the osteosarcoma cells. DATS induced apoptosis in the MG63 and MNNG/HOS cells via inhibition of the PI3K/Akt signaling pathway and through the mitochondrial apoptotic pathway. The efficiency of DATS basically approached the efficacy of LY294002, a specific PI3K inhibitor. However, N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the DATS-induced ROS increase, inhibition of the PI3K/Akt pathway and cell apoptosis. Overall, DATS has the potential to be developed as a new anticancer drug. The mechanisms of action involve the ROS-mediated downregulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Na Sun
- Shandong Institute of Medicine and Health Information, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jiguang Tian
- Department of Emergency, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Hung FM, Shang HS, Tang NY, Lin JJ, Lu KW, Lin JP, Ko YC, Yu CC, Wang HL, Liao JC, Lu HF, Chung JG. Effects of diallyl trisulfide on induction of apoptotic death in murine leukemia WEHI-3 cells in vitro and alterations of the immune responses in normal and leukemic mice in vivo. ENVIRONMENTAL TOXICOLOGY 2015; 30:1343-1353. [PMID: 24890016 DOI: 10.1002/tox.22005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.
Collapse
MESH Headings
- Allyl Compounds/pharmacology
- Allyl Compounds/therapeutic use
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Antigens, Differentiation/immunology
- Apoptosis/drug effects
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/drug effects
- Garlic/chemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred BALB C
- Neoplasm Transplantation
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Spleen/drug effects
- Spleen/immunology
- Sulfides/pharmacology
- Sulfides/therapeutic use
Collapse
Affiliation(s)
- Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jen-Jyh Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jing-Pin Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yang-Ching Ko
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi, 600, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Hai-Lung Wang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Jung-Chi Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
9
|
De Gianni E, Fimognari C. Anticancer Mechanism of Sulfur-Containing Compounds. MECHANISM OF THE ANTICANCER EFFECT OF PHYTOCHEMICALS 2015; 37:167-92. [DOI: 10.1016/bs.enz.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, Fan L, Li J, Chavarri-Guerra Y, Liedke PER, Pramesh CS, Badovinac-Crnjevic T, Sheikine Y, Chen Z, Qiao YL, Shao Z, Wu YL, Fan D, Chow LWC, Wang J, Zhang Q, Yu S, Shen G, He J, Purushotham A, Sullivan R, Badwe R, Banavali SD, Nair R, Kumar L, Parikh P, Subramanian S, Chaturvedi P, Iyer S, Shastri SS, Digumarti R, Soto-Perez-de-Celis E, Adilbay D, Semiglazov V, Orlov S, Kaidarova D, Tsimafeyeu I, Tatishchev S, Danishevskiy KD, Hurlbert M, Vail C, St Louis J, Chan A. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol 2014; 15:489-538. [PMID: 24731404 DOI: 10.1016/s1470-2045(14)70029-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is one of the major non-communicable diseases posing a threat to world health. Unfortunately, improvements in socioeconomic conditions are usually associated with increased cancer incidence. In this Commission, we focus on China, India, and Russia, which share rapidly rising cancer incidence and have cancer mortality rates that are nearly twice as high as in the UK or the USA, vast geographies, growing economies, ageing populations, increasingly westernised lifestyles, relatively disenfranchised subpopulations, serious contamination of the environment, and uncontrolled cancer-causing communicable infections. We describe the overall state of health and cancer control in each country and additional specific issues for consideration: for China, access to care, contamination of the environment, and cancer fatalism and traditional medicine; for India, affordability of care, provision of adequate health personnel, and sociocultural barriers to cancer control; and for Russia, monitoring of the burden of cancer, societal attitudes towards cancer prevention, effects of inequitable treatment and access to medicine, and a need for improved international engagement.
