1
|
Morikawa A, Grkovski M, Patil S, Jhaveri KL, Tang K, Humm JL, Holodny A, Beal K, Schöder H, Seidman AD. A phase I trial of sorafenib with whole brain radiotherapy (WBRT) in breast cancer patients with brain metastases and a correlative study of FLT-PET brain imaging. Breast Cancer Res Treat 2021; 188:415-425. [PMID: 34109515 PMCID: PMC11557212 DOI: 10.1007/s10549-021-06209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sorafenib has demonstrated anti-tumor efficacy and radiosensitizing activity preclinically and in breast cancer. We examined sorafenib in combination with whole brain radiotherapy (WBRT) and explored the [18F] 3'deoxy-3'-fluorothymidine (FLT)-PET as a novel brain imaging modality in breast cancer brain metastases. METHODS A phase I trial of WBRT + sorafenib was conducted using a 3 + 3 design with safety-expansion cohort. Sorafenib was given daily at the start of WBRT for 21 days. The primary endpoints were to determine a maximum tolerated dose (MTD) and to evaluate safety and toxicity. The secondary endpoint was CNS progression-free survival (CNS-PFS). MacDonald Criteria were used for response assessment with a correlative serial FLT-PET imaging study. RESULTS 13 pts were evaluable for dose-limiting toxicity (DLT). DLTs were grade 4 increased lipase at 200 mg (n = 1) and grade 3 rash at 400 mg (n = 3). The MTD was 200 mg. The overall response rate was 71%. Median CNS-PFS was 12.8 months (95%CI: 6.7-NR). A total of 15 pts (10 WBRT + sorafenib and 5 WBRT) were enrolled in the FLT-PET study: baseline (n = 15), 7-10 days post WBRT (FU1, n = 14), and an additional 12 week (n = 9). A decline in average SUVmax of ≥ 25% was seen in 9/10 (90%) of WBRT + sorafenib patients and 2/4 (50%) of WBRT only patients. CONCLUSIONS Concurrent WBRT and sorafenib appear safe at 200 mg daily dose with clinical activity. CNS response was favorable compared to historical controls. This combination should be considered for further efficacy evaluation. FLT-PET may be useful as an early response imaging tool for brain metastases. TRIAL AND CLINICAL REGISTRY Trial registration numbers and dates: NCT01724606 (November 12, 2012) and NCT01621906 (June 18, 2012).
Collapse
Affiliation(s)
- Aki Morikawa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujata Patil
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal L Jhaveri
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Kendrick Tang
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew D Seidman
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Sinclair G, Stenman M, Benmakhlouf H, Johnstone P, Wersäll P, Lindskog M, Hatiboglu MA, Harmenberg U. Adaptive radiosurgery based on two simultaneous dose prescriptions in the management of large renal cell carcinoma brain metastases in critical areas: Towards customization. Surg Neurol Int 2020; 11:21. [PMID: 32123609 PMCID: PMC7049890 DOI: 10.25259/sni_275_2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background: The long-term benefits of local therapy in metastatic renal cell carcinoma (mRCC) have been widely documented. In this context, single fraction gamma knife radiosurgery (SF-GKRS) is routinely used in the management of brain metastases. However, SF-GKRS is not always feasible due to volumetric and regional constraints. We intend to illustrate how a dose-volume adaptive hypofractionated GKRS technique based on two concurrent dose prescriptions termed rapid rescue radiosurgery (RRR) can be utilized in this particular scenario. Case Description: A 56-year-old man presented with left-sided hemiparesis; the imaging showed a 13.1 cc brain metastasis in the right central sulcus (Met 1). Further investigation confirmed the histology to be a metastatic clear cell RCC. Met 1 was treated with upfront RRR. Follow-up magnetic resonance imaging (MRI) at 10 months showed further volume regression of Met 1; however, concurrently, a new 17.3 cc lesion was reported in the boundaries of the left frontotemporal region (Met 2) as well as a small metastasis (<1 cc) in the left temporal lobe (Met 3). Met 2 and Met 3 underwent RRR and SF-GKRS, respectively. Results: Gradual and sustained tumor ablation of Met 1 and Met 2 was demonstrated on a 20 months long follow- up. The patient succumbed to extracranial disease 21 months after the treatment of Met 1 without evidence of neurological impairment post-RRR. Conclusion: Despite poor prognosis and precluding clinical factors (failing systemic treatment, eloquent location, and radioresistant histology), RRR provided optimal tumor ablation and salvage of neurofunction with limited toxicity throughout follow-up.
