1
|
Kim G, Jang SK, Ahn SH, Kim S, Park CS, Seong MK, Kim HA, Bae S, Lee JH, Kim H, Jin HO, Park IC. Proapoptotic role of CDK1 in overcoming paclitaxel resistance in ovarian cancer cells in response to combined treatment with paclitaxel and duloxetine. Cancer Cell Int 2024; 24:409. [PMID: 39702300 DOI: 10.1186/s12935-024-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Paclitaxel resistance and recurrence are major obstacles in ovarian cancer, which is the leading cause of death among gynecologic cancers. During cancer cell progression, cyclin-dependent kinase 1 (CDK1) drives cells through the G2 phase and into mitosis. In this study, we demonstrated that CDK1 played a crucial role in switching paclitaxel-resistant ovarian cancer cells from mitotic arrest to apoptosis following combined treatment with paclitaxel and duloxetine, an antidepressant known as a serotonin-norepinephrine reuptake inhibitor (SNRI). METHODS Cell viability was assessed by MTT assay. Apoptotic cell death and mitochondrial membrane potential (MMP) were detected by flow cytometry. Protein expression levels were explored using western blotting. Mitochondrial and cytosolic fractionation were performed to determine the mitochondrial localization of proteins. Immunofluorescence was used to detect protein expression levels and localization. RESULTS Combined treatment with paclitaxel and duloxetine induced apoptotic cell death in paclitaxel-resistant ovarian cancer cells. We suggested that combined treatment of these drugs induced CDK1 activation and increased mitochondrial localization of activated CDK1, which caused phosphorylation of the antiapoptotic Bcl-2 and Bcl-xL proteins. Selective CDK1 inhibitors blocked Bcl-2 and Bcl-xL phosphorylation induced by paclitaxel and duloxetine, and strongly suppressed apoptotic cell death. Furthermore, we demonstrated that S6K is a potential upstream mediator of the proapoptotic activation of CDK1. CONCLUSION Taken together, switching CDK1 to a proapoptotic role through the combination of paclitaxel and duloxetine could overcome paclitaxel resistance in ovarian cancer cells, providing promising therapeutic strategies for treating paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Selim Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|
2
|
Adornetto A, Laganà ML, Satriano A, Licastro E, Corasaniti MT, Bagetta G, Russo R. The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy. Int J Mol Sci 2024; 25:10415. [PMID: 39408742 PMCID: PMC11476963 DOI: 10.3390/ijms251910415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.e., an evolutionarily conserved catabolic pathway responsible for the degradation and recycling of cytoplasmic material) in human SH-SY5Y neuroblastoma cell cultures. The dose and time-dependent upregulation of the autophagy marker LC3II and the autophagy receptor p62, with the accumulation of LAMP1 positive compartments, were observed in SH-SY5Y cells exposed to the amitriptyline. These effects were accompanied by reduced cell viability and decreased clonogenic capacity, without a significant induction of apoptosis. Decrease viability and clonogenic activity were still observed in autophagy deficient Atg5-/- MEF and following pre-treatment of SH-SY5Y culture with the autophagy inhibitor chloroquine, suggesting that they were independent from autophagy modulation. Our findings demonstrate that amitriptyline acts on pathways crucial for cell and tissue homeostasis (i.e., autophagy and proliferation) and pose the basis for further studies on the potential therapeutic application of amitriptyline, as well as the consequences of its use for long-term treatments.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| |
Collapse
|
3
|
Olmedo DA, Vasquez Y, Morán JA, De León EG, Caballero-George C, Solís PN. Understanding the Artemia Salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact. Comb Chem High Throughput Screen 2024; 27:545-554. [PMID: 37403396 DOI: 10.2174/1386207326666230703095928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action. OBJECTIVE This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST. METHODS Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar. RESULTS Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 values <100 μM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment. CONCLUSION BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Yelkaira Vasquez
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Juan Antonio Morán
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama
| | | | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Building 208, City of Knowledge, Panama
| | - Pablo N Solís
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| |
Collapse
|
4
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
5
|