Collapse
Affiliation(s)
- Paul E Goss
- Harvard Medical School, Boston, MA, USA; Avon Breast Cancer Center of Excellence, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Brittany L Lee-Bychkovsky
- Harvard Medical School, Boston, MA, USA; Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA; International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Fan
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Junjie Li
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Yanin Chavarri-Guerra
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro E R Liedke
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Oncologia Hospital de Clínicas de Porto Alegre and Instituto do Cancer Mãe de Deus, Porto Alegre, Rio Grande do Sul, Brazil
| | - C S Pramesh
- Department of Surgical Oncology/Clinical Research, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Tanja Badovinac-Crnjevic
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; University Hospital Zagreb, Department of Oncology, Zagreb, Croatia
| | - Yuri Sheikine
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhu Chen
- State Key Lab of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You-lin Qiao
- Department of Cancer Epidemiology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiming Shao
- Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Daiming Fan
- Fourth Military Medical University, State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xi'an, Shaanxi Province, China
| | - Louis W C Chow
- Organisation for Oncology and Translational Research, Hong Kong, China; UNIMED Medical Institute, Comprehensive Centre for Breast Diseases, Hong Kong, China
| | - Jun Wang
- Institute of Public Health Economics and Management, Central University of Finance and Economics, Beijing, China
| | - Qiong Zhang
- Department of Economics, School of Economics, Central University of Finance and Economics, Beijing, China
| | - Shiying Yu
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Shen
- University of California, Berkeley, CA, USA; Cancer Institute & Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arnie Purushotham
- King's Health Partners Cancer Centre, King's College London, Guy's Hospital, London, UK
| | - Richard Sullivan
- King's Health Partners Cancer Centre, King's College London, Guy's Hospital, London, UK; Institute of Cancer Policy, King's College London, Guy's Hospital, London, UK
| | - Rajendra Badwe
- Administration, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Shripad D Banavali
- Department of Medical and Pediatric Oncology, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Reena Nair
- Department of Clinical Hematology, Tata Medical Center, Kolkata, West Bengal, India
| | - Lalit Kumar
- Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Purvish Parikh
- Clinical Research and Education, BSES GH Municipal Hospital, Mumbai, India
| | | | - Pankaj Chaturvedi
- Department of Head and Neck Surgery, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Subramania Iyer
- Amrita Institute of Medical Sciences & Research Centre, Head & Neck/Plastic & Reconstructive Surgery, Kochi, Kerala, India
| | | | | | - Enrique Soto-Perez-de-Celis
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dauren Adilbay
- Astana Oncology Center, Head and Neck Oncology, Astana, Kazakhstan
| | - Vladimir Semiglazov
- Reproductive System Tumors Department, NN Petrov Research Institute of Oncology, St Petersburg, Russia
| | - Sergey Orlov
- Department of Thoracic Oncology, Saint Petersburg Medical University, Saint Petersburg, Russia
| | | | - Ilya Tsimafeyeu
- Russian Society of Clinical Oncology, Kidney Cancer Research Bureau, Moscow, Russia
| | - Sergei Tatishchev
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | | | - Marc Hurlbert
- Avon Foundation Breast Cancer Crusade, New York, NY, USA
| | - Caroline Vail
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica St Louis
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Arlene Chan
- Breast Cancer Research Centre-Western Australia and Curtin University, Perth, WA, Australia
| |
Collapse
|
11
|
