1
|
Basagni F, Marotta G, Rosini M, Minarini A. Polyamine-Drug Conjugates: Do They Boost Drug Activity? Molecules 2023; 28:molecules28114518. [PMID: 37298993 DOI: 10.3390/molecules28114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past two decades, the strategy of conjugating polyamine tails with bioactive molecules such as anticancer and antimicrobial agents, as well as antioxidant and neuroprotective scaffolds, has been widely exploited to enhance their pharmacological profile. Polyamine transport is elevated in many pathological conditions, suggesting that the polyamine portion could improve cellular and subcellular uptake of the conjugate via the polyamine transporter system. In this review, we have presented a glimpse on the polyamine conjugate scenario, classified by therapeutic area, of the last decade with the aim of highlighting achievements and fostering future developments.
Collapse
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
2
|
A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. Bioorg Chem 2020; 101:104011. [PMID: 32599363 DOI: 10.1016/j.bioorg.2020.104011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Platinum(Pt)(II) drugs and new Pt(IV) agents behave the dysregulation of apoptosis as the result of DNA damage repair and thus, are less effective in the treatment of resistant tumors. Herein, mononitro-naphthalimide Pt(IV) complex 10b with minimized side-effects was reported targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. 10b displayed remarkably evaluated antitumor (70.10%) activities in vivo compared to that of cisplatin (52.88%). The highest fold increase (FI) (5.08) for A549cisR cells and the lowest (0.72) for A549 indicated 10b preferentially accumulated in resistant cell lines. The possible molecular mechanism indicates that 10b targets resistant cells in a totally different way from the existing Pt drugs. The cell accumulation and the Pt levels in genomic DNA from 10b is almost 5 folds higher than that of cisplatin and oxaliplatin, indicating the naphthalimide moiety in 10b exhibits preferentially DNA damage. Using 5'-dGMP as a DNA model, the DNA-binding properties of 10b (1 mM) with 5'-dGMP (3 mM) in the presence of ascorbic acid (5 mM) deduced that 10b was generated by the combination of cisplatin with 5'-dGMP after reduction by ascorbic acid. Moreover, 10b promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity. The up-regulated γH2A.X and down-regulated RAD51 indicates that 10b not only induced severe DNA damage but also inhibited the DNA damage repair, thus resulting in its higher cytotoxicity in comparison to that of cisplatin. Their preferential accumulation in cancer cells (SMMC-7721) compared to the matched normal cells (HL-7702 cells) demonstrated that they were potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 10b for 4T1 cells in vivo indicated that naphthalimide-Pt(IV) conjugates behaved a vital function in the treatment of breast cancer. For the first time, our study implies a significant strategy for Pt drugs to treat resistance cancer targeting DNA damage repair via dual DNA damage mechanism in a totally new field.
Collapse
|
3
|
Liu H, Ma J, Li Y, Yue K, Li L, Xi Z, Zhang X, Liu J, Feng K, Ma Q, Liu S, Guo S, Wang PG, Wang C, Xie S. Polyamine-Based Pt(IV) Prodrugs as Substrates for Polyamine Transporters Preferentially Accumulate in Cancer Metastases as DNA and Polyamine Metabolism Dual-Targeted Antimetastatic Agents. J Med Chem 2019; 62:11324-11334. [PMID: 31765154 DOI: 10.1021/acs.jmedchem.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse platinum drug candidates have been designed to improve inhibitory potency and overcome resistance for orthotopic tumors. However, the antimetastatic properties have rarely been reported. We herein report that homospermidineplatin (4a), a polyamine-Pt(IV) prodrug, can potently inhibit tumor growth in situ and reverse cisplatin resistance as expected, and more importantly, 4a displays remarkably elevated antimetastatic activity in vivo (65.7%), compared to those of cisplatin (27.0%) and oxaliplatin (19.6%). The underlying molecular mechanism indicates that in addition to targeting nuclear DNA, 4a can modulate polyamine metabolism and function in a manner different from that of cisplatin. By upregulating SSAT and PAO, 4a downregulates the concentrations of Put, Spd, and Spm, which favors the suppression of fast-growing tumor cells. Moreover, the p53/SSAT/β-catenin and PAO/ROS/GSH/GSH-Px pathways are involved in the inhibition of 4a-induced tumor metastasis. Our study implies a promising strategy for the design of platinum drugs for the treatment of terminal cancer.