Zheng Y, Chang X, Huang Y, He D. The application of antidepressant drugs in cancer treatment. Biomed Pharmacother 2023; 157:113985. [PMID: 36402031 DOI: 10.1016/j.biopha.2022.113985] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Antidepressants refer to psychotropic drugs which are used to treat mental illness with prominent emotional depression symptoms. It was reported that antidepressants had associated with anti-carcinogenic function which was associated with various signaling pathways and changing of microenvironment. Its mechanism includes cell apoptosis, antiproliferative effects, mitochondria-mediated oxidative stress, DNA damaging, changing of immune response and inflammatory conditions, and acting by inhibiting multidrug resistance of cancer cells. Accumulated studies showed that antidepressants influenced the metabolic pathway of tumor cells. This review summarized recent developments with the impacts and mechanisms of 10 kinds of antidepressants in carcinostasis. Antidepressants are also used in combination therapy with typical anti-tumor drugs which shows a synergic effect in anti-tumor. By contrast, the promotion roles of antidepressants in increasing cancer recurrence risk, mortality, and morbidity are also included. Further clinical experiments and mechanism analyses needed to be achieved. A full understanding of the underlying mechanisms of antidepressants-mediated anticarcinogenic effects may provide new clues for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Yunxi Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xu Chang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuyang Huang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dingwen He
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
6
|
Stabile AM, Pistilli A, Bartolini D, Angelucci E, Dell’Omo M, Di Sante G, Rende M. Short-Term Effects of Side-Stream Smoke on Nerve Growth Factor and Its Receptors TrKA and p75 NTR in a Group of Non-Smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10317. [PMID: 36011952 PMCID: PMC9408420 DOI: 10.3390/ijerph191610317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Environmental tobacco smoke remains a major risk factor, for both smokers and non-smokers, able to trigger the initiation and/or the progression of several human diseases. Although in recent times governments have acted with the aim of banning or strongly reducing its impact within public places and common spaces, environmental tobacco smoke remains a major pollutant in private places, such as the home environment or cars. Several inflammatory and long-term biomarkers have been analysed and well-described, but the list of mediators modulated during the early phases of inhalation of environmental tobacco smoke needs to be expanded. The aim of this study was to measure the short-term effects after exposure to side-stream smoke on Nerve Growth Factor and its receptors Tropomyosin-related kinase A and neurotrophin p75, molecules already described in health conditions and respiratory diseases. Twenty-one non-smokers were exposed to a home-standardized level of SS as well as to control smoke-free air. Nerve Growth Factor and inflammatory cytokines levels, as well the expression of Tropomyosin-related kinase A and neurotrophin receptor p75, were analysed in white blood cells. The present study demonstrates that during early phases, side-stream smoke exposure induced increases in the percentage of neurotrophin receptor p75-positive white blood cells, in their mean fluorescent intensity, and in gene expression. In addition, we found a positive correlation between the urine cotinine level and the percentage of neurotrophin receptor-positive white blood cells. For the first time, the evidence that short-term exposure to side-stream smoke is able to increase neurotrophin receptor p75 expression confirms the very early involvement of this receptor, not only among active smokers but also among non-smokers exposed to SS. Furthermore, the correlation between cotinine levels in urine and the increase in neurotrophin receptor p75-positive white blood cells could represent a potential novel molecule to be investigated for the detection of SS exposure at early time points.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
- Department of Pharmaceutical Sciences, Section of Biochemistry, University of Perugia, Via del Giochetto, 06132 Perugia, Italy
| | - Eleonora Angelucci
- Department of Medicine, Section of Occupational Medicine, Respiratory Diseases and Toxicology, School of Medicine, University of Perugia, Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Marco Dell’Omo
- Department of Medicine, Section of Occupational Medicine, Respiratory Diseases and Toxicology, School of Medicine, University of Perugia, Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
7
|
The Effect of Interaction NGF/p75NTR in Sperm Cells: A Rabbit Model. Cells 2022; 11:cells11061035. [PMID: 35326486 PMCID: PMC8947739 DOI: 10.3390/cells11061035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Nerve Growth Factor (NGF) plays an important role in the reproductive system through its receptor’s interaction (p75NTR). This paper aims to analyze the impact of NGF p75NTR in epididymal and ejaculated rabbit semen during in vitro sperm storage. Methods: Semen samples from 10 adult rabbit bucks were collected four times (n = 40) and analyzed. NGF was quantified in seminal plasma, and the basal expression of p75NTR in sperm was established (time 0). Moreover, we evaluated p75NTR, the apoptotic rates, and the main sperm parameters, at times 2–4 and 6 h with or without the administration of exogenous NGF. Results: Based on the level of p75NTR, we defined the threshold value (25.6%), and sperm were divided into High (H) and Normal (N). During sperm storage, p75NTR of H samples significantly modulated some relevant sperm parameters. Specifically, comparing H samples with N ones, we observed a reduction in motility and non-capacitated cell number, together with an increased percentage of dead and apoptotic cells. Notably, the N group showed a reduction in dead and apoptotic cells after NGF treatment. Conversely, the NGF administration on H sperm did not change either the percentage of dead cells or the apoptotic rate. Conclusion: The concentration of p75NTR on ejaculated sperm modulates many semen outcomes (motility, apoptosis, viability) through NGF interaction affecting the senescence of sperm.