Wang Z, Xia Q, Cui J, Diao Y, Li J. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncol Rep 2014; 31:2720-6. [PMID: 24788927 DOI: 10.3892/or.2014.3154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/11/2014] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS), the main sulfuric compound in garlic, has been shown to have antitumor effects. The present study aimed to ascertain whether DATS reverses the drug resistance of human osteosarcoma cells in vitro and to investigate its potential mechanisms. Human osteosarcoma U2-OS cells were treated with different concentrations of DATS. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while P-glycoprotein (P-gp) expression and the proportion of apoptotic cells were measured by flow cytometry. Morphological changes were observed under an optical microscope. Νuclear factor-κB (NF-κB) and inhibitor of NF-κB (IκB) activities were measured by PCR and western blot analysis. Results showed that the proliferation of U2-OS cells treated with different concentrations of DATS was significantly decreased in a concentration- and time-dependent manner. DATS increased the toxic effect of adriamycin on U2-OS cells. Moreover, P-gp expression was decreased and the apoptosis rate was increased in a concentration-dependent manner following treatment of DATS. Additionally, NF-κB activity was inhibited by DATS while expression of IκB was increased. Our data clearly suggest that DATS has significant anticancer effects on human osteosarcoma cells. The potential mechanisms include reducing the multidrug resistance and inducing apoptosis. NF-κB suppression may be involved in DATS-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Xia
- Department of Urinary Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jia Cui
- Shouguang Centre for Disease Control and Prevention, Shouguang, Shandong 262700, P.R. China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone and the third most common cancer in childhood and adolescence. Nowadays, early diagnosis, drug resistance and recurrence of the disease represent the major challenges in OS treatment. Post-genomics, and in particular proteomic technologies, offer an invaluable opportunity to address the level of biological complexity expressed by OS. Although the main goal of OS oncoproteomics is focused on diagnostic and prognostic biomarker discovery, in this review we describe and discuss global protein profiling approaches to other aspects of OS biology and pathophysiology, or to investigate the mechanism of action of chemotherapeutics. In addition, we present proteomic analyses carried out on OS cell lines as in vitro models for studying osteoblastic cell biology and the attractive opportunity offered by proteomics of OS cancer stem cells.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
13
|
Peng SF, Lee CY, Hour MJ, Tsai SC, Kuo DH, Chen FA, Shieh PC, Yang JS. Curcumin-loaded nanoparticles enhance apoptotic cell death of U2OS human osteosarcoma cells through the Akt-Bad signaling pathway. Int J Oncol 2013; 44:238-46. [PMID: 24247158 DOI: 10.3892/ijo.2013.2175] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
Abstract
Curcumin has potential anticancer activity and has been shown to be involved in several signaling pathways including differentiation and apoptosis. Our previous study showed that water-soluble PLGA curcumin nanoparticles (Cur-NPs) triggered apoptotic cell death through regulation of the function of MDR1 and the production of reactive oxygen species (ROS) in cisplatin-resistant human oral cancer CAR cells. In this study, we investigated the anti-proliferative effects of Cur-NPs on human osteosarcoma U2OS cells. The morphology of Cur-NPs showed spherical shape by TEM analysis. The encapsulation efficiency of curcumin in Cur-NPs prepared by single emulsion was 90.5 ± 3.0%. Our results demonstrated that the curcumin fragments on the mass spectrum of Cur-NPs and the peaks of curcumin standard could be found on the Cur-NPs spectrum by 1H-NMR spectra analysis. Cur-NPs induced anti-proliferative effects and apoptosis in U2OS cells. Compared to the untreated U2OS cells, more detectable amount of Cur-NPs was found inside the treated U2OS cells. Cur-NPs induced DNA fragmentation and apoptotic bodies in U2OS cells. Both the activity and the expression levels of caspases-3/-7 and caspase-9 were elevated in the treated U2OS cells. Cur-NPs upregulated the protein expression levels of cleaved caspase-3/caspase-9, cytochrome c, Apaf-1 and Bad and downregulated the protein expression level of p-Akt in U2OS cells. These results suggest Cur-NPs are effective in enhancing apoptosis in human osteosarcoma cells and thus could provide potential for cancer therapeutics.