Collapse
Affiliation(s)
- Georges Sinclair
- Departments of Neurosurgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey.,Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - M Stenman
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - H Benmakhlouf
- Departments of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - P Johnstone
- Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - P Wersäll
- Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M Lindskog
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - M A Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - U Harmenberg
- Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Beizaei K, Gleißner L, Hoffer K, Bußmann L, Vu AT, Steinmeister L, Laban S, Möckelmann N, Münscher A, Petersen C, Rothkamm K, Kriegs M. Receptor tyrosine kinase MET as potential target of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC. Head Neck 2018; 41:208-215. [PMID: 30552828 DOI: 10.1002/hed.25440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The multi-kinase inhibitor sorafenib displays antitumoral effects in head and neck squamous cell carcinoma (HNSCC); however, the targeted kinases are unknown. Here we aimed to identify those kinases to determine the mechanism of sorafenib-mediated effects and establish candidate biomarkers for patient stratification. METHODS The effects of sorafenib and MET inhibitors crizotinib and SU11274 were analyzed using a slide-based antibody array, Western blotting, proliferation, and survival assays. X-rays were used for irradiations. RESULTS Sorafenib inhibited auto-phosphorylation of epidermal growth factor receptor and MET, which has not been described previously. MET expression in HNSCC cells was not always associated with activity/phosphorylation. Furthermore, sorafenib-dependent cell kill and radiosensitization was not associated with MET level. Although MET inhibitors blocked proliferation, they caused only mild cytotoxicity and no radiosensitization. CONCLUSION We identified MET as a new potential target of sorafenib. However, MET inhibition is not the cause for sorafenib-mediated cytotoxicity or radiosensitization.
Collapse
Affiliation(s)
- Kaweh Beizaei
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lisa Gleißner
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Anh Thu Vu
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Leonhard Steinmeister
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| |
Collapse
|
4
|
Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines. Oncotarget 2018; 7:61988-61995. [PMID: 27542273 PMCID: PMC5308705 DOI: 10.18632/oncotarget.11328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. METHODS The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. RESULTS In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. CONCLUSION Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM.
Collapse
|
5
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y, Tang J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine 2018; 108:151-159. [PMID: 29609137 DOI: 10.1016/j.cyto.2018.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic resistance leading to tumor relapse is a major challenge in breast cancer (BCa) treatment. Numerous factors involved in multiple mechanisms promote the development of tumor chemo/radio-resistance. Cytokines/chemokines are important inflammatory factors and highly related to tumorigenesis, metastasis and tumors responses to treatment. A large number of studies have demonstrated that the network of cytokines activates multiple cell signaling pathways to promote tumor cell survival, proliferation, invasion, and migration. Particularly in BCa, cytokines-enhanced the epithelial-mesenchymal transition (EMT) process plays a pivotal role in the progression of metastatic phenotypes and resistance to the traditional chemo/radio-therapy. Virtually, therapeutic resistance is not entirely determined by tumor cell intrinsic characteristics but also dependent upon synchronized effects by numerous of local microenvironmental factors. Emerging evidence highlighted that exosomes secreted from various types of cells promote intercellular communication by transferring bioactive molecules including miRNAs and cytokines, suggesting that exosomes are essential for sustentation of tumor progression and therapeutic resistance within the tumor microenvironment. In this review, we discuss the mechanisms by which cytokines promote therapeutic resistance of BCa and suggest a potential approach for improving BCa therapeutics by inhibition of exosome function.
Collapse
Affiliation(s)
- Chunli Tan
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Weizi Hu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yong Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, PR China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
6
|
Möckelmann N, Rieckmann T, Busch CJ, Becker B, Gleißner L, Hoffer K, Omniczynski M, Steinmeister L, Laban S, Grénman R, Petersen C, Rothkamm K, Dikomey E, Knecht R, Kriegs M. Effect of sorafenib on cisplatin-based chemoradiation in head and neck cancer cells. Oncotarget 2018; 7:23542-51. [PMID: 27015558 PMCID: PMC5029646 DOI: 10.18632/oncotarget.8275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/01/2016] [Indexed: 11/25/2022] Open
Abstract
Despite aggressive chemoradiation (CRT) protocols in the treatment of patients with head and neck squamous cell carcinomas (HNSCC), the outcome is still unfavorable. To improve therapy efficacy we had already successfully tested the multikinase inhibitor sorafenib in combination with irradiation (IR) in previous studies on HNSCC cell lines. In this study we investigated its effect on combined CRT treatment using cisplatin.Radio- and chemosensitivity with and without sorafenib was measured in four HNSCC cell lines and normal fibroblasts (NF) by colony formation assay. Apoptosis and cell cycle analysis were performed by flow cytometry. In HNSCC cells, sorafenib enhanced the antiproliferative effect of cisplatin without affecting apoptosis induction and with only minor effects on cell inactivation. Sorafenib added prior to irradiation enhanced cellular radiosensitivity in three of the tested HNSCC cell lines and caused massive overall cell inactivation when combined with CRT. In contrast, sorafenib did not radiosensitize NF and reduced cisplatin-induced cell inactivation. Cell inactivation by IR and cisplatin is further increased by the addition of sorafenib in HNSCC, but not in NF cells. Therefore, sorafenib is a promising candidate to improve therapy efficacy for HNSCC.