Collapse
|
8
|
Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, Guo X, Xing B, Wang Y, Ma W. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Brief Bioinform 2021; 22:6220175. [PMID: 33839757 PMCID: PMC8425448 DOI: 10.1093/bib/bbab032] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Gao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaopeng Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Solek P, Koszla O, Mytych J, Badura J, Chelminiak Z, Cuprys M, Fraczek J, Tabecka-Lonczynska A, Koziorowski M. Neuronal life or death linked to depression treatment: the interplay between drugs and their stress-related outcomes relate to single or combined drug therapies. Apoptosis 2020; 24:773-784. [PMID: 31278507 PMCID: PMC6711955 DOI: 10.1007/s10495-019-01557-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depression is a serious medical condition, typically treated by antidepressants. Conventional monotherapy can be effective only in 60–80% of patients, thus modern psychiatry deals with the challenge of new methods development. At the same moment, interactions between antidepressants and the occurrence of potential side effects raise serious concerns, which are even more exacerbated by the lack of relevant data on exact molecular mechanisms. Therefore, the aims of the study were to provide up-to-date information on the relative mechanisms of action of single antidepressants and their combinations. In this study, we evaluated the effect of single and combined antidepressants administration on mouse hippocampal neurons after 48 and 96 h in terms of cellular and biochemical features in vitro. We show for the first time that co-treatment with amitriptyline/imipramine + fluoxetine initiates in cells adaptation mechanisms which allow cells to adjust to stress and finally exerts less toxic events than in cells treated with single antidepressants. Antidepressants treatment induces in neuronal cells oxidative and nitrosative stress, which leads to micronuclei and double-strand DNA brakes formation. At this point, two different mechanistic events are initiated in cells treated with single and combined antidepressants. Single antidepressants (amitriptyline, imipramine or fluoxetine) activate cell cycle arrest resulting in proliferation inhibition. On the other hand, treatment with combined antidepressants (amitriptyline/imipramine + fluoxetine) initiates p16-dependent cell cycle arrest, overexpression of telomere maintenance proteins and finally restoration of proliferation. In conclusion, our findings may pave the way to better understanding of the stress-related effects on neurons associated with mono- and combined therapy with antidepressants.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Oliwia Koszla
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Badura
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Zaneta Chelminiak
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Magdalena Cuprys
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Fraczek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
10
|
|
11
|
Anticarcinogenic activities of sulforaphane are influenced by Nerve Growth Factor in human melanoma A375 cells. Food Chem Toxicol 2018; 113:154-161. [PMID: 29407470 DOI: 10.1016/j.fct.2018.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
Melanoma is a severe form of cancer, resistant to conventional therapies. According to in vitro studies, sulforaphane, a dietary component, has been considered a promising antineoplastic candidate. The present study analyzes the in vitro biological effects of sulforaphane in A375 melanoma cell line with or without the addition of Nerve Growth Factor. For the first time, our results show that a supplementation of Nerve Growth Factor partially reverses the sulforaphane-induced: i) inhibition of cell migration, ii) pro apoptotic changes in cell cycle and iii) modulation of active caspase-3. Furthermore, we report the sulforaphane-induced modulation in the expression of Nerve Growth Factor receptors TrKA and p75NTR, shifting their ratio from pro survival to pro apoptotic. In conclusion, the present study evidences that in vivo the antineoplastic effects of sulforaphane may be reduced by the contemporaneous presence of other biological elements such as Nerve Growth Factor and it contributes to a better definition of the real in vivo potentiality of sulforaphane as antineoplastic candidate.