Collapse
Affiliation(s)
- Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Posthumadeboer J, Piersma SR, Pham TV, van Egmond PW, Knol JC, Cleton-Jansen AM, van Geer MA, van Beusechem VW, Kaspers GJL, van Royen BJ, Jiménez CR, Helder MN. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Br J Cancer 2013; 109:2142-54. [PMID: 24064975 PMCID: PMC3798973 DOI: 10.1038/bjc.2013.578] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone tumour in children and adolescents. Despite aggressive therapy regimens, treatment outcomes are unsatisfactory. Targeted delivery of drugs can provide higher effective doses at the site of the tumour, ultimately improving the efficacy of existing therapy. Identification of suitable receptors for drug targeting is an essential step in the design of targeted therapy for OS. METHODS We conducted a comparative analysis of the surface proteome of human OS cells and osteoblasts using cell surface biotinylation combined with nano-liquid chromatography - tandem mass spectrometry-based proteomics to identify surface proteins specifically upregulated on OS cells. This approach generated an extensive data set from which we selected a candidate to study for its suitability as receptor for targeted treatment delivery to OS. First, surface expression of the ephrin type-A receptor 2 (EPHA2) receptor was confirmed using FACS analysis. Ephrin type-A receptor 2 expression in human tumour tissue was tested using immunohistochemistry. Receptor targeting and internalisation studies were conducted to assess intracellular uptake of targeted modalities via EPHA2. Finally, tissue micro arrays containing cores of human OS tissue were stained using immunohistochemistry and EPHA2 staining was correlated to clinical outcome measures. RESULTS Using mass spectrometry, a total of 2841 proteins were identified of which 156 were surface proteins significantly upregulated on OS cells compared with human primary osteoblasts. Ephrin type-A receptor 2 was highly upregulated and the most abundant surface protein on OS cells. In addition, EPHA2 was expressed in a vast majority of human OS samples. Ephrin type-A receptor 2 effectively mediates internalisation of targeted adenoviral vectors into OS cells. Patients with EPHA2-positive tumours showed a trend toward inferior overall survival. CONCLUSION The results presented here suggest that the EPHA2 receptor can be considered an attractive candidate receptor for targeted delivery of therapeutics to OS.
Collapse
Affiliation(s)
- J Posthumadeboer
- Department of Orthopaedic Surgery, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jia L, Ma S, Hou X, Wang X, Qased ABL, Sun X, Liang N, Li H, Yi H, Kong D, Liu X, Fan F. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment. Oncol Lett 2013; 5:1439-1447. [PMID: 23760551 PMCID: PMC3678704 DOI: 10.3892/ol.2013.1245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been demonstrated to have potent cytotoxic activity against certain malignant tumors. Ionizing radiation (IR) is one of the most effective methods used in the clinical treatment of cancer. The drawback of a single formula is that it limits the treatment efficacy for cancer, while comprehensive strategies require additional theoretical support. However, a combination of different antitumor treatment modalities is advantageous in restricting the non-specific toxicity often observed with an extremely high dose of a single regimen. The induction of apoptotic cell death is a significant process in tumor cells following radiotherapy or chemotherapy, and resistance to these treatments has been linked to a low propensity for apoptosis. Autophagy is a response of cancer cells to IR or chemotherapy, and involves the prominent formation of autophagic vacuoles in the cytoplasm. In this review, the synergistic effects of TCM and radiotherapy are summarized and the underlying mechanisms are illustrated, providing new therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lili Jia
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun 130021
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Zhang J, Zhang L, Si M, Yin H, Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis 2013; 34:1601-10. [PMID: 23430952 DOI: 10.1093/carcin/bgt065] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Notch signaling pathway plays critical roles in human cancers, including osteosarcoma, suggesting that the discovery of specific agents targeting Notch would be extremely valuable for osteosarcoma. Our previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of osteosarcoma cells by triggering cell cycle arrest and apoptosis in vitro. However, the underlying mechanism is still unclear. In this study, we found that DATS suppressed cell survival, wound-healing capacity, invasion and angiogenesis in osteosarcoma cells. These effects were associated with decreased expression of Notch-1 and its downstream genes, such as vascular endothelial growth factor and matrix metalloproteinases, as well as increased expression of a panel of tumor-suppressive microRNAs (miRNAs), including miR-34a, miR-143, miR-145 and miR-200b/c that are typically lost in osteosarcoma. We also found that reexpression of miR-34a and miR-200b by transfection led to reduced expression of Notch-1, resulting in the inhibition of osteosarcoma cell proliferation, invasion and angiogenesis. These results clearly suggest that DATS inhibited osteosarcoma growth and aggressiveness via a novel mechanism targeting a Notch-miRNA regulatory circuit. Our data provide the first evidence that the downregulation of Notch-1 and reexpression of miRNAs by DATS may be an effective approach for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