Collapse
Affiliation(s)
- Nikolaus Möckelmann
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Becker
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Gleißner
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Omniczynski
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonhard Steinmeister
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Laban
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery and Department of Medical Biochemistry and Genetics, Turku University and University Hospital of Turku, Turku, Finland
| | - Cordula Petersen
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainald Knecht
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Head and Neck Cancer Center of The University Cancer Center Hamburg (UCCH), Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Ghashghaei M, Niazi TM, Heravi M, Bekerat H, Trifiro M, Paliouras M, Muanza T. Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen-sensitive prostate cancer cells. Prostate 2018; 78:64-75. [PMID: 29134684 DOI: 10.1002/pros.23445] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a progressive disease and the most diagnosed cancer in men. The current standard of care for high-risk localized PCa is a combination of androgen deprivation therapy (ADT) and radiation (XRT). The majority of these patients however become resistant due to incomplete responses to ADT as a result of selective cells maintaining androgen receptor (AR) activity. Improvement can be made if increasing radiosensitivity is realized. Therefore, the aim of this study is to investigate the efficacy of the next-generation PCa drug Enzalutamide (ENZA), as a radiosensitizer in XRT therapy. METHODS Using a number of androgen-dependent (LNCaP, PC3-T877A) and androgen-independent (C4-2, 22RV1, PC3, PC3-AR V7) cell lines, the effect of ENZA as a radiosensitizer was studied alone or in combination with ADT and/or XRT. Cell viability and cell survival were assessed, along with determination of cell cycle arrest, DNA damage response and repair, apoptosis and senescence. RESULTS Our results indicated that either ENZA alone (in AR positive, androgen-dependent PCa cells) or in combination with ADT (in AR positive, hormone-insensitive PCa cells) potentiates radiation response [Dose enhancement factor (DEF) of 1.75 in LNCAP and 1.35 in C4-2] stronger than ADT + XRT conditions. Additionally, ENZA sensitized androgen dependent PCa cells to XRT in a schedule-dependent manner, where concurrent administration of ENZA and radiation lead to a maximal radiosensitization when compared to either drug administration prior or after XRT. In LNCaP cells, ENZA treatment significantly prolonged the presence of XRT-induced phospho-γH2AX up to 24 h after treatment; suggesting enhanced DNA damage. It also significantly increased XRT-induced apoptosis and senescence. CONCLUSIONS Our data indicates that ENZA acts as a much stronger radiosensitizer compared to ADT. We have also observed that its efficacy is schedule dependent and related to increased levels of DNA damage and a delay of DNA repair processes. Finally, the initial abrogation of DNA-PKcs activity by AR inhibition and its subsequent recovery might represent an important mechanism by which PCa cells acquire resistance to combined anti-androgen and XRT treatment. This work suggests a new use of ENZA in combination with XRT that could be applicable in clinical trial settings for patients with early and intermediate hormone responsive disease.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Tamim M Niazi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| | - Mitra Heravi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hamed Bekerat
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| | - Mark Trifiro
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Miltiadis Paliouras
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Thierry Muanza
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| |
Collapse
|
8
|
Zhou HY, Wang S, Zhang H, Wang L, Zhang WS. Inhibiting the effect of (90)Sr-(90)Y ophthalmic applicators on rat corneal neovascularization induced by sutures. Int J Ophthalmol 2016; 9:1251-4. [PMID: 27672586 DOI: 10.18240/ijo.2016.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate a practical technique used to inhibit corneal angiogenesis with a (90)Sr-(90)Y ophthalmic applicator. METHODS A (90)Sr-(90)Y ophthalmic applicator was detected with a radioactive nuclide application treatment healthy protection standard. The applicator used was produced through medical dosimetry research; it had a concave applicator add measured the applicator temperature, serviceable humidity range, applicator appearance status, applicator radiation homogeneity, radioautography, and radiological safety of the original applicator surface. A vessel model was established using newborn rats, with sutures around the corneal limbus. Corneal neovascularization (CNV) were observed with a slit lamp. The new vessel length and response area were measured. RESULTS Low-dose radiation can inhibit CNV after corneal sutures. The absorbed dose of the applicator (0.046 Gy/s) was safe for the treatment of it. The lengths of new vessels and the areas of new vessels were lower than the new born vessel rat group (P<0.01). CONCLUSION The optimal radiation dose emitting from the applicator can be safe and potentially used in humans.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Shuang Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hong Zhang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Ling Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