Collapse
|
12
|
Montagnoli C, Tiribuzi R, Crispoltoni L, Pistilli A, Stabile AM, Manfreda F, Placella G, Rende M, Cerulli GG. β-NGF and β-NGF receptor upregulation in blood and synovial fluid in osteoarthritis. Biol Chem 2017; 398:1045-1054. [PMID: 28253191 DOI: 10.1515/hsz-2016-0280] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) of the knee is the most common form of non-traumatic joint disease. Previous studies have shown the involvement of β-NGF and its receptors TrKA and p75NTR in OA-related pain, but their role in its pathogenesis is still unclear. The aim of our study was to investigate the amount of β-NGF and the expression levels of its receptors on cells isolated from synovial fluid and blood from OA patients who had undergone total knee arthroplasty, in order to check any possible correlation with the disease staging. Our results show a progressive stage-related increase of β-NGF and its receptors both in serum and synovial fluid. Furthermore, with respect to control subjects, OA patients show an increased amount of inflammatory monocytes along with an increased expression of β-NGF, TrKA and p75NTR. In conclusion, our study suggests a stage-related modulation of β-NGF and its receptors in the inflammatory process of OA.
Collapse
|
13
|
Lu T, Chou CT, Liang WZ, Kuo CC, Chen IL, Wang JL, Jan CR. Amitriptyline modulated Ca2+ signaling and induced Ca2+-independent cell viability in human osteosarcoma cells. Hum Exp Toxicol 2017; 37:125-134. [DOI: 10.1177/0960327117693070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin–norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca2+ homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca2+ concentrations ([Ca2+]i) rises concentration dependently. Amitriptyline-evoked Ca2+ entry was confirmed by Mn2+-induced quench of fura-2 fluorescence. This entry was inhibited by Ca2+ entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca2+]i rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca2+]i rises by 70%. Amitriptyline killed cells at 200–500 μM in a concentration-dependent fashion. Chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-regulated store-operated Ca2+ entry. Amitriptyline also induced Ca2+-disassociated cell death.
Collapse
Affiliation(s)
- T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - I-L Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - J-L Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Ortiz T, Villanueva-Paz M, Díaz-Parrado E, Illanes M, Fernández-Rodríguez A, Sánchez-Alcázar JA, de Miguel M. Amitriptyline down-regulates coenzyme Q10 biosynthesis in lung cancer cells. Eur J Pharmacol 2017; 797:75-82. [DOI: 10.1016/j.ejphar.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
|
15
|
Rello-Varona S, Herrero-Martín D, Lagares-Tena L, López-Alemany R, Mulet-Margalef N, Huertas-Martínez J, Garcia-Monclús S, García Del Muro X, Muñoz-Pinedo C, Tirado OM. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy. Front Oncol 2015; 5:82. [PMID: 25905041 PMCID: PMC4387920 DOI: 10.3389/fonc.2015.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/21/2015] [Indexed: 12/23/2022] Open
Abstract
Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.
Collapse
Affiliation(s)
- Santiago Rello-Varona
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - David Herrero-Martín
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Laura Lagares-Tena
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Núria Mulet-Margalef
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Juan Huertas-Martínez
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Silvia Garcia-Monclús
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Xavier García Del Muro
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| | - Oscar Martínez Tirado
- Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain
| |
Collapse
|
16
|
Pistilli A, Rende M, Crispoltoni L, Montagnoli C, Stabile AM. LY294002 induces in vitro apoptosis and overexpression of p75NTR in human uterine leiomyosarcoma HTB 114 cells. Growth Factors 2015; 33:376-83. [PMID: 26653825 DOI: 10.3109/08977194.2015.1118096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uterine leiomyosarcoma is a severe neoplasia resistant to conventional therapies. In previous studies, we have shown that human SK-UT-1 (ATCC HTB114) uterine leiomyosarcoma cell line secretes nerve growth factor (NGF) and expresses its receptors tyrosine kinase A receptor (TrKA) and low affinity nerve growth factor receptor (p75NTR). Furthermore, we have demonstrated that direct chemical inhibition or IgG neutralization of TrKA receptor induce apoptosis through p75NTR. In the present study, HTB114 cells were exposed to the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 with and without β-NGF: apoptosis, cell cycle, activation of caspase-3 and protein kinase B (AKT) and TrKA/p75NTR phenotypic expression were evaluated. According to the type of exposure, LY294002 not only induced a relevant increase in apoptosis, but also produced a novel and unexpected phenotypic modulation of the NGF receptors with a downregulation of TrKA and an upregulation of p75NTR. This latter increase enhanced HTB114 apoptosis. Our study confirms that the interference on NGF transduction is a promising therapeutical approach in uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Alessandra Pistilli
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Mario Rende
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Lucia Crispoltoni
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Claudia Montagnoli
- b Biology and Degenerative Medicine Division, The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI , Arezzo , Italy
| | - Anna Maria Stabile
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| |
Collapse
|