17
|
Romagnolo DF, Milner JA. Opportunities and challenges for nutritional proteomics in cancer prevention. J Nutr 2012; 142:1360S-9S. [PMID: 22649262 DOI: 10.3945/jn.111.151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge gaps persist about the efficacy of cancer prevention strategies based on dietary food components. Adaptations to nutrient supply are executed through tuning of multiple protein networks that include transcription factors, histones, modifying enzymes, translation factors, membrane and nuclear receptors, and secreted proteins. However, the simultaneous quantitative and qualitative measurement of all proteins that regulate cancer processes is not practical using traditional protein methodologies. Proteomics offers an attractive opportunity to fill this knowledge gap and unravel the effects of dietary components on protein networks that impinge on cancer. The articles presented in this supplement are from talks proffered in the "Nutrition Proteomics and Cancer Prevention" session at the American Institute for Cancer Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on October 21 and 22, 2010. Recent advances in MS technologies suggest that studies in nutrition and cancer prevention may benefit from the adoption of proteomic tools to elucidate the impact on biological processes that govern the transition from normal to malignant phenotype; to identify protein changes that determine both positive and negative responses to food components; to assess how protein networks mediate dose-, time-, and tissue-dependent responses to food components; and, finally, for predicting responders and nonresponders. However, both the limited accessibility to proteomic technologies and research funding appear to be hampering the routine adoption of proteomic tools in nutrition and cancer prevention research.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
18
|
Proteomic technologies for the study of osteosarcoma. Sarcoma 2012; 2012:169416. [PMID: 22550414 PMCID: PMC3329661 DOI: 10.1155/2012/169416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/04/2011] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described.
Collapse
|
19
|
In vitro efficacy of diallyl sulfides against the periodontopathogen Aggregatibacter actinomycetemcomitans. Antimicrob Agents Chemother 2012; 56:2397-407. [PMID: 22330917 DOI: 10.1128/aac.00020-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The in vitro antibacterial effects of diallyl sulfide (DAS) against the Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans, the key etiologic agent of the severe form of localized aggressive periodontitis and other nonoral infections, were studied. A. actinomycetemcomitans was treated with garlic extract, allicin, or DAS, and the anti-A. actinomycetemcomitans effects of the treatment were evaluated. Garlic extract, allicin, and DAS significantly inhibited the growth of A. actinomycetemcomitans (greater than 3 log; P < 0.01) compared to control cells. Heat inactivation of the garlic extracts significantly reduced the protein concentration; however, the antimicrobial effect was retained. Purified proteins from garlic extract did not exhibit antimicrobial activity. Allicin lost all its antimicrobial effect when it was subjected to heat treatment, whereas DAS demonstrated an antimicrobial effect similar to that of the garlic extract, suggesting that the antimicrobial activity of garlic extract is mainly due to DAS. An A. actinomycetemcomitans biofilm-killing assay performed with DAS showed a significant reduction in biofilm cell numbers, as evidenced by both confocal microscopy and culture. Scanning electron microscopy (SEM) analysis of DAS-treated A. actinomycetemcomitans biofilms showed alterations of colony architecture indicating severe stress. Flow cytometry analysis of OBA9 cells did not demonstrate apoptosis or cell cycle arrest at therapeutic concentrations of DAS (0.01 and 0.1 μg/ml). DAS-treated A. actinomycetemcomitans cells demonstrated complete inhibition of glutathione (GSH) S-transferase (GST) activity. However, OBA9 cells, when exposed to DAS at similar concentrations, showed no significant differences in GST activity, suggesting that DAS-induced GST inhibition might be involved in A. actinomycetemcomitans cell death. These findings demonstrate that DAS exhibits significant antibacterial activity against A. actinomycetemcomitans and that this property might be utilized for exploring its therapeutic potential in treatment of A. actinomycetemcomitans-associated oral and nonoral infections.