Collapse
Affiliation(s)
- Hanfang Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Yingguang Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Kexin Yue
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Linrong Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Zhuoqing Xi
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
- Henan University of Science and Technology Second Affiliated Hospital , Luoyang 471000 , China
| | - Xiao Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering , Henan University , Kaifeng 475004 , China
| | - Jianing Liu
- School of Medicine , Henan University Minsheng College , Kaifeng 475004 , China
| | - Kai Feng
- School of Medicine , Henan University Minsheng College , Kaifeng 475004 , China
| | - Qi Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Sitong Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Shudi Guo
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Peng George Wang
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center , Shandong University , Qingdao 266237 , China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering , Henan University , Kaifeng 475004 , China
| | - Songqiang Xie
- School of Pharmacy, Institute of Chemical Biology , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| |
Collapse
|
4
|
Li HH, Song XX, Liu B, Yang WP. UNBS5162 as a novel naphthalimide holds efficacy in human gastric carcinoma cell behaviors mediated by AKT/ERK signaling pathway. Drug Dev Ind Pharm 2019; 45:1306-1312. [PMID: 30995142 DOI: 10.1080/03639045.2019.1607870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: Studies have determined that UNBS5162, recognized as a new naphthalimide, holds inhibitory effects in prostate and breast tumors; however, its functional implication on gastric carcinoma is currently undetermined. Based on this, this study designed to assess the functional role of it on human gastric carcinoma and underlying mechanism of action. Methods: Cell counting kit-8 (CCK-8) assay, transwell assay, and flow cytometry were used to assess capabilities of SGC-7901 cell proliferation, invasion/migration, and apoptosis, respectively. Moreover, western blot was performed to determine the relative expression of protein related to autophagy and protein kinase B (AKT)/extracellular regulated protein kinases (ERK) signaling pathway. Results: We found SGC-7901 cells proliferation, invasion, and migration were significantly inhibited after treatment of UNBS5162. Moreover, the expression levels of anti-apoptotic protein Bcl-2 decreased while the expression of pro-apoptotic protein active caspase 3 and Bax increased concurrently after UNBS5162 stimulation. Further, upregulated LC3 II/I and Beclin-1 and downregulated P62 were induced by UNBS5162 addition. Mechanically, the ratios of phosphorylated-(p-)AKT/AKT, p-mammalian target of rapamycin (mTOR)/mTOR, and p-ERK/ERK were hampered by UNBS5162 application. Conclusion: UNBS5162 could restrain gastric carcinoma cell proliferation, invasion, and migration, which maybe induced by enhancement of apoptosis, autophagy manipulated through AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Hong-Hai Li
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Xian-Xu Song
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Bo Liu
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Wen-Ping Yang
- b Department of Medical Records Management , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| |
Collapse
|
5
|
Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. MEDCHEMCOMM 2019; 10:280-293. [PMID: 30881615 PMCID: PMC6390468 DOI: 10.1039/c8md00419f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic β-cell membranes and presynaptic areas of neurons contain analogous protein complexes that control the secretion of bioactive molecules. These complexes include the neuroligins (NLs) and their binding partners, the neurexins (NXs). It has been recently reported that both insulin secretion and the proliferation rates of β-cells increase when cells are co-cultured with full-length NL-2 clusters. The pharmacological use of full-length protein is always problematic due to its unfavorable pharmacokinetic properties. Thus, NL-2-derived short peptide was conjugated to the surface of polyamidoamine-based (PAMAM) dendrimers. This nanoscale composite improved β-cell functions in terms of the rate of proliferation, glucose-stimulated insulin secretion (GSIS), and functional maturation. This functionalized dendrimer also protected β-cells under cellular stress conditions. In addition, various novel peptidomimetic scaffolds of NL-2-derived peptide were designed, synthesized, and conjugated to the surface of PAMAM in order to increase the biostability of the conjugates. However, after being covered by peptidomimetics, PAMAM dendrimers were inactive. Thus, the original peptide-based PAMAM dendrimer is a leading compound for continued research that might provide a unique starting point for designing an innovative class of antidiabetic therapeutics that possess a unique mode of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Yoni Moskovitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Aviv Meir
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Shirin Kahremany