9
|
Maria OM, Kumala S, Heravi M, Syme A, Eliopoulos N, Muanza T. Adipose mesenchymal stromal cells response to ionizing radiation. Cytotherapy 2016; 18:384-401. [PMID: 26780866 DOI: 10.1016/j.jcyt.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS This study evaluates the biological response of adipose tissue-derived mesenchymal stromal cells (aMSCs) to ionizing radiation (IR). METHODS Irradiated BALB/c mice aMSCs were characterized for functionality and phenotype. The clonogenic capacity of irradiated aMSCs was assessed and compared with those of metastatic breast cancer cell line (4T1) and normal mouse fibroblasts (NIH3T3-wt). We investigated the IR-induced DNA damage response, apoptosis, changes in cell cycle (CC) dynamics and protein and gene expression. RESULTS Irradiated and non-irradiated aMSCs were able to differentiate into adipocytes, chondrocytes and osteocytes with no significant difference. Irradiated aMSCs maintained the expression of mesenchymal stromal cells (MSCs) surface antigens and, as expected, were negative for hematopoietic stem cells (HSCs) surface antigens when tested up to 7 days after IR for all irradiation doses with no significant difference. Clonogenically, irradiated aMSCs had higher relative survival fraction and plating efficiency than 4T1 and NIH3T3-wt. Irradiated aMSCs expressed higher □H2AX and significantly showed faster and more time-efficient IR-induced DNA damage response evident by up-regulated DNA-PKcs and RAD51. Two hours after IR, most of aMSCs DNA damage/repair-related genes showed up-regulation that disappeared within 6 h after IR. Irradiated aMSCs showed a significant rise and an earlier peak of p-ATM-dependent and -independent (p84/5E10-mediated) G2/M CC arrest compared with 4T1 and NIH3T3-wt. CONCLUSIONS After IR exposure, aMSCs showed a robust and time-efficient radiation-induced DNA damage repair response, stable phenotypical characteristics and multi-lineage differentiation potential, suggesting they may be reliable candidates for cell therapy in radiation oncology regenerative medicine.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Experimental Medicine Department, Jewish General Hospital, Montreal, Canada; Surgery Department, Faculty of Medicine, Jewish General Hospital, Montreal, Canada; Radiation Oncology Department, Jewish General Hospital, Montreal, Canada
| | - Slawomir Kumala
- Radiation Oncology Department, Jewish General Hospital, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada; Oncology Department, McGill University, Montreal, Canada
| | - Mitra Heravi
- Radiation Oncology Department, Jewish General Hospital, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada; Human Genetics Department, McGill University, Montreal, Canada
| | - Alasdair Syme
- Radiation Oncology Department, Jewish General Hospital, Montreal, Canada; Oncology Department, McGill University, Montreal, Canada; Medical Physics Unit, Jewish General Hospital, Montreal, Canada
| | - Nicoletta Eliopoulos
- Surgery Department, Faculty of Medicine, Jewish General Hospital, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Thierry Muanza
- Experimental Medicine Department, Jewish General Hospital, Montreal, Canada; Radiation Oncology Department, Jewish General Hospital, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada; Oncology Department, McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Oliveira HF, Scrideli CA, Tone LG. Inhibition of polo-like kinase 1 induces cell cycle arrest and sensitizes glioblastoma cells to ionizing radiation. Cancer Biother Radiopharm 2013; 28:516-22. [PMID: 23713868 PMCID: PMC3741430 DOI: 10.1089/cbr.2012.1415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite efforts to improve surgical, radiologic, and chemotherapeutic strategies, the outcome of patients with glioblastoma (GBM) is still poor. Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays key roles in cell cycle control and has been associated with tumor growth and prognosis. Here, we aimed at testing the radiosensitizing effects of the PLK1 inhibitor BI 2536 on eight GBM cell lines. For cell cycle analysis, T98G, U251, U343 MG-a, LN319, SF188, U138 MG, and U87 MG cell lines were treated with 10, 50, or 100 nM of BI 2536 for 24 hours. In addition, cell cultures exposed to BI 2536 50 nM for 24 hours were irradiated with γ-rays from (60)Cobalt source at final doses of 2, 4, and 6 Gy. Combinatorial effects were evaluated through proliferation and clonogenic capacity assays. Treatment with BI 2536 caused mitotic arrest after 24 hours, and increased apoptosis in GBM cells. Moreover, our results demonstrate that pretreatment with this drug sensitized six out of seven GBM cell lines to different doses of γ-irradiation as shown by decreased growth and abrogation of colony-formation capacity. Our data suggest that PLK1 blockage has a radiosensitizing effect on GBM, which could improve treatment strategies for this devastating tumor.