Collapse
|
20
|
Bernardini G, Braconi D, Spreafico A, Santucci A. Post-genomics of bone metabolic dysfunctions and neoplasias. Proteomics 2012; 12:708-21. [PMID: 22246652 DOI: 10.1002/pmic.201100358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 12/14/2022]
Abstract
Post-genomic research on osteoblastic and osteoclastic cells, in contrast to that on many other cell types, has only been undertaken recently. Nevertheless, important information has been gained from these investigations on the mechanisms involved in osteoblast differentiation and on markers relevant for tissue regeneration and therapeutic validation of drugs, hormones and growth factors. These protein indicators may also have a diagnostic and prognostic value for bone dysfunctions and tumors. Some reviews have already focused on the application of transcriptomics and/or proteomics for exploring skeletal biology and related disorders. The main goal of the present review is to systematically summarize the most relevant post-genomic studies on various metabolic bone diseases (osteoporosis, Paget's disease and osteonecrosis), neoplasias (osteosarcoma) and metabolic conditions that indirectly affect bone tissue, such as alkaptonuria.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | | | | | | |
Collapse
|
21
|
Application of proteomics in the mechanistic study of traditional Chinese medicine. Biochem Soc Trans 2012; 39:1348-52. [PMID: 21936813 DOI: 10.1042/bst0391348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.
Collapse
|
22
|
Lee BC, Park BH, Kim SY, Lee YJ. Role of Bim in diallyl trisulfide-induced cytotoxicity in human cancer cells. J Cell Biochem 2011; 112:118-27. [PMID: 21053278 PMCID: PMC3010475 DOI: 10.1002/jcb.22896] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to investigate the effect of garlic constituent diallyl trisulfide (DATS) on the cell-death signaling pathway in a human breast cell line (MDA-MB-231). We observed that DATS (10-100 µM) treatment resulted in dose- and time-dependent cytotoxicity. Treatment of MDA-MB-231 cells with a cytotoxicity inducing concentration of DATS (50-80 µM) resulted in an increase in the intracellular level of reactive oxygen species (ROS). Data from assay with MitoSOX(TM) Red reagent suggest that mitochondria are the main source of ROS generation during DATS treatment. DATS-induced oxidative stress was detected through glutaredoxin (GRX), a redox-sensing molecule, and subsequently GRX was dissociated from apoptosis signal-regulating kinase 1 (ASK1). Dissociation of GRX from ASK1 resulted in the activation of ASK1. ASK1 activated a downstream signal transduction JNK (c-Jun N-terminal kinase)-Bim pathway. SP600125, a JNK inhibitor, inhibited DATS-induced Bim phosphorylation and protected cells from DATS-induced cytotoxicity. Our results indicate that the cytotoxicity caused by DATS is mediated by the generation of ROS and subsequent activation of the ASK1-JNK-Bim signal transduction pathway in human breast carcinoma MDA-MB-231 cells.
Collapse
Affiliation(s)
- Byeong-Chel Lee
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Bae-Hang Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Seog-Young Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yong J. Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
23
|
Zhang Z, Zhang L, Hua Y, Jia X, Li J, Hu S, Peng X, Yang P, Sun M, Ma F, Cai Z. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer 2010; 10:206. [PMID: 20470422 PMCID: PMC2880991 DOI: 10.1186/1471-2407-10-206] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/14/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. METHODS An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. RESULTS 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. CONCLUSION It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Orthopaedics, The 4th Affiliated Hospital, China MedicalUniversity, Shenyang, 110032, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|