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Department of Pharmacology , Cleveland Center for Membrane and Structural Biology , School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Laura Levy
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Michal Kolitz-Domb
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Guy Cohen
- Skin Research Institute , Dead Sea and Arava Research Center , Masada , Israel
| | - Efrat Shtriker
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Olga Viskind
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Jean-Paul Lellouche
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Nanomaterials Research Center , Institute of Nanotechnology & Advanced Materials (BINA) , Bar-Ilan University , Ramat-Gan , Israel
| | - Hanoch Senderowitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Steven D Chessler
- Division of Endocrinology, Diabetes & Metabolism , Department of Medicine , University of California , Irvine , CA , USA
| | - Edward E Korshin
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Sharon Ruthstein
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Arie Gruzman
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| |
Collapse
|
6
|
Li J, Tian R, Ge C, Chen Y, liu X, Wang Y, Yang Y, Luo W, Dai F, Wang S, Chen S, Xie S, Wang C. Discovery of the Polyamine Conjugate with Benzo[cd]indol-2(1H)-one as a Lysosome-Targeted Antimetastatic Agent. J Med Chem 2018; 61:6814-6829. [DOI: 10.1021/acs.jmedchem.8b00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Bestwick CS, Milne L, Dance AM, Cochennec G, Cruickshank G, Allain E, Constable L, Duthie SJ, Thoo Lin PK. Caspase-independence and characterization of bisnaphthalimidopropyl spermidine induced cytotoxicity in HL60 cells. Toxicol In Vitro 2018; 52:342-350. [PMID: 29966682 DOI: 10.1016/j.tiv.2018.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Bisnaphthalimides are DNA intercalators of potential use as chemotherapeutics but for which the range of mechanism of action is only gradually being elucidated. Using human promyelocytic HL-60 cells, we extend characterization of the cytotoxicity of bisnaphthalimidopropylspermidine (BNIPSpd) and examine the relationship with caspase-activity. Within 4 h exposure, BNIPSpd (1-10 μM) induced significant DNA strand breakage. Evidence of apoptosis was progressive through the experimental period. Within 6 h, BNIPSpd increased the proportion of cells exhibiting plasma membrane phosphatidylserine exposure. Within 12 h, active caspase expression increased and was sustained with 5 and 10 μM BNIPSpd. Flow cytometric analysis revealed caspase activity in cells with and without damaged membranes. By 24 h, 5 and 10 μM BNIPSpd increased hypodiploid DNA content and internucleosomal DNA fragmentation (DNA ladders) typical of the later stages of apoptosis. 1 μM BNIPSpd exposure also increased hypodiploid DNA content by 48 h. Polyamine levels decreased by 24 h BNIPSpd exposure. The pan-caspase inhibitor, z-VAD-fmk, significantly decreased DNA degradation (hypodiploid DNA and DNA ladders) and cytotoxicity. Despite this, cell growth and viability remained significantly impaired. We propose that BNIPSpd cytotoxicity arises through DNA damage and not polyamine depletion and that cytotoxicity is dominated by but not dependent upon caspase driven apoptosis.
Collapse
Affiliation(s)
- Charles S Bestwick
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lesley Milne
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne-Marie Dance
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gaela Cochennec
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gillian Cruickshank
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eflamm Allain
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda Constable
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Susan J Duthie
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Paul Kong Thoo Lin
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| |
Collapse
|
8
|
Abstract
This chapter provides an overview of how the polyamine pathway has been exploited as a target for the treatment and prevention of multiple forms of cancer, since this pathway is disrupted in all cancers. It is divided into three main sections. The first explores how the polyamine pathway has been targeted for chemotherapy, starting from the first drug to target it, difluoromethylornithine (DFMO) to the large variety of polyamine analogues that have been synthesised and tested throughout the years with all their potentials and pitfalls. The second section focuses on the use of polyamines as vectors for drug delivery. Knowing that the polyamine transport system is upregulated in cancers and that polyamines naturally bind to DNA, a range of polyamine analogues and polyamine-like structures have been synthesised to target epigenetic regulators, with encouraging results. Furthermore, the use of polyamines as transport vectors to introduce toxic/bioactive/fluorescent agents more selectively to the intended target in cancer cells is discussed. The last section concentrates on chemoprevention, where the different strategies that have been undertaken to interfere with polyamine metabolism and function for antiproliferative intervention are outlined and discussed.