Collapse
|
11
|
Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 2013; 141:67-78. [PMID: 23963659 DOI: 10.1007/s10549-013-2668-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Via Volturno, 39, Parma 43125, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Laban S, Steinmeister L, Gleißner L, Grob TJ, Grénman R, Petersen C, Gal A, Knecht R, Dikomey E, Kriegs M. Sorafenib sensitizes head and neck squamous cell carcinoma cells to ionizing radiation. Radiother Oncol 2013; 109:286-92. [PMID: 23953412 DOI: 10.1016/j.radonc.2013.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE There is a great need to improve the outcome of locoregionally advanced squamous cell carcinomas of the head and neck (HNSCC). Standard treatment includes a combination of surgery, radio- and chemotherapy. The addition of molecular targeting agents to conventional treatment may improve outcomes. In this study the Raf inhibitor sorafenib was used to increase the radiosensitivity of HNSCC cell lines. MATERIAL AND METHODS In a panel of six cell lines (A549, FaDu, UTSCC 60A, UTSCC 42A, UTSCC 42B, UTSCC 29) radiosensitivity was measured by colony formation assay and apoptosis and cell cycle analysis were performed by flow cytometry. DNA repair was analyzed by 53BP1 immunohistochemistry. RESULTS Sorafenib added prior to irradiation resulted in an increased cellular radiosensitivity (DEF0.5=1.11-1.84). Radiosensitization was not caused by an enhanced rate of apoptosis or cell cycle effects. In contrast, sorafenib was shown for the first time to block the repair of DNA double-strand breaks (DSB). CONCLUSION Our data suggest that sorafenib may be used to overcome the radioresistance of HNSCC through the inhibition of DSB repair.
Collapse
Affiliation(s)
- Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brassesco MS, Pezuk JA, Morales AG, de Oliveira JC, Roberto GM, da Silva GN, Francisco de Oliveira H, Scrideli CA, Tone LG. In vitro targeting of Polo-like kinase 1 in bladder carcinoma: comparative effects of four potent inhibitors. Cancer Biol Ther 2013; 14:648-57. [PMID: 23792639 PMCID: PMC3742494 DOI: 10.4161/cbt.25087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 04/16/2013] [Accepted: 05/19/2013] [Indexed: 01/21/2023] Open
Abstract
Despite the improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little over the past 30 years. In the present study we tested and compared the in vitro antitumor activities of four different inhibitors of Polo-like kinase 1 (PLK1) (BI 2536, BI 6727, GW843682X, and GSK461364), against 3 bladder carcinoma cell lines RT4, 5637 and T24. The impact on radiosensitivity and drug interactions in simultaneous treatments with cisplatin, methotrexate, and doxorubicin were also investigated. Our results showed that PLK1 inhibition prevented cell proliferation and clonogenicity, causing significant inhibition of invasion of tumor cells, though modest differences were observed between drugs. Moreover, all PLK1 inhibitors induced G 2/M arrest, with the subsequent induction of death in all 3 cell lines. Drug interactions studies showed auspicious results for all PLK1 inhibitors when combined with the commonly used cisplatin and methotrexate, though combinations with doxorubicin showed mostly antagonistic effects. Comparably, the four PLK1 inhibitors efficiently sensitized cells to ionizing radiation. Our findings demonstrate that irrespective of the inhibitor used, the pharmacological inhibition of PLK1 constrains bladder cancer growth and dissemination, providing new opportunities for future therapeutic intervention. However, further laboratorial and pre-clinical tests are still needed to corroborate the usefulness of using them in combination with other commonly used chemotherapeutic drugs.
Collapse
Affiliation(s)
- María Sol Brassesco
- Division of Pediatric Oncology, Department of Pediatrics, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dai XF, Ding J, Zhang RG, Ren JH, Ma CMC, Wu G. Radiosensitivity enhancement of human hepatocellular carcinoma cell line SMMC-7721 by sorafenib through the MEK/ERK signal pathway. Int J Radiat Biol 2013; 89:724-31. [DOI: 10.3109/09553002.2013.791405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Current world literature. Curr Opin Oncol 2012; 24:756-68. [PMID: 23079785 DOI: 10.1097/cco.0b013e32835a4c91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|