Collapse
Affiliation(s)
- Elisabetta Damiani
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Heather M Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
9
|
Magoulas GE, Tsigkou T, Skondra L, Lamprou M, Tsoukala P, Kokkinogouli V, Pantazaka E, Papaioannou D, Athanassopoulos CM, Papadimitriou E. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents. Bioorg Med Chem 2017; 25:3756-3767. [DOI: 10.1016/j.bmc.2017.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
|
10
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
11
|
Ge C, Chang L, Zhao Y, Chang C, Xu X, He H, Wang Y, Dai F, Xie S, Wang C. Design, Synthesis and Evaluation of Naphthalimide Derivatives as Potential Anticancer Agents for Hepatocellular Carcinoma. Molecules 2017; 22:molecules22020342. [PMID: 28241441 PMCID: PMC6155709 DOI: 10.3390/molecules22020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed that compound 3a moderately inhibited primary H22 tumor growth (52.6%) and potently interrupted lung metastasis (75.7%) without obvious systemic toxicity at the therapeutic dose. Mechanistic research revealed that compound 3a inhibited cancerous liver cell growth mostly by inducing G2/M phase arrest. Western blotting experiments corroborated that 3a could up-regulate the cell cycle related protein expression of cyclin B1, CDK1 and p21, and inhibit cell migration by elevating the E-cadherin and attenuating integrin α6 expression. Our study showed that compound 3a is a valuable lead compound worthy of further investigation.
Collapse
Affiliation(s)
- Chaochao Ge
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Liping Chang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Ying Zhao
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Congcong Chang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Haoying He
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, China.
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Songqiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng 475001, China.
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| |
Collapse
|
12
|
Dai F, Li Q, Wang Y, Ge C, Feng C, Xie S, He H, Xu X, Wang C. Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone–Naphthalimide–Polyamine Conjugates with Antimetastatic Activity. J Med Chem 2017; 60:2071-2083. [DOI: 10.1021/acs.jmedchem.6b01846] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fujun Dai
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Qian Li
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Yuxia Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaochao Ge
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chenyang Feng
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Songqiang Xie
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Haoying He
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Xiaojuan Xu
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaojie Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
13
|
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: new advances. Future Oncol 2017; 13:809-819. [PMID: 28125906 DOI: 10.2217/fon-2016-0266] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vassileios Ragos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios P Kyritsis
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| |
Collapse
|
14
|
Li Q, Zhai Y, Luo W, Zhu Z, Zhang X, Xie S, Hong C, Wang Y, Su Y, Zhao J, Wang C. Synthesis and biological properties of polyamine modified flavonoids as hepatocellular carcinoma inhibitors. Eur J Med Chem 2016; 121:110-119. [DOI: 10.1016/j.ejmech.2016.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 02/03/2023]
|
15
|
Abstract
Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
16
|
Zhang X, Wang Y, Wang J, Sun F. Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncol Rep 2015; 35:625-38. [PMID: 26717966 DOI: 10.3892/or.2015.4464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 11/05/2022] Open
Abstract
Numerous signaling pathways have been shown to be dysregulated in liver cancer. In addition, some protein-protein interactions are prerequisite for the uncontrolled activation or inhibition of these signaling pathways. For instance, in the PI3K/AKT signaling pathway, protein AKT binds with a number of proteins such as mTOR, FOXO1 and MDM2 to play an oncogenic role in liver cancer. The aim of the present review was to focus on a series of important protein-protein interactions that can serve as potential therapeutic targets in liver cancer among certain important pro-carcinogenic signaling pathways. The strategies of how to investigate and analyze the protein-protein interactions are also included in this review. A survey of these protein interactions may provide alternative therapeutic targets in liver cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yulan Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Medina-Enríquez MM, Alcántara-Farfán V, Aguilar-Faisal L, Trujillo-Ferrara JG, Rodríguez-Páez L, Vargas-Ramírez AL. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells. J Enzyme Inhib Med Chem 2014; 30:345-53. [PMID: 24939101 DOI: 10.3109/14756366.2014.926342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.
Collapse
Affiliation(s)
- Miriam Marlene Medina-Enríquez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala , México, D.F.
| | | | | | | | | | | |
Collapse
|